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I. Introduction 

In magnetic cores of the electromagnetic devices with a variable magnetic 
flux power loss appears due to eddy currents closed in single sheets as well as 
those passing through the imperfect sheet insulation. The method of analysis 
and computation of power loss in a single sheet are widely represented in 
literature and are not considered in this paper. Stray-eddy-current loss in 
laminated cores has been the subject of earlier works [1, 2]. In those 
considerations, it was assumed that the core with a rectangular cross section 
did not contact at the edges with other conducting parts of electromagnetic 
devices. In this paper, the other arrangement of the core is considered - Fig. 1 
- that appears often in practice. In this structure, sheets of lamina'ted core are 
connected on one side by the material with a greater conductivity. For 
example, the sheets can be electrically connected by the shaft or the case of an 
electrical machine. 

In the paper, an analysis of stray eddy currents in the one side electrically 
connected laminated core is given and a method of computing additional 
power loss due to these currents is presented. 

Fig. l. Cross section of the laminated magnetic core covered with an ideal conductor 1 
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U. Mathematical formulation of the problem 

The laminated magnetic core can be considered as an anisotropic body 
with respect to its conductivi~y. Conductivity in perpendicular direction to the 
sheets is less than that in parallel directions to the sheet surface, and 
substantially less than the conductivity of the material covering the core, i.e. 
than the conductivity in the region 1- Fig 1. That is why, in the mathematical 
modeL the core can be considered as an anisotropic homogeneous medium 
adherent on one side to the isotropic region with infinitely great conductivity. It 
has been assumed that the magnetic flux is oriented towards the axis and that 
the waveforms of all quantities describing the electromagnetic field are 
sinusoidal. It has been also assumed that the magnetic permeability of the core 
is constant. 

On the basis of Maxwell equations, the following equations can be 
obtained for the magnetic field intensity H in the direction of axis and for the 
components of the electric field intensity Kx and Ky is the directions of x and y 
axes, respectively: 

c2 H 
+ fix . = i . co . J1 . H (la) 

(lb) 

r 2 K 
+ fix' = i· co· fl' Ky 

C 
(lc) 

where: i = v-I: co = 2nf: f - frequency: Px and p,- resistivities of the core in 
the directions of x and y axes. respectively. . 

Introducing symbols: 

and 

k = fix 

Py 

o . 

l Y 

Ix 

0::; = I . co . J1 . '/y 

we obtain instead of the relation (la) 

?2H ?2H 
+ k· = ':/.2. H 

(' y 

(2) 

(3) 

(4) 
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In the midst of magnetic field intensity H and the components of the 
electric field inten.sity Kx and Ky the following relations occur: 

cH 
-K,,=/\ '-~-. . ex 

(5) 

(6) 

Therefore it is reasonable to sol ve first of all equation (4) and then determine Kx 
and Ky from the relations (5) and (6). The boundary problem for equation (4). 
with assumption of equal value of the field intensity Ho on the boundary line of 
the core not adherent to a conductor was partly solved in work [1]. The 
following relationship was obtained 

[
cosh exX} -L 4 '\"' (_exx )2 . sin /lit 2 . 

H(x. r) = Ho' I..... 
. cosh ex)} TC n fink 11 

(7) 
cosh /)/1.\ . x . /lTC)' ] 

. .- 'S1l1--
cosh fll/" . h 2h 

where 
" . 

ex.~ = I . cv . ~l . ~'x (8a) 

(8b) 

( )" )2 • 2 I • 11' TC -
Pnr=:XrTk --
o' 211 (8c) 

(i~ - in reference Eq. (3): remaining denotations according to Fig. 2. 
In works [2, 3J the real and imaginary parts were separated from relation 

(7) so the following expression for the distribution of the magnetic field 
intensity H had been obtained 

H(x,y)=Ho ' 
mx(1l + y). cos m)h - y) +cos m,(h - yl 0 cos m,(1l + yJ 

+ 
cosh 2m, . h + cos 2m" . h 

+ IEH" od;] + 
" 

(9) 
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+iHo ' 

where 
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mAh + y). sinmx(h - y)+sinh mAil - y). sin mAh + y) 
----------------------------------------+ 

cosh 2m)J + cos 2mx . h 

F = ( n' Tt )2 
11 • 

2J2lnx ' h 

s = 11 

4 sin (Tt· n/2) lmy 
EHIl = . . cos-, . 

