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Introduction

Quasi-TEM (gTEM) waves in closed waveguides with inhomogeneous
dielectric are treated in this paper. qTEM waves are known to be encountered
in shielded microstrips, coaxial cables, multicore lines, i.e. in waveguides which
contain further conductors in addition to that bounding the wave field. This is
why the cross section of the dielectric is a multiply connected region. Both the
dielectric and the conductors are supposed to be lossless. The investigation is
restricted to the case where neither the geometry nor the properties of the
media (permittivity and permeability) vary in the direction of the wave
propagation, and the latters are constant but different in each region of the
cross section.

The functions describing the propagation coefficient and the field
strengths will be obtained by series expansion in powers of frequency. A similar
method has been presented in [1] for calculating the quasi-TM and quasi-TE
modes, where the series expansion was performed about the cut-off frequency.
The cut-off frequency of qgTEM waves is zero. This explains to a certain extent
why the method used for calculating the qTM and qTE waves cannot be
applied to gTEM modes, and so another procedure had to be developed.

If the frequency dependence of the propagation coefficient (the dispersion
characteristic) is determined by a usual method, then the complicated
waveguide eigenvalue problem has to be solved for many distinct values of
frequency. The method presented in this paper has the advantage that only a
much simpler eigenvalue problem has to be solved, namely the eigenvalues of a
quadratic matrix of as many rows and columns as there are conductors inside
the wave field have to be determined. The coefficients of the power series in
frequency can be calculated by solving simple boundary value problems.
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Differential equations and boundary conditions
of the problem

Let the z-axis of the co-ordinate system be parallel to the direction of wave
propagation, and let the unit vector in this direction be denoted by k. The
complex value of the electric and magnetic field strength in the m-th region of
the dielectric cross section A4,, (see Fig. 1) will be written as:

Emz(eTm+ezm)eXp(_pz) (1)

Hmz(hTm+h:m)eXp(—pZ)s (2)

where p=jf denotes the propagation coefficient. Vectors e,,, and h,, are
perpendicular to the z-axis, vectors e,,, and h,,, are parallel to it, and all the four
vectors depend only on the two cross sectional co-ordinates.

Publications on waveguides (e.g. [2]) usually express the other com-
ponents of the field strengths by means of functions e.,, and h_,, writing the

Fig. 1

differential equations to be solved in terms of these functions. Instead of this,
now vector e, is used as basis of calculation. This choice is advantageous
because as against the boundary conditions for functions e,,, and h_,, those for
vectors e,, do not contain the frequency and the unknown propagation
coefficient. It is to be noted that vectors h,,, may repiace vectors e, as basis of
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the calculation. The other components of the field strengths can be expressed in
terms of vector e,,, as:

k
Com=" div €rm (3)
12
h_,=-——-curl e,, 4)
jopy,
k 1
hTm =7 X (peTm +- grad div eTm) =
JO U, p
5)
k

=—x(jwe, e+ curl curl e;,,).

m

For convenience’s sake, instead of frequency w, the dimensionless
quantity w= wL/c is used for the direct parameter of expansion where ¢ denotes
the light velocity in vacuum, and L is an arbitrary constant of length dimension,
which is suitably chosen so as to equal some characteristic geometry of the
waveguide. So the power series of the square of the propagation coefficient and
of vectors e, are sought in the following form:

&K
F=L7P Y aw™ (6)
i=1
.
em= Y en’ ()
i=0

Obviously [1], functions e,,; satisfy equation

Ae,,=0 (8)
Aemi= —'L—Z(Srmurmem,i—l + Z ajem,i——j) (9)
j=1
i=1,2, ...,

where ¢,,, and y,,, denote the relative permittivity and permeability, resp., in the
region A, In the calculation functions e, are first determined. Knowing these,
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functions e,,; will be determined consecutively by a recursion procedure based
upon Eq. (9). In the recursion procedure first the divergence and curl of vectors
e,,; are possibly determined, yielding, in turn, the vectors e,,; themselves. To this
aim, let us introduce the following notations:

U, =div e, (10)

v.Kk=curle,. (11)

For qTEM modes u,,, =0 and v,,,=0 [1]. The equation for determining the
other functions u,, results by forming divergence of both sides of Eq. (9) and
taking u,,=0 into consideration:

i—1

Aumi = —-L-Z(grmlu'rmum,i-— 1 + z ajum,i-—j)' (12)

j=1

In knowledge of functions u,,; functions v,,; will be obtained from:

grad Umizk X [grad umi+ L-z(grm#rmem,i~ 1 + Z ajem,i—j)]> (13)

Jj=1

also derived from (9).

