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In the field of electric power systems, the most extensively used method of
solving networks is in which the mesh, the node and the cut-set equations are
derived by a simple matrix conversion of the equations of the Ohm theorem
and a necessary number of Kirchhoff’s current and voltage equations written
on the basis of certain considerations of the graph theorem. The matrix model
is advantageous from the point of view of numerical solution and also because
this linear algebraic technique is widely used in electrical engineering. On the
other hand, it conceals the fundamental background of solving networks, or in
other words, it directs the development of solving networks only towards
improving or speeding-up numerical calculation.

Strictly speaking, the method described above is a variation of G. Kron’s
method of solving networks, completed with some notions of the graph
theorem. After the “classicals” the most creative analysis of electrical networks
have undoubtedly been mad by G. Krown [6], [7]. Like WEeyL [12], he, too,
interprets current as a contravariant and voltage as a covariant vector. Their
dimension numbers are always equal to the number of the branches of a circuit.
This is natural for a circuit torn into branches, the so called “primitive
network™ and it is also valid for the so-called “orthogonal network”
constructed from loops and open paths because the sum of independent loops
and open paths is equal to the number of branches (see later). Thus the matrices
connecting such networks termed by Kron “connection matrices” are always
quadratic ones, which makes it possible to recognize that some of the network
quantities (voltage, current) are transformed as tensors of valence 1 while
others as tensors of valence 2. The tensorial interpretation makes it clear that
the network quantities are invariant; for example, the invariance of power; or
the primitive branch currents and the set of loop currents and open currents are
different forms of the same current distributions. This is how this interpretation
is — deliberately — connected with the theory of relativity. The solution — the
calculation of unknown currents and voltages — becomes simple in the
“orthogonal network” because Kirchhoff’s laws can simply be formulated
there, and thus the quantities have to be transformed into the “orthogonal
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network”. A quarter of a century later G. Kron developed a new method for the
solution of the network problem through tearing [7], called by him diacoptics.
However, it is quite difficult to understand diacoptics in the systems used
nowadays for solving network problems.

The method of G. Kron was not sufficiently understood and could not
spread because he did not sufficiently elucidate the notions used, and did not
give the extact proof of his results and, in addition, his style is rather diffuse.
From among his followers and from those who have tried to explain his work,
we should like to mention H. H. Harp [4] who discusses Kron’s method of
solving network problems in a clearer, systematized way, mainly to make
diacoptics perspicuous, in which he has put also new elements. J. Paur Rota [§]
laid down the algebraic topological fundations of Kron’s work, which was later
used by Kron himself. Unfortunately, this did not make the method easier to
understand for it requires that the reader should be familiar not only with linear
vector spaces and tensors but also with some notions of algebraic topology. P.
Stepian [11] — apparently independently of Kron and Rotu — also uses
algebraic topological methods and makes a construction in which the currents
and the voltages are in the same vector space; he renews the so-called III. and
1V. Kirchhoff laws as methods of solution, which are not very suitable for
practical calculations. A. Kros [5], too, wants to put the currents and the
voltages into the same vector space, using simple linear algebraic methods, but
in his analysis there are steps which cannot be interpreted in physics: he takes
the difference between the original and the transformed current distribution
(and the voltage distribution) vectors and derives further equations from it. His
aim could consistently be accomplished if he confined himself only to
orthogonal transformation matrices which could be derived by the orthogenal-
isation of the transformation matrix which he made from the mesh matrix and
the cut-set matrix. Only with this complication could the invariance of power
be maintained in the case when voltage and current distributions are put into
the same vector space.

Generally, it is not fortunate to put the voltage interpreted between two
points, and the current interpreted in one point (in the case of concentrated
elements) into a common vector space; it is more natural to separate them
(except for the case of the n-pole in which current and voltage distribution
appear in the same point, and it is only in this case that we can speak of the
eigenvectors and eigenvalues of the impedance tensor, i.e. of the method of
symmetrical components). We also have to mention Brammeller’s book [1] in
which the author discusses diacoptics with the application of matrices.

The aim of the present paper is to obtain a physically lucid and exact
variant of diacoptics and Kron’s method for solving network based exclusively
on the theorem of linear vector spaces. In respect of the connections between
linear vector spaces and tensors, our work is based mostly on Gelfand’s work
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[2] from the mathematical literature mentioned in the bibliography [2,3,9].In
this work, we only deal with the calculation of stationary current distributions.
To make it easy to understand, we use the index calculus and matrix
presentation as well.

