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vector of deformations 
differential operator matrix 
stress vector 
matrix of materia! constants 
Lagrangian function 
kinetic energy 
deformation energy 
volume 
mass matrix 
stiffness ITiatrix 
amplitude vector 
i-th circular natural frequency 
density 
Young's modulus 
shear modulus 
moment of inertia 
cross-sectional area 
total displacement 
displacement due to bending 
displacement due to shear 
bending moment 
shear force 
shear coefficient 
Poisson's ratio 
length of the beam element 
time 
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1. Application of the fote element method (FEM) to 
elastic continua periormiag free vibrations 

The finite element method suits to describe the movement of elastic 
continua, by reducing the continuum of infinite degrees of freedom to a 
mechanical system of finite degrees of freedom. For solving dynamic problems 
mostly the displacement method is used. 

After the division of the continuum to finite elements let us approximate 
the field of displacement in the following form [1]: 

u=Nr 

Deformations inside the element are obtained from the relationship 

~=ou=oNr B=oN, 

and the stresses from: 

v=Dt= 

The matrix differential equation relative to the element can obtained e.g. 
means of Lagrange's principle: 

dt at Y=T-U. 

KUletlc energy the is: 

1 -

(V) 

(5): 

f 
(V) 

from this the mass matrix of the element is 

(1) 

(2) 
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Th~ deformation energy of the element is: 

1 
U =.:. f ET . (fdV. 

Substituting (2) and (3) into (7), 

1 I' 
U = - . JI. 

2 
(V) 

2 (V) 

J 
(V) 

is the stiffness matrix of the e1eme:nt. 
Substituting and (8) into 

to the element the t"l!fwmn.c; 

-
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(7) 

(8) 

differential equation relevant to the whole system can be obtained from the 
usual coupling conditions of the elements [1J, thus the blocks representing the 
relationship between nodal points i and j of the mass matrix and the stiffness 
matrix can be calculated with the relationship 

= 2., 
e E i.j e E i. j 

in the summation taking only elements containing nodal points i and j alike 
into consideration. When using the displacement method, only the kinematical 
boundary conditions must be satisfied. This is done by omitting from the 
matrix differential equation the rows and columns belonging to zero 
displacements. For the sake of simplicity let us write this system of differential 
equations similarly in the form 

Mf+Kr=O. (9) 

Looking for a standing wave solution, nodal displacements will be found in the 
form 

r = R. sin (at + cp) . (10) 

. Substituting (10) into (9), we obtain the algebraic system of equations 
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which has a non-trivial solution only in the case 

det (11) 

~ (1 1)' , r? (. 1? \ " ., h . . t rom _ the vames 01 (Xi 1 = _, _, . .. , n) can oe oetermmeo, t _at IS to say 
the approximate values of the first n circular natural frequencies of the elastic 
continuum, where n is the degree of freedom of the finite element model. K and 
M being positive definite, (1.; values will be positive. 

2. 'HmosbE:uo 

Simpler theories for the study of bending vibrations of beams or structural 
elements which can be modelled as beams have been developed in the following 
main steps: 

1. Classical or .t..lHer-!jel~n()ul.H 
2. Rayleigh's tn,',",Y'" 

3. TIMOSHENKO'S +""~?'U 

In the classical th<>AT'U 

consideration, the behaviour of 
1.";,;"",,·,,,(,; equation: 

El 

El~+ 
O~· A 

+ 

reE;ultmg in pure be11d.lng 
b:eams being described 

theory gives already a better approximation of circular natural 
frequencies, but still does not take the other important secondary effect, shear 
stress into account. 

TIMOSHENKO, taking rotary inertia and shear stress into consideration, 
evolves a theory, the results of which show very good agreement with measured 
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natural frequencies, even for higher modes and not only the case of slender 

Fig. picks out a deformed state of the beam element of length dx during 
VH)r2~ti()n, of In rest state the axis of the beam has 

PreSl1ITl1ng sman deformations, this may be assumed to have 

'I 

steps. 
be'n(tm~~, occurs. 

