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t;e at emp‘z likely to

eq_ cies in bending
ection. Mezroutch [6]

st v pri \ ! of the \aylezﬁh principle, for
finitizing continua in gyroscopic movement an d presenta a numerical example
to il i \s the problem described in the title

T al p roblem, the finite element method
using the line element is suitable. Its appl tion by-passes the intuitive steps
necessary in other methods of finitization

b

To solve the Lagfanges quatwns resulting from finitization the
procedure shown in [4] and [57] will be applied.

The finite element

The rotor of variable cross section will be analyzed on the basis of the

following initial assumptions:
i. The rotor is modelled as a Bernoulli-type shaft;
2. Only small deformations are examined.

B

The model conform to the above assumptions is the so-called line element,
presented in Figs la and ib.

&
[§94
15 ] X
Xy b LY
e l (A

i

Fig. 1. The coordinate system of the line element
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The displacements of the points of the element type shown in Figs la and 1b

can be approximated by: [1]

u(x, t)= oty + X + a3 x” + oy x>
and the rotation by

du(x, t)

3(x,t) = pe

= o, + 203x + 3, x?

where o« designates time dependent generalized coordinates.

(1)

The defined model has four degrees of freedom, so the displacement and
the rotation at the ends of the element can be the elements of theso-called nodal

displacement vector u®:

(T means transposition).

Using the matrix of basic functions & and the generalized coordinate

e A pr
© :fi}@,,

(2)

The introduced displacement model is compatible and complete as it is

understood by [1].

To characterize the displacements and rotations in one element let us

introduce the generalized displacement vector

p—

wi={u{x, 1), $x, 1)},
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w=%¥- & and w=% &' u°
2xd dxl 2x4 4x4 4x)
Or ezpanded:
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As.the generalized nodal displacement coordinates depend only on time, in
their knowledge, relationship

. 4 "
wix, i)=R{x) =%

permits to approximate the dispiacement fielc in side the element by means of
the approximation matrix f:

N=VA~! NT=[NT,NIJ. (4)

The elements of N, are Hermite polinoms of order 3.

The potential ard kinetic erergy of one element

A bar supported both ends in the prescribed manner (Fig 2) rotating
around the fixed z, axis at an angular velocity w , will be examined. Let s be the
arc length coordinate along the bar length.
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Let us assign the local coordinate system X, ¥, Z rotating together with
the system to the centre of gravity of an arbitrary bar element of length ds. The
position of the centre of gravity of the bar element in the fixed coordinate
system is described by values x(s, t) and y(s, t). The vector of angular velocity of
the bar element in general position in its local coordinate system, is (see [4]):

~2 2 ~3 -

¢y o X 07y OX\ .
Q= ——— X+ —V+|lo,— = 7L,

CSct 'SCt osct €S

()

5
o

where X, Y, and 7 are unit vectors of the axes of the local coordinate system. In
the local coordinate system second-order moment of inertia matrix di of the

bar element is
R?/4
a’ =dm| ' R¥4
R#/2

Where R is the cross-sectional radius function of s and dm = p Ads. Accordi
the kinetic energy of the bar element of length ds is as follows:
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(I;1s the length of the j-th element). The expressions approximating the field of
displacement of the element will be written again for the i-th bar element:

o 0x(0,t ex (1,
sz{xi(oet): &__) xi(giﬁz), W} (7)
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The energies of the i-th element of length [, are, using {35), (6j and (7):

, I ( o 0PN, *NT R 0PN OPNT N
Woor, =S E f;(}*{f = Kt Y 5 — ‘zﬂ)ds
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Term | - - ] k — as 2 small quantity of second order will be neglected
dsét/ \ Cs

clow.
Let us introduce the following symbols:

I I

1 N, ANT R? 0N, oNT
Ki=-E 1 "71 - —d G;= -’éi-‘l“(%‘?"i‘ 1
2 os®  0s” 2 7 s 0Os

Yielding for the energies
2%1’11;: X;T Migi - YzT MLYI—-ZY?‘GIXI
%oz‘=X?KiXi"YiTKin-

(Dot indicates differentiating with respect to time).
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The equations of motion and the solution possibilities:

