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rotors as gyroscop 
be on in the attempt likely to 

the natural circular frequencies in bending 
a shaft of circular cross-section. Meirovitch [6J 

mi:rc,OllCf.;S a principle, on the analogy of the Rayleigh principle, for 
t1niti;~mg continua in gyroscopic movement and presents a num~rical example 

Ra.vl{;llzh--Rltz method. As the problem described in the title 
can wen be as a one dimensional problem, the finite element method 
using the line element is suitable. Its application by-passes the intuitive steps 
necessary in other methods of finitization. 

To solve the Lagrange's equations resulting from finitization the 
prc}ce1dm:e sho'JVll [5J will be applied. 

rotor of variable cross section will be analyzed on the basis of the 
following initial assumptions: 

1. The rotor is modelled as a Bernoulli-type shaft; 
2. Only small deformations are examined. 
The model conform to the above assumptions is the so-called line element, 

presented in Figs 1 a and 1 b. 

Fig. 1. The coordinate system of the line element 

5* 
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The displacements of the points of the element type shown in Figs la and 1 b 
can be approximated by: [lJ 

(1 ) 

and the rotation by 

where IX designates time dependent generalized coordinates. 
The defined model has four degrees of freedom, so the displacement and 

the rotation at the ends of the element can be the elements of the so-called nodal 
displacement vector ue : 

(T means transposition). 
U sing the matrix of basic functions and the generalized coordinate 

vector Cl!. the nodal displacement vector can be expressed in the form 

(2) 

The introduced displacement model is compatible and complete as it is 
understood by [1]. 

To characterize the displacements and in one us 
introduce the generalized displacement vector 

= {u(x,t), 8(x, 

the ge11erali;;:ed cll~;pl:3.ct';m'e:m vector 

and 
2x4 4xl 2x4 x4 4 xl 

Or expanded: 

0 0 

°1 v=[~ x x 2 

x
3 

] A- 1 = 0 1 0 

-~/l 1 2x 3x2 ' 3/[2 -2/1 3/F 
2/P 1/1 -2/12 1//2 
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As, the generalized nodal displacement coordinates depend only on time, in 
their knowledge, relationship 

per'mlts to approximate the displacement field in side the element by means of 
the ap'prcrximatioin nlatrix 

-1 

4x2 

The vector to be used later, is as follows: [8J 

x x 
=1--- I' I • 

The elements of are Hermite polinoms of order 3, 

potential 

A bar supported both ends in the prescribed manner (Fig 2) rotating 
around the fixed Zo axis at an angular velocity (I) A will be examined. Let s be the 
arc length coordinate along the bar length. 

x. f$-------=----~ 

x (s,t) t 
Y(',t) i 

Yo 

y \ \ 
~ 

'ds 

Fig, 2 
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Let us assign the local coordinate system X, Y, Z rotating together with 
the system to the centre of gravity of an arbitrary bar element of length ds. The 
position of the centre of gravity of the bar element in the fixed coordinate 
system is described by values x(s, t) and y(s, t). The vector of angular velocity of 
the bar element in general position in its local coordinate system, is (see [4J): 

where X, Y, and Z are unit vectors of the axes of the local coordinate system. In 
the local coordinate system second-order moment of inertia matrix dl of the 
bar element is 

R2/2J 
Where R is the cross-sectional radius function of sand dm = pAds. Accordingly, 
the kinetic energy of the bar element of length ds is as follows: 

1 f('C V ')2 (cv)2l 1 d Wl,:in = ~dm -; +, _-_ + -
""' L\ot \01 -' 2 

and the potential energy: 

d 
1 ~_I-(C.2X\2 

= 2 t.l L cs 2 ) + 

(5) 

ds. 

Let us divide the bar into n elements. The cross sectional ch:ar2lCl(:n:;;tlc;s of 
the i-th element along the length of the bar are the lurlCtlOflS 
Ri(s), I i(S) and Ai(s) of radius, moment of inertia and cross sectional area. 

i-I 

Ij ~.s ~ Ij , 

j=l j=l 

(lj is the length of the j-th element). expressions approximating the field of 
displacement of the element will be written again for the i-th bar element: 

xi(S, t)=Nf(s)Xi(t), Yi(S, t)= i(t ), 

u!(s, t) 

= {xi(O, t), 
(;x;(O, t) 

Xi(li' t), cXi~li' t)} , (7) 
cs cs 
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The energies of the i-th element of length l, are, using (5), (6) and (7): 

(
32y,V (OXi)2 

Term -- I 1- as a small quantity of second order will be neglected 
osotj \ os 

below. 
Let us introduce the following symbols: 

li 

1 f ;2N T 
- _ 1 0 1 

= - P 1·--- --ds 2 -'-' l OS2 OS2 ' 

o 

I, 

li 

1\., 0 1 0 1 

f 
n2 "N. "NT 

= A'-2 wA-~--,,-ds, 
os os 

o 

T i 0 1 oN 1 f ( R 2 "N "~IT~ 
=p A, N 1N 1 +--,,--,,- s. 