Fig. 1 

is 
eie;menlts, in accordance with 

The second step of deformation results from the 
of shear forces. The can best by 

slipping on one another. No angular displacement takes 
change, and not be perpendicular to the cross-

ele:mi::nt any more. to for 

Cv 
~ = Q)+},. 
ex 

Applying Kirchhoff's hypothesis for the bending moment, and Timoshenko's 
hypothesis for the shear force: 

o@ 
M= -El ~; 

ox (
DV ) Q=kGA ox - $ . (12a b) 

The coefficient k depends on Poisson's ratio and on the cross-section of the 
beam [3]. Substituting (12b) into the impulse theorem and (12a) into the: 
moment of momentum theorem and eliminating $, we obtain for a beam of 
constant cross-section: 

(13) 
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The circular natural frequencies can be obtained from the transcendental 
equation - to be derived from (13) and difficult to handle- ,though the beam is 
of constant cross-section. For non-prismatic beams a system of two differential 
equations is obtained instead of (13), seldom solved under utilization of special 
functions of mathematical physics. 

3. Stiffness 

The circular natural frequencies of Timoshenko beam, performing free 
transverse vibrations are determined therefore with the process outlined under 
Section 1. 

Fig. 2 
Nodal generalized displacernents due to bending and shear 

Let the field of displacement be characterized the vector = [Vb' 

Total displacement will be evidently V = Vb + Vs' The nodal generalized 
displacement co-ordinates are the deflections and the rotations of the two end 
points of the beam element, separately from bending and shear [4] (see 2). 

Both Vb and Vs will be expediently approximated by third-degree 
polynomials, each containing four constants. the constants from 
the boundary conditions 

the matrix contained in 

1= 
3x2 

- 72 T 
L 

11 

__ -L 
o , 

l k 
L L 

A beam model being considered, it is sufficient to calculate, instead of the 
stresses, with the bending moment and the shear force, and instead of the 
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deformations, with the second derivate of Vb and the first derivate of Vs with 
respect to x. With symbols in Section 1, quantities in (2) and (3) are as follows: 

0= 
02 0 \ 

, ?ix I ' D = <lE, kAG) , (15) 

ob,tal.ne:d according to (8), only now the integration 
into (7), using (1), (2) and 

L 

+ dx 

x=o 

obtmne,d, where natm:all,y lE and AG may be qu.an.tities varying along the 

For the de·termina.tJe)fl of the mass (5) and cannot be directly 
COml)ri:ses in our case only the displacements of the clastic line, 

the energy arising from rotary inertia into 

kinetic energy of Timoshenko beam element is 

L 

T_ 
1 f 1 - 2 (16) 

x=o 

Using (1), (14) and (16), and introducing notations 

T fl 1J 
_1 1 ' [

8 

~x ~J 
the expression 

L 

T = ~ tT f (pANTTN + pIBTB 1 ) dx . t = ~ tTMt 

x=o 

is obtained, from which the mass matrix can be calculated. 
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In case of a uniform beam, the stiffness matrix .K of the beam element has 
the following form: 

where S = ---
30 El 

The mass U.-,,"U'A 

1-

[~~L -12 

-6L 

12 

Symro 1,: 

4L2 -' 6L 

_1 __ 2 

symmj 

4U 

the ele:ml::nt has 

+ 

54 

L 13L -3L2 22L 

·s; 

-+-
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The numt;rH~al exarrlpl.e given to illustrate the process determines the first 
four,ciI~Ctllar natural fn;ql11encles a 

Data: : d=O.122 m; 1= 

3 -3 

E 8' 

2 
19.60 

28.26 

annular cross-section. 

1 
m; v = ::; ~ k 

,) 

15.21 

25.34 

14.10 

22.06 

SUcloc,rteri b~am Cantilever beam 

The finite element displacement method is used for the approximate determination of the circular. 
natural frequencies of Timoshenko beam performing free bending vibrations under various bounds..-), 
conditions. 
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