Tt n 21 

(lOa) 

(lOb) 

(lOc) 

(11 ) 

(12a) 

(12b) 

(13 ) 

Similar expressions can be obtained for the field intensities after differentiating 
in accordance with relations (5) and (6) [3]. 
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Ill. Computation of power loss 

The eddy-current loss in a length unit of the core in the direction of z axis 
- Fig. 2 - can be expressed, with the help of the complex Poynting vector, by 
the relation 

P = R{1 f K x H . dS J. (14 ) 

S 

The complex vector K and the complex vector H conjugate with H concern the 
points of the core surface S. After substituting the conjugate value H obtained 
from equation (9) and the electric field intensity K to the formula (14) and after 
integrating we obtain the power loss in a volume unit of the core from Fig. 2 as 

P 7 ? {1 sinh ~h - sin ~h 
p=-=H-·p.·nr:· _. + 

4bh 0 x x ~h cosh ~h + cos ~h 

8 . 1 I S,/I . sinh ~b . 1"/1 - r/l . sin ~b . 5" 
+ 0 -;:-

n- ( ? '1 F? h - -) -b /I Ir: -J + ~. (cos C:;;b· /"/1 +cos Sb· S" 

4 I (r/l + F" . sIll . sinh ~b . 1"/1 -~ (S/I- F" . r/l~ . sin ~b . S/I 

n 1+ . (cosh Sb·1"/I+COSC:;;b·S/I) 

in which the following symbols are used: 

~b = 2· m,· ~ k· b 

~h=2mx· h 

(15 ) 

(16a) 

(16b) 

Summation with respect to the index 11 concerns only subsequent odd numbers. 

y 

o x 

F(". 2. Cross section of the laminated magnetic rectanguL,' 
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In the majority of practical problems, the field intensity Ho on the core 
surface is not known at the beginning of considerations. Instead of that, the 
total magnetic flux in the core resulting from the average induction BlI is given. 

b h 

(J>=4bhB lI =/1 J J H(x,Y)'dx'dy (17) 
-b -h 

After substitution H from Eq. (9) and some conversIOns we obtain the 
following relation 

where: 

cry' 

y(1+ 

BlI = /1 . Ho' (q/ - i . cr/') 

sinh ~h - sin ~h 
--~---+ 

~h cosh ~h + cos ~h 

8 1 1 )'-;:-2::-,' 
n- t;;b" 1/-

cr/' 
sinh ~h - sin ~h 
------+ 

~h cosh ~h+COS ~h 

'r,,)'sin~h' 

(18) 

(19a) 

8 1 1 
. c 2:: /1 2 ' • 1 ' 

(S" + F" . 1',,) sinh ~br" - (1'" + F" . s,,) sin ~bS" (19b) 

cosh ~br" + cos ~b . SIl 
+ 

.h " Y ( T 

Computation of the field intensity Ho from Eg. (18) and substitution into (15) 
allow. after some conversions, to obtain the unit stray-eddy-current loss in the 
core in which the average induction value is given. 

(20) 

__ 24.,----,- 2:: (r" + F" . SIl) . sinh ~br" ~ (SIl- F" . ~ . sin 

'=b 11 1 + (cosh t;;br" + cos Sb' s,,) 
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where 
(21 ) 

The well known factor placed before the square brackets in Eq. (20) represents 
the losses in a volume unit of the homogeneous isotropic, infinitely wide and 
long plate, in which uniformly distributed flux is assumed [4]. In the expression 
in brackets, a finite length, anisotropy, and irregular distribution of the flux in 
the core, are taken in~o account. The expression in the brackets denoted by 
n((b, (11) was calculated by a computer and the results are shown in Fig. 3. 

The results obtained in this way can be used to compute eddy-current loss 
in a more complex structure shown in Fig. 1. In order to do this, it is sufficient to 
notice that the current density component in the direction of axis x in points 
y = 0 is equal to zero in both cases Fig. 4. Therefore, on the basis of indentity 
of boundary conditions on the remaining edges, it can be stated that the eddy 
currents distribution in the core adherent on one side to an ideal conductor is 
identical to the distribution in the upper or lower half of the core of a double 
dimension 11' = 21z in the direction of axis y Fig. 4. Thus. the additional loss in 

O.4c-----"'~~-'--.;---:::;:;...-=---==--===-'---:. -. ==:=~......, 5 

;;;;;;;;;000> 6 

I 
i 

'..c:: - H--'-'- 'n-q,® 
j 

I 

t-------"------ ------.., 1-0---- _~b 

Fig. 4. Compar~son of eddy-current lines In co\cred (l and uncovered h core 
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a volume unit of the core shown in Fig. 1 should be computed from equation 

E2 . W 2 ." . /z2 
P = _a ___ '_x __ . 1[' 

6 
(22) 

where the coefficient 1[' can be read from Fig. 3 for ~b in accordance with Eq. 
(16a) and for ~h=2m)1. 