4 os os 
o 

Yielding for the energies 

(Dot indicates differentiating with respect to time). 
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T he equations of motion and the solution possibilities: 

Having use of the available energy expressions, some variatioE principle 
(e.g. the Hamilton principle) may be applied to set up the Lagrange's equation 
system. Substitution into the equation in the general form: 

[
d (DWkin) DWkin DWpot ] _ " ---- ----u 
dt \ ou DU DU 

(El being the matrix fixing the boundary conditions and the connection 
conditions of the elements) yields the equation system: 

0] [X] r 0 
M Y + l-G (8) 

Let the coefficien t matrices of the order 2m. Dealing the equations 
of type (8), LANCASTER [10] and later MEIROVITCH [5] have shown that searching 
the solution of the equation system in the form u(t) = (where is a constant 
vector of constant elements and ). is a complex number) the eigenvalues 
purely imaginary pairs conjugated to each other. Substituting the solution of 
the form above mentioned into (8) results a-generalized eigenvalue problem, 

the matrix of the the characteristic equation is not 
symmetrical, so because of the expected complex eigenvalues, 
algebraic methods have to be used. It is possible [5J to transform the nTt"\hl",T'n 

into one involving real eigenvalues. This way any 
procedures of real 
algorithms are convenient. 

order, doubling due to trcms:iOJrmatl.on 
version of the 

caJ[CU!atlOllS related to be numencal e:xaIuple), 
can be used which results in coefficient matrices of 

with a solution different 
the soJ.utllon be: 

deals 

Here is a constant vector of complex elements. Substituted into (8) yields 
two equations: 

- MQi)X+ wGiY =0 (9a) 

+wGX=O. (9b) 
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Introducing vectors, = X + and = X - iY moreover adding and 
subtracting (9a) and (9b) leads to: 

+ =0 

tVJO sign. it is 
our new starting 

(10) 

that 

+ + =0. (11) 

InltrOGUCHlg vector and SUIGstitu.tlrtg It,tJle S()1UtlOn of can be 
reduced to: 

-1 + (12) 

somewhat transformed from (11). Using matrix form of representation for the 
numerical computation, yields the equations in final form: 

-1 

is a unit matrix of order Let the solution of the differential equation 
system be T(t) = Tewt

. Substitution and division by eeat results in the algebraic 
eigenvalue problem: 

E JT _ w[E 
-lG 0 0J - 0 E - . 

The coefficient matrix being unsymmetrical the solution must rely on complex 
algebra. It is an advantage, however, that the volume of numeric computations 
decreases by avoiding doubling of the coefficient matrix order. The advantages 
of the latter procedure should be illustrated by the following numerical 
example. 
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Numerical examrple 

The rotor under examination is a ba~ of variable circular cross section, 
with hinged supports both ends. Let the longitudinal axis of the bar be 
coincident with the Zo axis in Fig. 1. The length of the bar is L = 1 m. The 
variation of the diameter is given by the function d(z) = (4 - z) . 10 - 2 m. The 
substance parameters are regarded to be constant assuming homogeneous 
substance distribution all over. The values of the substance parameters are: 

Computations involved the determination of the natural circular frequencies of 
the bar alone. The results for the bar of variable cross section, based on different 
W~ values are shown in the next table: 

(!),4 390 460 490 1600 

469.96 469.98 470 470.1 
(!), 

469.64 469.63 469.61 469.4 

1814 1814.15 1814.2 1814.6 
CO2 

1813.5 1813.39 1813.35 1812.9 

4175.43 4176.15 4176.92 4178.3 
0)3 

4175.41 4175 4174.31 4173.25 

(Hz) 

Two values are seen for each w.j the vicinity of natural circular 
frequencies in the case W 4 = O. The higher of both results if the direction of the 
vector W 4 is the same as that of the unit vector of the Zo axis in 1. This is the 

19w 

104-

-t--"-"-----------;---_ W A (Hz) 
390 1600 

Fig. 3 
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case of the so-called backward precession. A detaiied analysis of the precessions 
in both directions is found e.g. in [2],[3]. The critical angular velocities of the 
rotating shaft may be found graphically from Fig. 3. 

Critical angular velocities have been demonstrated experimentally [2] to 
belong to W=WA. 

In the curve set w(wA ) has to be plotted 
true to scale (Fig. 3) and to determine the W,.j values where the line W=W A 

that the critical values, approximate the 
f':lo'env:1iI1F problem for the selected shaft was 

reclucing methc)c! by lA.COBI [7J, hardly less fast than 
rnetJ10c!, but is suitable to determine complex eigenvalues as 

pC;norm!ec! on the CDC 3300 type 

Publications oil small deformations of rotating shafts or rotors report doubling of natural frequencies 
of bending vibration due to the gyroeffect as demonstrated by the finite element method developed for the 
case of variable cross sections. 

The· present continuum model is easiest finitized by using the so-called line-element. The presented 
numerical exampl~ illustrates the computations using this kind of elements. The procedure permits to halve 
the order of the equation system obtained by finitization, and to improve thereby the numerical efficiency. 
The computations suit to determine the critical revolution numbers as well. The obtained approximate 
values are the upper limits of the correct ones. 
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