Having use of the available energy expressions, some variation principle
{e.g. the Hamilton principle} may be applied to set up the Lagrange’s eguation
system. Substitution into the equation in the general form:

i(awkm . 6%@ . CWPOL - @
ldr\ oa ou ou

(E, being the matrix fixing the boundary conditions and the connection
conditions of the elements) yields the equation system:

b R e R MM RN

Let the coefficient matrices be of the order 2m. i“eahng with the equations
of type {8}, Lancaster [ 107 and later Merovites [5] have shown that searching
the solution of the equation system in the form ;2() ue*' (where uis a constant
vector of constant elements and 1 is a complex number) the eigenvalues form
purely imaginary pairs conjugated to each other. §Lbbt}td ng the solution of
the form above mentioned inio {8 ) resulis in a generalized e;genvaiue problem,
where the matrix of the determinant of the characteristic equation is not
symmetrical, so because of the expected complex sigenvalues, complex
algebraic methods have to be used. It is possible [5] to transform the problem
into one involving only real eigenvalues. This way any of the well-known
procedures of real algebra, such as the Jacobi, the Householder and QR
algorithms are convenient. If, however, the coefiicient matrices are a:readj, of
i i to transiormation sézsaﬂ van geous [Tioflersa

3 /it umerical results éum?g zézs
calculations related to be numerical example}, so thus the procedure presented
by [471 can be used which resulis in coefficient matrices of half order. [97 deals
with a solution different irom those in [4] and [5]

Starting from Eqg. {8), let the expecied form of the solution be
— iws T __ywT 73
u(t)=ue', w'={X',V}.
Here u is a constant vector of complex elements. Substituted into (8) yields

two equations:
(K-—Mo?)X+0GiY=0 (9a)

(K~ Mw?)iY + 0GX =0 . (9b)
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Introducing vectors, Z;,=X+(¥Y, and Z,=X—/Y moreover adding and
subtracting £gs (92) and (Ob) leads to:

In the two equations above, @ is
enough to deal with the solution o

one of the equations. Let our new starting
equation be
(K—Mo*)Z+oB8Z=0 (10)

somewhat transformed from (11)
numerical computation, yields the equations in final form:

( 0 E 1,?;_ E @],E::@
MK MG ¢ E

(E is a unit matrix of order m.) Let the solution of the differential equation
system be T(r)="Te"". Substitution and division by e*’ results in the algebraic

eigenvalue problem:
0 E E O
=0.
MK MG 0 E

The coefficient matrix being unsymmetrical the solution must rely on complex
algebra. It is an advantage, however, that the volume of numeric computations
decreases by avoiding doubling of the coefficient matrix order. The advantages
of the latter procedure should be illustrated by the following numerical
example.

=2
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Numerical example

The rotor under examination is a bar of variable circular cross section,
with hinged supports both ends. Let the longitudinal axis of the bar be
coincident with the -, axis in Fig. [. The length of the bar is L=1 m. The
variation of the diameter is given by the function d(z)=(4—z)- 107? m. The
substance parameters are regarded to be constant assuming homogeneous
substance distribution all over. The values of the substance parameters are:

=2-10"' Nm~? and p=7850 kgm 3,

Computations involved the determination of the natural circular frequencies of
the bar alone. The resulis for the bar of variable cross section, based on different
w, values are shown in the next table:

w, 390 | 460 | 490 1600
469.96  469.98 470 470.1

@ 469.64 16963 46961 469.4
1814 181415 | 18142 18146

@2 1813.5 1813.39 81335 | 18129
4175.43 4176.15 417692 4178.3

@ 4175.41 4175 ‘ 417431 ‘ 4173.25

(Hz)

Two values are sesen for each w, in the vicinity of natural circular
frequencies in the case @, =0. The higher of both results if the direction of the
vector w4 1s the same as th of the unit vector of the zj axis in Fig. 1. Thisis t

lges L (Hz)

10 -
L 5318
| 4175
w 181%
469
g Wy (Hz)
390 1600

Fig. 3
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case of the so-called backward precession. A detailed analysis of the precessions
in both directions is found e.g. i [2},"[3] The critical angular velocities of the
rotating shait may be found gfaphicaﬂy from Fig. 3.

Critical angular velocities have been demonstrated experimentally [2] to

ion, the curve set wlw ) has to be plotied
ine the w, values where the line w=o,
critical values, approximate the

roblem for the selected shaft was

s m y Jacost [ 7], hardly less fast than
nethod, but is suitable to determine complex etgen'umes as
compuiations could be performed on the CDC 3300 type

]

N

C

Publications on small deformations of rotating shafis or rotors report doubling of natural frequencies
of bending vibration due to the gyroefiect as demonstrated by the finite element method developed for the
case of variable cross sections.

The present continuum model is easiest finitized by using the so-called line-element. The presented
numerical example illustrates the computations using this kind of elements. The procedure permits to halve
the order of the equation system obtained by finitization, and to improve thereby the numerical efficiency.
The computations suit to determine the critical revolution numbers as well. The obtained approximate
values are the upper limits of the correct ones.
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