In addition to the foregoing equations also the knowledge of the
boundary conditions derived in [1]is needed for determining functions u,,;, v,,;
and e,;. The following boundary conditions must be satisfied along the
conductor outlines:

Up; =0 (14)

=0 (15)

where n,, denotes the unit vector normal to the outline and pointing inside the
region 4, (see Fig. 1). Along the outline separating regions 4,, and A, of the
dielectric the following boundary conditions have to be satisfied:
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Upi =Uy; (16)
1 <0u L"Z ) 1(5% - i 1

— a. l]m em i—i]= +L- n e . . 7

Hm ST j=1 ' Y \on j§1ajnm"ek:‘ j (17
1 1

— Ui = — Uy (18)
Hm Hy,

Dok X €y = Dy X € (19)

Dk €rmi = &My €yis (20)

where n,,, denotes the unit vector normal to the outline and pointing inside the
region A4,

Solution valid at low frequencies

At low frequencies it is sufficient to consider the first terms of series (6) and
(7), ie. the electric field can be approximated by vectors v, and the
propagation coefficient can be approximated by the form pzj\/ —a,w/c.
Vectors e,,, determine an electrostatic field, what follovs also from equations
div e, =0and curl e,,=0. Let us introduce N potential funtions ¢, in order
to describe the vector e,,,, /N being the number of the conductors inside the
wave field. (In Fig. 1 N=2) Let functions ¢,,, satisfy Laplace’s equation

Ag,,=0, p=12, ... N (21)
and let along the outline of the p-th conductor
Prp=1 ' (22)

and along the outlines of the other conductors (including the one bounding the
wave field)

Omp=0, (23)

but of course only the outlines bounding in fact the region A, have to be
considered. Along the outline separating regions A, and A, the following
boundary conditions have to be satisfied:

qup = q)kp (24)



12 A. MAGOS

Oq)mp =z Oq)kp

Eni > (25)
Oy, Oy
The vector e, can be written in terms of functions ¢,,, as:
N
€mo= — Z (DOp grad qomp (26)

p=1

where constants @, are undefined for the moment.

Now let us determine the function u,,; satisfying Laplace’s equation
according to (12), as well‘as boundary conditions (14), (16) and (17). Let us
introduce N functions ¥,, so that the solution satisfying the boundary
conditions might be written in a perspicuous form. Let them satisfy Laplace’s
equation

AY,,, =0, p=1,2, ... N (27

and let along the outline of the p-th conductor
Ymp=1 (28)

and along the outlines of the other conductors
Ymp=0. (29)

Along the outline separating regions A4,, and A, of the dielectric the following
boundary conditions must be satisfied:

lﬁ[/mp: l:[/kp (30)

L aln/jmp _i 6’7111\';7

- ~ (31)
M Ol Ky OM e
The function u,,; can be given in terms of functions ¢,,, and ¥, as:
N
Unpy =a1L"2 Z qJOp(q)mp_ ‘/’mp)a (32)

p=1

where beside coefficients @, also the coefficient a, awaits to be determined.
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If the first term of the series in w? of function k., is determined by using
relationship (5) and the foregoing expression of u,,,, the following approxi-
mation valid at low frequencies is got for the transversal magnetic field:

‘CL—L Z @, curl ki, (33)
=1

"

mQ

pointing to the fact that functions v, , can be regarded as functions that give
magnetic vector potentials parallel to the z-axis and belonging to the magnetic
fields of several excitations.

Substituting the expression (32) of u,,, into Eq. (13) yields the relationship

N
grad vml = ___L"?.k X Z ®(!p(a1 grad wmp.*—srmtu'rm grad g)m_u)' (34)

p=1

Existence of functions v,,, satisfying (34) and boundary conditions (18) requires
the sum of 1/u,,, times the integrals of the vector in the right-hand side of (34)
with respect to sections in regions 4, of an arbitrary closed curve defined in the
dielectric cross section to be zero. If the closed curve encloses no conductor,
then this condition is satisfied by definitions of functions ¥,,, and ¢,,,. So it
suffices to prescribe the fulfilment of the condition along the closed-curve
outlines of N conductors:

N a
> ®OP(—- grad ¥, +¢,, grad o, )Jdiz@ {35)
=1 ,urm

g=1,2, ... N.

