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1. In the theory of partial differential equations, namely at the homoge-
neous wave equation appears a functional equation. A necessary and sufficient
condition — as it is well known — that a function f(x, y) of the class C*(R?)
should be a solution of the above-mentioned differential equation in R?, is that
for all possible rectangles whose sides are segments of characteristics of the
homogeneous wave equation with label the vertices V; (i=1,2,3,4)— ¥, and ¥,
are denoted as opposite vertices — satisfy the functional equation f(V;)+
+f (V)= (Vo) + £ (V3).

Our aim is to investigate a functional equation closely connected with the
preceeding functional equation, but on a more general algebraic structure,
namely on a semi-group and free of geometrical interpretation. Roughly
spoken, we investigate a functional equation in which the sum of images are
equal if the sum of arguments are equal. Theorem 2 states, that if this is true for
two independent arguments, then it remains true for an arbitrary number of
arguments. Such a functional equation is closely connected with the Cauchy
and Jensen functional equations {Theorem 1) as well as with the Ryff ([5])
functional equation. We give also the most general solution of the investigated
functional equation on the reals, as well as, the general solution of it if the
unknown is not a function but a distribution. Also a method is given to solve
the corresponding inhomogeneous functional equation.

2.Let (X, +)be a commutative semi-groups with root functions y,: X —» X
for all ne N, i.e.(see [4])

forall x, ye X.
Let A beasubset of X with the property that x;e 4 (i=1,2, . .., n)implies
X+ .. +x,)ed forall ne N. Let (Y, +) be a semi-group (we shall use the
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additive notation also in the noncommutative case). We consider the
functional equation

FxO+ )=+ ;) (1)

for f: X—7Y on restricted domain, for all (x,, x,), (v;.y,) € 4 x 4 such that x,
tXo=yr ),

THEOREM 1. If the function f : X — Y satisfies the equation (1), then f
satisfies

)+ o+ fx)=nf(ax + . X)) (2)
forallx,.x,,....x,e Aand all n e N. The left hand side of {2) is independent of

the order of summation.
PROOF. We prove the theorem by induction on n. (2) is obviously true
for n=1. Let us suppose its validity for all n Sm— 1. For n=m we take x, = x,
=...=1Xx,. Since
¥y =;.‘m(><1 +(m—1)x,)e d
Vo= ‘)"m(('n - l)xl +X2) €A

and

Hence

Now we apply the equality (2) for n=m—1 on the last m—1 factors in the
preceding relation. In this way we obtain

SGmllm—=1)x, +x,))+(m—2}f(x,)=

= (}In - 1 )./i(‘i"m— 1(}',,1((7?1 - 1)xl +x2)+ (?n—z)xﬁl)) .

We shall prove that

Vm— 1 (M —1)x ) +x5) + (11— 2)x5) = 7,.(x, + (m—1)x,) (4)
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holds. Let us start from the left hand side
L= (- Gmllm—1)x, +x5)+(m—2)x,)=
=V 1 UM = 1)xX ) 4 7= 1 (7l X2)) +
i m- 1 Gm(m(m—1)x3)) .
Since 7,0 V-1 ="m-1 © 7m (see [4]), we can write
L=, (m—=1)x )+ 75 - 1 (x5 + (m? =2m)x,)) =
=X F v (1 — 1‘)zxz))==',',,,(><1 +{m—1)x,),

and so we obtain the relation (4).
By (4) and (3) we have

Jx)+m=1)f(xa)=mf(7u(x;+(m—1)x;)). (5)

Now we consider arbitrary elements x;e 4 (i=1,2, ....n). By 2)forn=m—1
and (5) we have

Fle)+ .+ fx)=f(x )+ (x)+ .+ fx))=
f(,\'l)#‘(ﬁl—l)_/v(}'m_ 1(-\“2+ LR +xm)):nz./‘/.(7nz(xl + AER +\m))

this is exactly the relation (2) for n=m.
By the commutativity of the operation + in X, we have

./“(;"n('\‘l +... +xn)):f‘(‘i‘n(xp(l)+ ot +xp(n)))’

where p(- ) denotes any permutation of the numbers 1.2, .. .. n. Hence by (2)
we have

f(xl)+ e +.I‘(xn):f(xp¢1))+ s +f(xp(n))‘

This completes the proof.
REMARK 1. It is evident that every solution of the Cauchy functional
equation is also a solution of the equation (1). If (¥, +) is a commutative
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semi-group with the root function 9, for all n e N, then by (2) every solution of
the equation satisfies also the generalized Jensen-equation

FOalxi+ .o+ x))=0,(f(x)+ ...+ f(x,)
for all x,e 4 (i=1,2, ...,n)and all ne N.
REMARK 2. Any homogeneous real solution of (1) satisfies the Ryff-
equation ([5])
af(ax)+bf(bx+a)=bf(bx)+af(ax+b).
3. THEOREM 2. If f:X —Y is a solution of (1) for which the condition
f2x)=2f(x) (6)

holds for all x € A4, then [ satisfies

S+ )=+ () o
forall x, vpeAd (i=1,2, ...,n;k=1,2, ..., m)and all n,me N such that
X+ ... +x,=y;+...+y,

holds.