IV. Simplified relations 

Expressions (15), (20) and (22) for the power loss are extremely complex. 
Therefore, by means of them, it is difficult to draw conclusions about the 
influence of the conductivity ,'x, the core dimensions and the one side potential 
connection of the lamina on the eddy-current loss. The expressions can be 
considerably simplified without significant computational accuracy decrease. 
When the re magnetization frequency f;£ 60 Hz, the core magnetic 
permeability J.l < 1500 Po and the resistivity Px > 0.5 . 10 3 Qm and when the 
core dimension h < 1 m - applied in practice, the parameter F" value 
according to relation (11), fulfil the condition F?; ~ 1 for n = 1, and even more 
for n = 3: 5: 7. Therefore 

and the expressions for the parameters r" and s" according to relation (12) are 
considerably simplified 

r" ~v 2· F" (23a) 

(23b) 

The second component in the square brackets in relations (15) and (20) 
becomes then equal to zero and the third component becomes negligibly small 
in comparison with the first one. Physically it means that the eddy-current loss 
is caused mainly by the current density component .ix' Taking these 
simplifications into consideration in relation (20), we obtain additional losses 
in a volume unit: 

of the core shown in Fig. 2 

(24) 
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- of the core shown in Fig. 1 

B; . w2 
. ,\ . (2h f 3 sinh 2~h - sin 2~h 

p = 24 2~h cosh 2~h - cos 2~h 

= 
B o 0 I 0 ; . w- . ,'x' 1-

4 

sinh 2~h - sin 2~h 

~h cosh 2~h - cos 2~h 
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(25) 

It has been shown, by means of experimental works, that in the laminated 
cores of dimension h >0.5 m, the eddy-current loss caused by the current 
density componentjy is distinct. This concerns especially cores covered on one 
side with an ideal conductor. Moreover, it has been found that the component 
jy is cosinusoidally distributed according to coordinate y [3J 

The equivalent penetration depth of this component in the core is: 
for the core, shown in Fig. 2 

h 
L1'~ --= 

- for the core shown in Fig. 1 

211 
L1~ --= 

(26) 

(27) 

(28) 

Power loss caused by the current componentjy in a length unit of the core in the 
direction of axis z can be expressed by the formulae: 

according to Fig. 2 

h,2 

(29) 

according to Fig. 1 

(30) 



156 -"f. J. DABROHSKJ 

Taking also relations (18), (24) and (25) into consideration we finally obtain 
simplified expressions for additional eddy-current loss in the core: 

B2 . (1)2 . -, .• h2 3 sl'nh" sl'n c-p = a J .\. S" - -h V' 
) - c+ 
_4 s" cosh~" - cos ~" 

16B; . (1)2 . ~'x' h2 

+ ----~--~---

-- for the core shown in Fig. 1 

cosh ~,,+cos 

h - - . Le 
cos s" - cos s" 

O? -B; . or . ~'x . Jl''' 
P = ----------- 3 sinh 2~h - sin 2~h 

2~h cosh 2~h - cos 2~h v;, + 6 

256B;(j)2~'xh4 
+ ------:::=-

][3. 

cosh 2eh + cos 2eh . . L 
cosh 2~1z - cos 2~h c 

(31 ) 

(32) 

where: V; -- core volume, Le -length of the core in the direction of axis z. The 
other symbols are identical to those in previous expressions . 

. Final conclusions 

As an effect of the core sheets connection with a conductor the stray eddy
current loss, due to currents closing by the sheets insulation, considerably 
increases. The lossen can be especially great in the cores of wide lamina, i.e. of 
large dimension h Fig. 1. The losses, due to the current density component} ... 
are proportional to the fourth power of this dimension. As a consequence thIS 
results in the requirements with respect to the minimum value of the resistivity 
Px of the core in the direction perpendicular to the lamina. 

Summary 

Intersheet eddy-currents in the laminated magnetic core with a rectangular cross section are 
investigated. It is assumed that the core is covered on one side with an ideal conductor. A method of 
computation of the additional stray-eddy-current loss. based on the Maxwell equations and results 
previously obtained by the author are presented. Parameters affecting power loss are examined. 
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