THE MINIMUM LOSS OF IMPEDANCE MATCHING TWO-PORTS

By

J. SOLYMOSI

Institute of Communication Electronics, Technical University, Budapest

Received February 27, 1979 Presented by Prof. Dr. S. CSIBI

1. Characterization of impedance matching two-ports

Figure 1 shows a matching two-port terminated by generator impedance Z_s and load resistance R_L . Generally, in the design of communication systems the task is to transfer power from a given source to a given load (for example U_s , Z_s and $Z_L = R_L$, or in the opposite direction). This problem often involves the design of a lossless matching two-port to transform the load impedance into the complex conjugate of the source impedance. This question was first considered by H. W. BODE [1] for a restricted class of impedances. R. M.FANO [2] extended Bode's result to the case of an arbitrary passive impedance. D. C. YOULA [3] developed an alternate theory which relied upon the normalized scattering parameters and bypasses some difficulties encountered in Fano's work. Youla's theory can be generalized to active impedances, too [4].

The problem mentioned before is the so-called broadband matching problem and it is practically solved. Sometimes a similar task arises, called the broadband impedance matching problem. In the ideal case of impedance matching $Z_{1in} = Z_s = R_s + jX_s$ and $Z_{2in} = Z_L = R_L$ (Fig. 1). Such questions arise in wirebound telecommunication systems using transmission lines in frequency ranges where the characteristic impedance is frequency-dependent and undesirable reflections are to be avoided. Now, let us investigate some properties of impedance matching networks.

Suppose the matching two-port is a lossless one, therefore the normalized scattering matrix is uniter [5] which implies

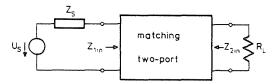


Fig. 1. Matching two-port

J. SOLYMOSI

$$|S_{11}| = |S_{22}|, \qquad (1.a)$$

$$|S_{12}| = |S_{21}|, \qquad (1.b)$$

$$|S_{11}|^2 + |S_{21}|^2 = 1.$$
(1.c)

 $(S_{11} \text{ and } S_{22} \text{ are complex reflection coefficients}, S_{12} \text{ and } S_{21} \text{ are transmission coefficients})$. According to Fig. 1, for the ideal case we get:

$$S_{11} = \frac{Z_{1in} - Z_s^*}{Z_{1in} + Z_s} = j \frac{X_s}{Z_s},$$
 (2.a)

$$|S_{11}|^{2} = \left|\frac{X_{s}}{Z_{s}}\right|^{2} = \sin^{2}\varphi_{s}$$
(2.b)

where * denotes the complex conjugate and $\varphi_s = \operatorname{arc} Z_s$. For example at low frequencies the phase of the characteristic impedance of a transmission line is $\varphi_t \approx -\frac{\pi}{4}$, i.e. $|S_{11}|^2 \approx \frac{1}{2}$. If the transmission line is connected through a lossless matching two-port to an equipment with input impedance R_L , the problem arises at the second port, because $|S_{22}| = |S_{11}|$ (see Eq. 1.a), and at this port the normalized reflection coefficient is equivalent to the impedance reflexion coefficient $(R_2^* = R_2)$

$$S_{22} = \frac{Z_{2in} - Z_L^*}{Z_{2in} + Z_L} = \frac{Z_{2in} - R_2}{Z_{2in} + R_2} = r_{22}$$
(3)

For a rigorous specification a reflection attenuation of 20 lg $\frac{1}{|S_{22}|} = 3$ dB is too

low, therefore a lossy matching two-port is needed. One possibility for the circuit is given in *Fig.* 2 which is suitable for matching between transmission lines and equipments [6].

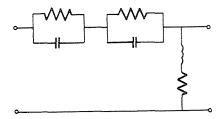


Fig. 2. Circuit for a possible impedance matching two-port

2. Calculation of the minium loss

In the previous section, the impedance matching two-port was seen to be lossy having greater attenuation than a lossless circuit if it is well matched. This is the lower limit of the attenuation. Taking this into account, according to Eq. 1.c:

$$|S_{12}|^2 = 1 - |S_{11}|^2 = \cos^2 \varphi_{S}.$$
(4)

In the case of $\varphi_t \approx -\pi/4$, we have $|S_{12}|^2 = \frac{P_2}{P_0} = \frac{1}{2}$ namely, the half of the available power is reflected. Of course, in using lossy elements, a part of the power will be dissipated, too, so the attenuation will be higher.