PROQF. It is obvious that in the case n=m Theorem 2 follows {without
using (6)) from the Theorem 1. Let now be n==m. Then we have for arbitrary
elements x;, v, (i=1,2, ..., n; k=1,2, ..., m) fulfilling the condition

Xg+ .. Fx,=y vty =E
by Theorem 1
Jx)+ . F fx)=nf(,(2))
S+ o+ fm)=mfGa(2).

We shall now prove (7) in the equivalent form
nf(x)=mf(yn(nx)) (8)

for p=m, where x=7,(z).
Let be first n=m+ 1. By (6) and Theorem | we have

(m+1)f(x)=(m—=1)f(x)+ f2x)=mf (7.((m+1)x))
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since
Yml(m+1)x) =7,((m—1)x+2x).

(8) is proved for this particular case.
Let us now suppose that (8) is true for n fulfilling the inequalities
m+1sn<m+k—1. Hence
(m+k)f(x)=fx)+m+k=1)f(x)=fx)+mf(Gullm+k—1)x).
For n=m+1 we have by (8)
m+k)f(x)=mf(ylm+k)x),
Le. the relation (8) is valid also for n=m+k. This completes the proof of

Theorem 2.
4.1t seems to be interesting to look for the most general solution f;R—Rof

S+ &)= o+ 2)
under the condition
X{+Xa=Y +¥, (X1, X5, ¥V, ¥y €R).
Introducing the new variables x=x,, y=y,, z=x+x,=y-+y,, We can
write instead of our functional equation
f)=f+fz=x)=flz=y)=0. (9)
For x=z we have
flx=y)=fx)+ fy)=c (10)

where ¢ is a constant. This is (in general) an inhomogeneous functional
equation. Its general solution is the sum of a partial solution and the general
solution of the correspondlng homogeneous equation.

Obviously f(x)=c (x € R)is a partial solution of (10) which also satisfies
(9). The correspondmg homogeneous functional equation i the following

fx=y)=fx)—-f. {11)

from this if x=0
f=y)=—=1)
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as (11)implies f(0)=0. We see at once that the most general solution of (11)is
an odd additive function which also satisfies (9).
THEOREM 3. The most general solution of (?) has the form

JX)=c+h(x)  (xeR),

where h is an arbitrary odd additive function and ¢ an arbitrary real constant.
5. We can easily get also the general solution of the inhomogeneous
functional equation

Jx=y)—=fx)+ f(y)=d(x, y) (x,veR) (12)

if any exists. Here d is a given bounded function.
First let us calculate a partial solution, e.g. a bounded one. (12) implies

Fl=x)+ f(x)=d(0,x)+ f(0)  (xeR). (13)
Now we substitute in (12) y=2x. Regarding (13) we get

F2x)—2f(x)=d(x,2x)—d(0,x)— f(0).

By induction
Jx)—nfx)=d(x,2x)+ ... +d(x, nx)—d(O0, x)— ... —
—d(x,(n—1)x)—(n—1)1(0).

From this follows as f{0)=d(x, x)

Slnxy
flx)= ‘
1 n

- 10).

[, x)—d(0,x)]+ ... +[d(x.nx)—d(0.nx)]  d(0. nx)

n
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By the assumption that f and d are bounded

lim f(nx)/n=0

n—

Iim d(0, nx)/n=0

n—

for every x, therefore

[d{x, x)—d{0, x)]+ ... +1d{x, nx)—d(0, nx}]

This means, if (12) has a solution at all, then the unique bounded solution has
the form (14). Denoting by g an arbitrary odd additive function, f +g is the

If we consider now the corresponding inhomogeneous functional

equation
fxy—fiy+fiz—x)—flz—y)=plx.y.2) (15)
and put z=x, then this overgoes into
Sx=y)=flx)+ )= 70)—plx. 3, x). (16)

Letbed(x, y)=c—p(x, ¥, X) {czeo;‘szadz;
Obviously (10)1s not equivalent to {14}
would be interesting and useful to find condition
of (10), respectively one of {13},
6. Looking at the relation between the wave equaiion and the functional
equation {9) mentioned in the introduction, it seems t i

0 S
find the Genﬂral soh:uon of (9) n”J is “mt a function but a distribution. Applyin
i )



122 1. FENYO—E. PAP

@ is an arbitrary Schwartz-testfunction (see [6], especially p. 48—49). But then
D?f =0 and therefore the most general solution of (9) is the distribution
generated by the function ax+b (a and b are arbitrary constants)*.

Summary

The paper Investigates the functional equation f(x,)+ f(x;)= f(y,)+ f{(y,) under the condition
X;+x,=Y¥,+¥; on a semigroup. Also the general solution of it is given on the reals as well the general
solution if the unknown is a distribution. A method is proposed which provides the solution of the
corresponding inhomogeneous functional equation.
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