FINITE ELEMENT ANALYSIS OF BENDING VIBRATIONS OF 4
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STRAIGHT-AXED BEAM UNDER CONSIDERATION
OF ROTARY INERTIA AND SHEAR DEFORMATION
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Deformations inside the element are obtained from the relationship

M. KOVACS er al.

1. Application of the finite clement met

(FEM) to
elastic continua performing free vibrations

The finite element method suits to describe the movement of elastic
continua, by reducing the continuum of infinite degrees of freedom to a
mechanical system of finite degrees of freedom. For solving dynamic problems
mostly the displacement method is used.
After the division of the continuum to finite elements let us approximate
the field of displacement in the following form [17:

u=Nr

=fa=0Nr=Rr: B=0N,

and the stresses irom:

o=0g=DBr.
The matrix differential equa
means of Lagrange’s principle:
d ¥ o% o
—— =10 F=T-U
dr ot or
The kinetic energy of the slement is
S B A S
T=o | px— 5 dV
4 4 ot ot
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Substituting {1) into {5)
== | pNTNGV- ¢ —;ff%?,
2 Z
*)

this the mass mairix of the element is

M= | pNTNGV.

te
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tion relative to the element can be obtained e.g. by
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The deformation energy of the element is:
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Substituting (2) and (3) into (7),
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is the stiffness mairix of the element.
St%smu ting (6} and {8) into (4), the matrix differential equation relevant
2 (s ¢ 1

to the element will have the following form:

7 vant to the whole system can be obtained from the
usual coupling coudi ions b elements [ 1], thus the blocks representing the
relationship between nodal points 7 and j of the mass matrix and the stiffness
matrix can be calculated with the relationship

Z My: K = )L K STE

ecgi,j eci, j

The differential equation reles
oft

in the summation taking only elements containing nodal points 7 and j alike
into consideration. When using the dlsplacement method, only the kinematical
boundary conditions must be satisfied. This is done by omitting from the
matrix differential equation the rows and columns belonging to zero
displacements. For the sake of simplicity let us write this system of differential
equations similarly in the form

Mi+Kr=90. ©)

Looking for a standing wave solution, nodal displacements will be found in the
form
r=Rsin (at + ). (10)

» Substituting (10) into (9), we obtain the algebraic system of equations

(K —e>M)R =0,




126 M. KOVACS et al.
which has a non-trivial solution only in the case
det (K —e’M)=0. (11}
From (11)the values of ¢f (i=1,2,.. ., n) can be determined, that is to say
the approximaie values of the first n HCdE natural frequencies of the elastic
continuum, where 7 is the degree of freedom of the finite element model. K and
M being positive definite, o7 values will be positive.
2, Timoshenko beam model
Simpier theories for the study of bending vibrations of beams or strucmrai

elements which can be modeﬂed as beams have been developed in the following
main step

1 dasswa& or Euler-Bernoulii's theory,
2 :3. 'ieicn s ihe@ry.
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consideration, {he behaviour o

rati
following equation:

o Ot PR R
Elom v pA S — P53 =Y,
ox* 32 éx2ot?
This theory gives aircady a better approximation of circular natural

frequencies, but still does not take the other imporiant secondary effect, shear
stress into account.

TivosHeENKO, t2king ;raft ry inertia and shear siress into consideration,
evolves a theory, the results of which show very good agreement with measured
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natural frequencies, even for higher modes and not only in the case of siender

been the x axis. Presumin* smaii deformations, tr s may be assumed 10 have
developed by the following steps. First, the rigid body-like displacement by

The coefficient k depends on Poisson’s ratio and on the cross-section of the
beam [3]. Substituting (12b) into the impulse theorem and (12a) into the
moment of momentum theorem and eliminating ®, we obtain for a beam of
constant cross-section:

~=0. (13)
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The circular natural frequencies can be obtained from the transcendental
equation—to be derived from (13) and difficult to handle—,though the beam s
of constant cross-section. For non-prismatic beams a system of two differential
equations is obtained instead of (13), seidom solved under utilization of special
functions of mathematical physics.

3. Stiffness and mass matrices of Timoshenke beam clement

The circular natural frequencies of Timoshenko beam, performing free
transverse vibrations are determined therefore with the process outlined under

Section 1.
4 & \
2 tiT T’%E) ol | I Tg
\ Z
Fig. 2
Nodal gencralized displacements due t¢ bending and shear
Let the field of displacement be chara zed by the vector u’ = [v,, v,

Total displacement will be evidently v=uy, -'r-Z/ The nodal generalized
displacement co-ordinates are the deflections and the rotations of the two end
points of the beam element, separately {rom bending and shear [4] {see Fig. 2).

Both ¢, and v, will be expediently appr oxx*nai:ec’ b} third-degree
polynomials, each containing four constants. Determining the constants from
the boundary conditions

) s éu, B ory o
Uply=g = I'y - = = i — = g
CXiz=0 CXx=1
the matrix M contained in {1) is obtained:
™. T, ¢ ]
i% 1 %
oo | e o B O (14)
- l T B N ER i [
LN Le Piap
o Taxd 3k x> 2x?
N11=N22:¥ P 'T'_ét, “"_‘;“:_—T'“xa
| L - i* L
2x 0 3x? x3 x?
- 0 y - 3 T Ty
73 R 7 2
L L > L

A beam model being considered, it is suificient to calculate, instead of the
stresses, with the bending moment and the shear force, and instead of the
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déformations, with the second derivate of v, and the first derivate of v, with
respect to x. With symbols in Section 1, quantities in (2) and (3) are as follows

. [e%, ov &2 e
gz{“;;fﬂ, a=<—;> D = (IE, kAG), (15)

X CX |

"»

and from these K can be obtained accordz to {8), only now the integration
Wi i be performed with respect to x betisu’{mg (15)into (7), using (1), (2\ and
3} actually the strain energy of ‘w: Timoshenko beam element

L
N A2 2 ~ 273
IU S O B £ e A EASE
o= | LIk 7§+fi’kif£§§ 1X
2 ) L\ \éx/
x=0
is cbtained, where naturally I[E and AG may be guantities varying along the
length.

For the determination of the mass matrix, (5) and (6) cannot be directly
used, because u comprises in our case only the displacements of the elastic line,
so that (5} does not ¢ ¢ kinetic energy arising from rotary inertia into
consideration.

The kinetic energy of Timoshenko beam element is

¢
T = 1 1. | ox 0
__1 NE ) o ol’ B, =0,N,

the expression

l\)lv—‘

L
f ANTTN +pIBIB,)dx ¢ =

is obtained, from which the mass matrix can be calculated.
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4. Numerical example for determining the circular natural

frequencies of 2 uniform beam under different boundary
comditions

1077
EXACT
3.867 1.355
12.68 7.989
t 3.565 3554 1358 1 1350
11.75 108 6404 6348
- 2046 1960 i5.21 14.10
30.52 28.26 25.34 22.06
Simply susported beam Cantilever beam
Summary

The finite clement displacemsnt method is used for the approzimate determination of the circular

natural frequenciss of Timoshenko beam performing free bending vibrations under various boundary
conditions.
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