Here [, denotes the common part of the outlines of the g-th conductor and
region A,, if it exists. Let the direction of the curve/,, around the conductor co-
ordinated to the z-axis according to the right- hand rule.

The N equations (35) will be assembled into one matrix equation. To this
aim the vector ®,=[®,,] with N components is introduced and matrices
C= Lc,p] and F= [f;,] are defined with elements:

Cop=2.J(em grad @,,, x k)dI (36)
mi,.

[/t |

fop=2 || —grad ¢, xKjdl, (37)

I

Fel
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eoC and poF ™" are seen to be the so-called capacitance and inductance
matrices, resp., hence C and F are symmetric.
With the notations above Eqs. (35) are rewrited into the matrix equation:

-F—lé&)O:aléo. (38)

Accordingly coefficient a, and vector @, can be determined as eigenvalue and
right-hand eigenvector of matrix —F ™ !C. If the dielectric is homogeneous,
Y,=¢, and so C=¢uF. Then the value a, = —¢y, is an eigenvalue of
multiplicity N, and so @, may be an arbitrary vector. Obviously in such a case

all the other coefficients a; are zero and the propagation coefficient is
p= jw\/ eu. Apart from this case, no multiple eigenvalue can occur but for
special combinations of parameter values. This is why only modes belonging to
simple eigenvalues will be treated, although the presented method can be
generalized without any theoretical difficulty for modes belonging to multiple
eigenvalues. If the eigenvalue is simple, vector @, is defined uniquely by Eq. (38)
up to a constant multiplier. This multiplier can be chosen arbitrarily unless the
power transferred by the waveguide is given.

By determining coefficient a, and vector @, functione,,, u,, and gradv,,,
can be regarded as known. Functions v,,, up to a constant can be determined
from the latter by integration and considering boundary condition (18). This
constant can be computed taking the imperative to satisfy the equation

S [ v,,d4=0 (39)

m A,

in consequence of boundary conditions (15) and (19) and Stokes’ theorem into
consideration.

The approximation pxjw./ —a,/c valid at low frequencies may result
from the theory of transmission lines if the waveguide is regarded to be a system
of transmission lines with N conductors, where the conductor bounding the
wave field acts as the common return conductor. In this system the impedance
matrix per unit length is Z=jwuF ' and the admittance matrix per unit
length is Y=jwe,C. Just the foregoing approximation arises from this
according to the theory of transmission lines [3]. If the dielectric is
homogeneous, this result is exact, but if it is inhomogeneous, the approxi-
mation needs to be corrected for increasing frequencies. Further terms of the
series of p? give this correction. The result by the theory of transmission lines is
not exact because this theory neglects the component of the displacement
current density in the direction of propagation. This neglect is no more
acceptable at high frequencies except the ideal lines with a homogeneous
dielectric, with no component of the electric field strength and so of the
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displacement current density in the direction of propagation. A similar
problem, the comparison of the approximation by the theory of lines with the
exact result by the theory of fields has already been treated by VaGoin the case
of systems of lossy transmission lines with conductors of circular cross section
and earth [3].

Calculation of the coefficients of the power series

A recursion procedure will be presented in the following, suiting to
determine successively the coefficients of the power series of the field and the
propagation coefficient, starting from the approximation valid at low
frequencies. At the beginning of the i-th step of the recursion procedure
coefficients a,, a,, ... a;, functions e,4, €, ... e, ;_; with their divergence of
course and functions u,; and v,; are known. It was already shown how to
determine the coefficient a, and functions e, u,,, and v,,, necessary to begin
the procedure.

Knowing functions u,,; =div e,; and v,; =k curl e, the vectors e,,; can be
determined, the expressions of which contain N unknown constants.
Thereafter functions u, ., and grad v, ., can be calculated, in the
expressions of which, besides the N unknown constants, also the coefficient
a, ., is missing. These N constants and coefficient g, ; can be determined by
means of consideration analogous to those made in connection with functions
grad v,,; in order to determine coefficient a, and vector ®,. The course of this
calculation will be detailed in the following.