Before coming to the point, we should like to give the linear algebraic
background of solving the network problems mentioned above by a method
used nowadays which works with n-dimensional vector spaces containing an
ordered number of n. This method is supported by the following equations:

[A]1[1,]=[0]; [B1[U,]J=[0] (Kirchhoffs equations)

[UJ+U =02 I([1]+[1])

{Ohm theorem)
L1+ I=[YI(LUI+[U,D

[I1=[B1,l11: [UJ=[4],[U.] (tdenotes transposing)

where [U,] and [1,] are the voltage and current column vectors formed from
the resultant branch quantities, [U,] and [/,] are the voltage and current
vectors, respectively, formed from the generating branch quantities; [A ] is the
incidence matrix characteristic of the graph of the network, [B ] is the mesh-
matrix, [1,] and [U_] are column vectors formed from the independent loop
currents and nodal voltages respectively, [Z ] is the branch impedance matrix,
[ Y] is the branch admittance matrix, while [ B ] can be derived from [A4 ]. ina
network of e branches, v nodes and p subnetworks [U,], [1,], [U,] and [/ ]
contain e components, [, ] consists of (e — v+ p) components and the number
of components of [U ] is (v — p). [4 ] matrix has e columns and (v — p) rows, [ B ]
matrix has e columns and (e — v+ p) rows, while [Z ] and [ Y] have e columnus
and e rows.

Since the columns of [B ], represent unit intensity loop currents, and as
such satisfy the nodal equations, therefore the range of [B ], falls within the
zero subspace of [4 ]:

R([Bl)eN([4]1)

and

[41[B].=[0],
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and from this follows
(B1[41,=[0]
which shows that:

R([4A1)eN([B]),

i.e. the range of [ A ], falls within the zero subspace of [B ]. Since R ([B],) and
N ([B1]),and similarly R({A4 ], ) and N ([4 ]) are orthogonal subspaces and
the columns of [B], and [4 ], are linearly independent, therefore

dim R([B],)=e~v+p, dim N([B])=v—p
dim R([A])=v—p; dim N([A])=e—v+p,
whereby
R([B1)=N([4] N([B1)=R([4]).
As can be seen, the Kirchhoff laws are satisfied if

[L1JeN([A]) and [UJeN([B])

and thus [U,] and [I,] are orthogonal to each other.

[13,[U,]=[0] (Tellegen’s theorem)

( ~ denotes conjugation).

Gettingto N([4])and N ([B])is ensured by formation from [, ] and [U_].
Multiplying Ohm’s theorem by [B] and [A4 ], the following equations is
obtained:

((B1(Zz]1[B1)L1=[B1[Z][L]=[B1(LUJ-[Z]1[])
(LAIIYI[A 1) [UI=[41[YI[U1=[A1([I]-[Y1[U,])

From the first equation, the unknown [/,] (mesh method) and from the second
equation the unknown [U,] {node method) can be calculated.

In the following Figure 1a, the way of solution is shown by transformation
between vector spaces, given by their dimensional numbers and denoted
symbolically in accordance with the introduction.
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1. The vector space of current and voltage
distribution; primitive bases

Consider an “e”-branch, stationary, invariant network energized from
stationary, sinusoidal sources. The structure of the k-th branch of the network
is shown in Fig. I1b.

The network does not contain a controlled generator. {However,
controlled elements can also be considered with proper types of tensors).

(In the Figure, the reference directions of voltage rise are shown.) J* and ¥,
are the active currents and voltage, respectively, of the ideal sources, I* and U,
are the passive currents and voltage, respectively, developed on the seli- and
mutual impedances. A branch of a given network does not necessarily contain a
current source, voltage source or mutual impedance; these are included in the
general branch arrangement shown in Fig. 1b with substituting elements of
zero value. The basic tasl: of network computation is to determine the passive
voltages and currents in the case of fixed impedances, when the active voltages
and currents are known.

It seems that the active currents and voltages can cover the whole complex
range in the case of any value of impedance, since Kirchhoff’s laws are satisfied
by the devclopment of passive currents and voltages. But itisnot so! If the seli-
impedances in all the branches running intc one node are infinite {thers is a
disconnection), then, in accordance with the node law, one of the active
currents cannot be arbitrary, since the passive currents in these branches are
zero. Similarly, if all the self- and mutual impedances in a loop are egual to zero,
then the passive voltage is also equal to zero, so one of the active voltages
cannot be arbitrary in accordance with the loop law. The passive currents and
voltages cannot either run the whole range of complex numbers in the case of
any impedance system, since the current of a torn branch or the voltage oF 2
branch having zero self- and mutual impedance can only be zero. Since there:
an infinite number of impedance systems at which the active or passive volia g
and currents can have any value, the largest range of variation of voltages and
currents must be considered to describe connections of universal validity;
exceptional cases will be derived from the extraordinary values of the
parameters of the mathematical model.

Let the active and passive current distributions be characterized by
column matirices [J ] and [/ ], lespecmely of which the k-th row is just the
current of the k-th branch, i.e. /* and I*. Interpreting the linear combination of
the current distributions as the linear combination of these column matricss,
we get the linear vector space of current distributions. (Since the linsar
combination derived can also be a current dzstr_butmu) Since, in accordance
with the former analysis, the elements of the “e” row column matrix can have

(I )
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any complex value, the linear vector space derived is e-dimensional. We would
like to stress that the active and passive current distributions are in the same
linear vector space. The current distribution vectors — the elements of the
linear vector space — will be denoted by bold-faced Roman letters. So, if the
column matrix of I, is [/;] and the column matrix of I, is [/,], then
/1] +75[15] is the column matrix of the vector 4,1, + 4,1,.