Theorem: Let us have a generator of input impedance Z_1 and a load resistance R_2 . If a lossless impedance matching two-port is designed, which gives a perfect impedance matching at the generator side, then the power attenuation is

$$\left(\frac{P_0}{P_2}\right)^{dB} = 20 \, \lg \frac{1}{\cos(\operatorname{arc} Z_1)} \tag{5}$$

In practical cases the power attenuation is greater, because the matching twoport is lossy.

3. Example

Let the characteristic impedance of a transmission line be given in Table I. Designing the impedance matching two-port [6] results in the circuit in *Fig. 3* for an equipment impedance $R_2=123$ ohm. Measured data have been compiled in Table II, where

Characteristic impedance of a transmission line									
f(kHz)	6	12	24	36	60	108			
$ReZ_{c}(\Omega)$	164	144	130	123	123	123			
$-ImZ_{c}(\Omega)$	96	61.5	33.3	24.1	13.6	7.7			

 Table I

 Characteristic impedance of a transmission lin

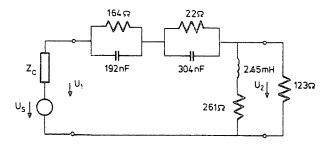


Fig. 3. Impedance matching two-port designed for the example

f(kHz)	6	12	24	36	60	108				
<i>a</i> _{r1} (dB)	25.2	26.9	26.1	26.9	32.6	36.5				
$a_{r2}(dB)$	15.6	16.1	17.4	19.1	22.6	27.8				
$a_{a}(dB)$	7.04	4.00	1.56	0.78	0.30	0.13				

 Table II

 Reflection and attenuation data versus frequency

$$a_{r1} = 20 \lg \left| \frac{Z_{1in} - Z_c}{Z_{1in} + Z_c} \right|$$
 $a_{r2} = 20 \lg \left| \frac{Z_{2in} - R_2}{Z_{2in} + R_2} \right|$

are the reflection attenuation at ports 1 and 2, resp., $a_u = 20 \lg \left| \frac{U_s}{2U_2} \right|$ is the

voltage attenuation. From the view-point of power attenuation the worst case is at 6 kHz. From Eq. 4. at this frequency the lower limit of power attenuation is

$$\left(\frac{P_0}{P_2}\right)^{dB} = 20 \, \lg \frac{1}{\cos\left(\arg \, \lg \frac{-96}{164}\right)} = 1.28 \, \mathrm{dB}.$$

Actually the power attenuation is 5.79 dB, which can be checked from the given voltage attenuation $a_u = 7.04$ dB.

4. Acknowledgement

The author is plased to express his thanks to Prof. Dr. Sc. K. Géher (Technical University, Budapest) for his constant help and useful criticism.

Summary

In the usual broad-band matching theory the attenuation in the pass-band approximates zero. In the wirebound telecommunication the transmission lines have a frequency-dependent characteristic impedance and if the reflection coefficient is prescribed both for the transmission line side and for the equipment side, a matching two-port is needed, which is lossy and causes power-loss. Based on the scattering matrix, the minimum loss can be calculated.

References

- 1. BODE, H. W.: Network Analysis and Feedback Amplifier Design. D. Van Nostrand, New York, 1945.
- FANO, R. M.: "Theoretical Limitation on the Broadband Matching of Arbitrary Impedance". J. Franklin Institute, Vol. 249, Nos 1 and 2, pp. 57–83 and 139–154 (1950).
- YouLA, D. C.: "A New Theory of Broadband Matching". IEEE Trans. on Circuit Theory, Vol. CT-11, No. 1, pp. 30–49 (1964).
- CHAN, Y. T.—KUH, E. S.: "A General Matching Theory and its Application to Tunnel Diode Amplifiers". IEEE Trans. on Circuit Theory, Vol. CT-13, No. 1, pp. 6–18 (1966).
- 5. KUH, E. S.--ROHRER, R. A.: Theory of Linear Active Networks. Holden-Day, Inc. San Francisco, 1967.
- SOLYMOSI, J.: "Synthesis of Lossy Matching Two-ports". Proceedings of the Fifth Colloquium on Microwave Communication, Vol. 2. (CT), pp. 267—277. Budapest, 24–30 June, 1974.

s

Dr. János Solymosi, H-1521 Budapest