Vectors e,,; will result from functions u,,; and v,,; by means of boundary
conditions (15), (19) and (20). If e*, denotes a particular solution of this problem,
the general solution can be given as:

N
€ =€ Z @, grad @, (40)

p=1

Coefficients @;, have to be determined later. Particular solution e}; can be
calculated suitably from two potential functions:

ef =grad i, +k x grad v, (41)
Functions 4 _; and v, have to satisfy Poisson’s equations

Adpi=u,, (42)
AVmi = zJmi (43)
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and the following boundary conditions. Along the outlines of the conductors

=0, (44)

along the conductor bounding the wave field

;“mi = 0’ (45)
along the outline of the p-th conductor
A=, p=1,2.... N, {46)
where A, denotes an arbitrary constant. Along the outlines separating regions
A,, and A, of the dielectric:
Lo = At (47
aimi Clpg .
=B (48)
My Ol
EmVomi Skvkz (49)
OV OV -
P (30)
Gnm (—’nm

Therefrom functions v,,; can be determined up to an additive constant, but this
constant does not iﬁﬂuence functions eZ,. Functions 4,; depend upon the &
indeterminate constants A, Any fixation cf these m.ans the choice of the
particular sclution e,

After the particular sclution e, functicns u
They are written in the form

have to be determined.

m,i+ 1

]

N
mtTL Z (al‘ +az—1®0p)((pmp~u‘/mp),- {

p=1

h
o

=35

id .
Fmi+ 17

where the meaning of coefficients ®@,, is given by relationship {(44). In
consequence of relationship (12), functions s,,; have to satisty the equation

i
-2 ) { <"
ASmi =—L (grm/'lrm“mi + Z Al i—j- 1)- {52}
j=1

Functions s, have to satisfy the boundary condition

Smi=O (

n
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along the outline of the conductor and the boundary conditions

Smi = Ski (54)

1 asmi nmk !

m ‘mk ji=2

=—l—+—laefi+ Y ae.. ;.
wlén,, L? g kimit

Iong the outline separating regions 4,, and 4, of the dielectric so that function
u,, ;. fulfils boundary condltaons (14) {16) and (17). By means of Eq. (52) and
bou*}dar} conditions (53) to (55), functions s,,; can be determined uniquely.
Using the form of function u,,; _, given in (51) the following expression
arises from (13) for the gradient of function v, ;. ,

(55)

gradv,, ., =kx {grad Spi _2((8,",/1,,” Faerit Y a1~
i j=2
Y (56)
- Z \Qip(ermlurm grad qup +a1 grad lr//mp) +aif lq)Op grad lr//mp> J} N

p=

Multiplying the vector in the right-hand side of Eq. (56) by 1/u,, and
integrating along the parts in several regions A4, of an arbitrary closed curve
given in the cross section of the dielectric, the sum of these integrals has to equal
zero so that functions v, ;. satisfy the foregoing equation and boundary
condition (13). If the closed curve encloses no conductor, then from Eq. (52), the
definition of functions ¢,,, and ¥,,, and the Gauss’ theorem, this condition
appears to be satisfied. So it suffices to prescribe the condition to be met aiong
the outlines of N conductors as closed curves. The resulting N equations can be
assembled into one matrix equation. Therefore quantities @;, are assembled
into a vector @, and vectors E;, D,, M, and §, are introduced, the components of
which are defined by the following relationships:

”

i
E,=Y |— (kxe,)dl (57)
mvY nU‘rm

Zj rm(k X e:v) dl (58)
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m

1
Mipzz —(kxek)dl (59)
em
Sip=2. |— (kx grad s,)dl (60)

i

o

Using them and the previously introduced notations, the N equations are

assembled — after some transformations — into the following matrix
equation:
(F'C+a,D®,= —~f=7_1<L2§,»+f)i+a1Mi+ Y ajEl._jﬂ)—aMcT)O. (61)

j=2

The matrix which is the multiplier of vector ®; in the left-hand side of this
equation is singular. So, in order to fulfil the equation, the vector on the right-
hand side must be orthogonal to the proper left-hand eigenvector of matrix
F ~'C. Denoting this vector by 4 * the following expression arises for the
coefficient g, . ,

A*F "1<a1]\71,~+ ajEi..jH-&-Iji-i—LZS-)

Qo =~ ! = . (62)
=0

ku’ 1 -

M

With this value of coefficient g, . , the vector @, can be determined from Eq. (61).
Function e, arises by introducing this into relationship (40). So further terms
of series (6) and (7) giving the dispersion characteristic and the transversal
electric field strength, resp., are got.

