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1. Characterization of impedance matching two-ports 

Figure 1 shows a matching two-port terminated by generator impedailce 
Zs and load resistance R L • Generally, in the design of communication systems 
the task is to transfer power from a given source to a given load (for example Us, 
Zs and ZL=Ru or in the opposite direction). This problem often involves the 
design of a lossless matching two-port to transform the load impedance into 
the complex conjugate of the source impedance. This question was first 
considered by H. W. BODE [lJ for a restricted class of impedances. R. M.FANO 
[2J extended Bode's result to the case of an arbitrary passive impedance. D. C. 
Y OULA [3] dev.eloped an alternate theory which relied upon the normalized 
scattering parameters and bypasses some difficulties encountered in Fano's 
work. Youla's theory can be generalized to active impedances, too [4]. 

The problem mentioned before is the so-called broadband matching 
problem and it is practically solved. Sometimes a similar task arises, called the 
broad band impedance matching problem. In the ideal case of impedance 
matching Zlin =Zs=Rs+ jXs and Z2in=ZL =RL (Fig. 1). Such questions arise 
in wirebound telecommunication systems using transmission lines in frequency 
ranges where the characteristic impedance is frequency-dependent and 
undesirable reflections are to be avoided. Now, let us investigate some 
properties of impedance matching n~tworks. 

Suppose the matching two-port is a lossless one, therefore the normalized 
scattering matrix is uniter [5] which implies 

matching 

two-port 

Fig. 1. Matching two-port 
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1511 1 = 1522 1 , 

1512 1=1521 1, 

151112+152112=1. 

(1.a) 

(1.b) 

(1.e) 

(5 11 and 522 are complex reflection coefficients, 512 and 521 are transmission 
coefficients). According to Fig. 1, for the ideal case we get: 

Z' s 
(2.a) 

(2.b) 

where * denotes the complex conjugate and <Ps= arc ZS' For example at low 
frequencies the phase of the characteristic impedance of a transmission line is 

re 1 
<Pr::::: - - , i.e. 1 511 12::::: - . If the transmission line is connected through a lossless 

4 2 
matching two-port to an equipment with input impedance Rv the problem 
arises at the second port, because 1 522 1 = 1 511 1 (see Eq. 1.a), and at this po rt the 
normalized reflection coefficient is equivalent to' the impedance reflexion 
coefficient (R! = R 2 ) 

522 
ZZin-Zt ZZin-Rz 

r22 
Z2in+ Z L Z2in+ R Z 

(3) 

1 
F or a rigorous specification a reflection attenuation of 20 19 -- = 3 dB is too 

15221 
low, therefore a lossy matching two-port is needed. One possibility for the 
circuit is given in Fig. 2 which is suitable for matching between transmission 
lines and equipments [6]. 

Fig. 2. Circuit for a possible impedance matching two-port 
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2. Calculation of the minium loss 

In the previous section, the impedance matching two-port was seen to be 
lossy having greater attenuation than a lossless circuit ifit is well matched. This 
is the lower limit of the attenuation. Taking this into account, according to 
Eq. l.c: 

(4) 

? P2 1 
In the case of <Pt';:::; - n/4, we have 1 S 121-=-=- namely, the half of the 

Po 2 
available power is reflected. Of course, in using lossy elements, a part of the 
power will be dissipated, too, so the attenuation will be higher. 

Theorem: Let us have a generator of input impedance 21 and a load 
resistance R 2 • If a lossless impedance matching two-port is designed, which 
gives a perfect impedance matching at the generator side, then the power 
attenuation is 

(
PO)dB 1 
- =20Ig---­
P2 cos(arc 2d 

(5) 

In practical cases the power attenuation is greater, because the matching two­
port is lossy. 

3. Example 

Let the characteristic impedance of a transmlSSlOn line be given in 
Table I. Designing the impedance matching two-port [6] results in the circuit in 
Fig. 3 for an equipment impedance Rz = 123 ohm. Measured data have 
been compiled in Table n, where 

Table I 

Characteristic impedance of a lransmission line 

[(kHz) i 6 
: 

12 24 36 
: 

60 , 108 

ReZJQ) \ 164 
i 

144 130 123 123 
! 

123 
i . 

: 
-ImZ,(Q) . 96 61.5 33.3 24.1 13.6 7.7 
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123Q 

Fig. 3. Impedance matching two-port designed for the example 

Table H 

Reflection and attenuation data rersus frequency 

J(kHz) 108 

i i i ; 
36.5 

addB) 15.6 16.1 17.4 19.1 22.6 
: 

27.8 

aJdB) 7.04 4.00 1.56 0.78 0.30 0.13 

I
Z

1' -Z I - /0 I HI C ar1 -- g 
I ZUn+Zc I 

Z2in-R21 
ar 2 =20 19 

Z2in+ R 2 I 

are the reflection attenuation at ports and 2, resp., au = 20 19 I 'I U I' is the 
... 2 

voltage attenuation. F ram the view-point of power attenuation the worst case 
is at 6 kHz. From Eq. 4. at this frequency the lower limit of power attenuation is 

(
PO)dB 1 
P =201g 96 

2 cos (arc tg ~64 ) 
1.28 dB. 

Actually the power attenuation is 5.79 dB, which can be checked from the given 
voltage attenuation au = 7.04 dB. 
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Summary 

In the usual broad-band matching theory the attenuation in the pass-band approximates 
zero. In the wirebound telecommunication the transmission lines have a frequency-dependent 
characteristic impedance and if the reflection coefficient is prescribed both for the transmission 
line side and for the equipment side, a matching two-port is needed, which is lossy and causes 
power-loss. Based on the scattering matrix, the minimum loss can be calculated. 
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