Functions u,,;., and v, ., are needed for the determination of the
following terms of the series. The former is given by relationship (51) in
knowledge of coefficient g;., and vector @, Thereafter functions gradv,, ;. ,
are got by using (13). Functions v, ;. , are determined up to a constant from
these by integrating and comnsidering boundary condition (18). The constant
can be computed by taking into account that boundary conditions (15)and (19)
impose to satisfy:

vant.i+ldA=0‘ (63)

n A,

The i-th step of the recursion procedure ends by determining this constant.
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The course of the calculation is seen in the flow chart in Fig. 2. The
quantities already known before beginning the i-th recursion step are seen in
the first row and results of the i-th step in the last one. The flow chart shows the
relationships and the sequence of determining the latters and the intermediate
quantities of the calculation.

[ g _,
q .. ! ' u v,
\((42) \((43) (4 4)
(45 H48) {(49) (50)
~/{| Vi
.V
V(1.1)
e
X A
——
Yi52)-is5)
% (58)
(60) v (57) vi{59)
Si Ev B Di M
RA; 7 7
N S
A v (61)
¢, \
¥ N > (3
0 L ¢ grad
J - Vi1
Y(52)| 4 \%J(m) Yis1) \%'(18),(63)
Qi1 . €, Uisq Vi
R | L

Fig. 2
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Calculation of the gTEM mode in coaxial cable
with an inhomogenecus dielectric

Let us examine the coaxial cable with inhomogeneous dielectric in Fig. 3.
Because of the simplicity of the arrangement it is possible to adopt usual
methods, and the procedure presented in the paper also suits analytic methods,
permitting a kind of comparison.

Conventional, lengthy calculations yields the dispersion equation:

g2k [Jo(k R )No(k;R) = No(k R ) ok, R)] x
% [Jolk RN ((kaR)— No(k,R,y)J 1 (k,R)] =
=&1Kk,[JolkaRy)N ok, R) = N (kR ) (k5 R)] X
X [Jolk RN ((kyR) = No(k,R ), (kR)],

where the costumary notations of Bessel's and Neumann'’s functions are used
introducing notations

Il

klz\/pz-i-cuzeluo ky=./p* + e,

This equation has at least one, but at most a finite number of negative real
solutions in p?. The least of these roots {the highest one in absolute value)
belongs to the gTEM mode. For this mode one of k, and k, is real, the other is
purely imaginary. If e; >e¢,, k; is real and k, is imaginary. In such a case
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Neumann’s functions N y(k,R), N,(k,R) and N (k,R,) are suitably substituted
by Hankei’s functions Hy(k,R), H,(k,R) and Hy(k,R,) in the dispersion
equation. The determination of the propagation coefficient from this equation
requires a very lengthy calculation. In the following the presented method is
applied for calculating the propagation coefficient and the electric field
strength.

The norming parameter of the series expansion is chosen to L=R,. As
there is only one inner conductor, the subscript refering to it is omitted. The
problem is treated in cylindrical co-ordinates. Functions ¢,, and ,, defined by
Egs (21) and (27) and the boundary conditions are got in the following form:

F R
¢, In—+¢, In—
0, =— - R,<r<R
R, R
e;In—4e; In—
,
&y In—
©;= = R=r=R,
R, R
g, In—+¢ In—
" R R,
.
In—
Yy o= R,<r<R,
R,
In—
R

Matrices € and F defined by relationships (36) and (37) are scalars, their values
are

2mE, 18 2n
R R, R,
goln—+e, In— In—
1 R,

Vectors e,; are all radial, this is why only their radial components are
given, denoted simply by e,,. By means of Eq. (26) e, is given as:

@,

e =
mo (1 R 1 Rz)
el —IN—+—In— |7
e, R, & R

m=1,2,
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where ®, may be chosen arbitrarily. By means of relationship (38) the
coefficient a, is got as:
R,

&6,z IN—
1

a, = — P
&, In—+¢,, In—
R, R

By means of (32), functions u,,; are written as:

R r
®03r13r2(8r1§” 8r?.) ln_,ln_

m m

Uy = R Rz m=1,2,
R%(erz In—+e¢,, ln——2>
R R

1

where R, =R, if m=] and R),=R, if m=2. Of course, according to (34):
U, =0

Now the recursion procedure can be begun, its i-th step being the
following. Functions u,,; are written as:

i-1 ¥ r O\
Ui = Z <Amij 1n—+ Bmij> <_> s
j=0 Rm Rm

where the coeficients A4,,;; and B,,;; are already known, and

Umi =0

As there is only one inner conductor, vectors ®@; have a single arbitrary
component. Let us choose it zero and so e,,; =¢;. Functions ¢, are written as:

i-1 , r\2i R
emi=.2 Cmijln}_{—-%_Dmij R— r+EmiT>

Jj=0
where
A

mij 1 Am[]
Cmij= ; Dmij=’.—‘— Bmij““._"’ :
2j+2 2j+2 2j+2

One of the coefficients E,; and E,; can be chosen arbitrarily, the other can be
determined by means of the equation

€181l =r=82€2|,rs

which is got from boundary condition (20).
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Functions s,,; satisfying Eq. (52) are written as:

r (s i+ ) r)z’
;=Fpln—+B, .10+ mis1,j i+ 08, 1\
Smi le R + m,i+ 1,0 Z i1, Rm Jd+1,j Rm

m j=1
where
1 i—j+1 )(Rm>
. s — e | O A PRSI B aBmi....- i— B
Am,l-i- 1,j 4]2 < rm‘im,i,j—1 kgl k JA=—k+1,j—1 R
Ami+ j 1 imirl
Bpiv1,= _I:_"”Tﬁ‘*”j <8rmBm,i,j—1“‘ Z GBomi—kr1,j- 1>]( )
J 4j k=1
j=1,2 i

m1+1 0= ZBml“*IJ

Coefficients F,; and F,; can be determined from the system of linear equations

Stilrar =521l ok

[dsll 1 Z ] [dsz, 1 Z :I
ae; ;- = ae; ;- ,
dr R%; 1 A l-x dr Rz; 1 B |-z

resulting from boundary conditions (54) and (55). Now formula (62) can be
evaluated, from which
R,
In—

R,
iy = ——— o SriEuR +F11R7+Z €D 1ij— 1R2

4] j=1

i—j
+(Alj 1}1‘2]B11¢1])R7+a<E11 j+ 1+ZD11 jle>R2J}

k=0

results. In knowledge of the coefficient a,,;, functions u,;., can be
determined, where all coefficients but A4, ;. ; , have already been calculated.
The latter ones can be calculated from the relationship

’

a; 4 1Qole,1 —&2) hl"}i"l

Ami Fm1+
e ] R R,\ R,
Ril e, In—+¢, In—2 ) ln—2

Rl R 1

with R}, defined previously. After this the procedure continues with the next
recussion step.
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As a numerical example, the first twelve coefficients g; are given for an
arrangement where R, =3R,, R=2R and ¢; =10¢,:

a,=—2313Y%,, a4, = —049333¢2,
a;=—0.17911¢}, a,= —0.052132¢%

a, = —0.009214185, a2, =0.0013254¢5,

a, =0.0020566¢, ag =0.0010230¢%,
45=2.8913 - 10, 4,0 =4.6075. 107 5510
a,,=—48687.10" ¢ a,,=—32111.10" ¢iZ.

In Fig. 4 functions fic,/w computed from several different Taylor’s polynomials
approximating the function p*(«?) have been plotted in continuous lines. Here
¢, denotes the light velocity in a medium of permittivity e, and » the number of
terms in Taylor’s polynomials. The exact function Bc,/w computed from the

Fig. 4
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dispersion equation is seen in dotted lines for values of wR,/c, higher than 1.4,
Below this value it practically equals the approximation with twelve terms.
Taylor’s series is seen to converge approximately up to the value wR,/c, =1.5.
The problem of convergence has been treated in [1].

Summary

The dispersion function and the transversal electric field of quasi-TEM modes in
waveguides with inhomogeneous dielectric have been determined by means of Taylor's series
expansion about zero frequency. A recursion procedure has been given to determine the
coefficients of these frequency power series. Against the usual method, in this procedure no
complicated eigenvalues problem occurs, only the eigenvalues of a matrix of a size given by the
number of the inner conductors have to be found, and then boundary value problems involving
no eigenvalue problem have to be solved.
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