(In this paper the expression of “column matrix™ is used instead of the
usual “column vector™ because the word “vector” is kept for the elements of
linear vector spaces which — as will be seen later — can be given with different
column mairices 1n different bases.)

It is known that a base of the linear vector space can be formed by just as
many linearly independent vectors as the dimensional number of the vector
space, and any of the elements of the vector space can be expressed by the linear
combination of these vectors, and the coefficients of the linear combination are
called the components of the vector in this base. Let g, denote a current

distribution vector in which the current of the k-th branch is of a unit and that

of the other branches is zero: so the column matrix of this is just the k-th
colum’q of the “¢’-dimensional unit matrix. As is known, the current
distribution VECLOTS gl, g,, ... g, are linearly independent and as such they
form a base of an “e¢”-dimensional current distribution vector space. This is
- I “primitive base” in accordance with Kron who called the network torn
into branches a primitive network.

Since

[t 1] 0] 107

‘[: 0 1 0

I

(/1= = ] 1 +1? +.o 0

|

? .

1o 10 0] L1
therefore

I=I'g, +%g,+ ... +1°g,= I'g,=Ig,. (1)

1

step we used the summarional convention L.e. similar lower and upper
umming up to the dimensional number. (This abbreviation
later). Acchd‘ag to Equation (1), the components of the
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current distribution vector in the primitive base are just the branch currents or,
in other words, the column matrix (discussed so far) is the matrix of the current
distribution vector in the primitive base.

The linear vector space of (passive or active) voltage distributions, which
does not coincide with the current vector space, can be built up in a similar way.
This is also “e”-dimensional. It also has its primitive base the k-th vector of
which is g¥, a voltage distribution in which the voltage of the k-th branch is of a
unit and that of the other branches is zero.

For the column matrices composed {rom the branch voltages, the
following equations can be written:

U, 1] ] 0]

U, 0 1 0
[Ul=| | =U,| | +U, +...+U,

| U, | 10 ] 0] 1)

So, the voltage distribution vector is

U=U,g'+U,g+... +U g =Ug" 2)

This equation expresses that in the primitive base the components of the
voltage distribution vector are the branch voltages, and the column matrix
composed from them is the matrix of the voliage distribution vector in the
primitive base.

The resultant complex power generated on the passive elements of the
network is

S=U.I'"+U,*+ ... +UI*=U,T* 3

(where ~ denotes the conjugated complex number). This can be considered to be

a scalar multiplication between the elements of the two vector space, since, taking
the equation

Ul=U,F=[U[1]1=[1][U] (4)

as a definition, the well-known characteristics of the scalar product of hermitic
symmetry can easily be derived:
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(AU + LU =4,(U; D)+ 4,(U,D) (5.a)
UCLT, + A,L,) =1, (UL,) + ,(UL) (5.6)

LI L
t

(subscript denotes transponent).
The scalar product of the primitive base vectors of the current distribution
and the primitive base vectors of the voltage distribution, according to

equation (4) is:
1, if l=m
g'g,=0,= (6)

0, if I#m

(where &', is the Kronecker symbol).

Equation (6) can also be explained physically. The current and voltage
distributions in the primitive bases can generate power — which is just unity —
if the unit current flows in the branch where the voltage is also unity. So, as
such, the two primitive bases form a bi-orthogonal or reciprocal system.

In mathematics, the linear vector space called here the space of the current
vectors is usually termed as contravariant, and the space of voltage vectors as
covariant.

2. The transformation of the components of the current
and voltage distributions

If a base different from the primitive base is considered, then the
components of the current and voltage distribution vectors will be different
from the branch current and the branch voltage. If h,. is the k'-th vector of the
new base of the current vector space and h* is the vector of the new base of the
voltage vector space, then in accordance with equation (1) and equation (2) one
can write:

I=I'g,=Ih, )
and

U=U,g"=U,h" 8)

where I* and U, are the components of I and U, respectively, in the new base.
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We specify that the new bases, similarly to the primitive bases, are
biorthogonal, so that similarly to equation (6):
[hljt [Em’] =hl’ hm‘ = 51771 (9}

With this specification and from the second right-hand side of equation {7}
and (8) and based on equations (5a) and (5b), the power can be written as:

eaf

C
bl

__;(rfkih ) Il hl I::DA }'l OL

v (10

c
[
Il
i

-
]

o

Having biorthogonal bases, the calculation of complex power is as simpl

asinthe primit;ve bases [seeeqn. (4)]. Ifeqn. (7) is pre-multiplied by i?l and then
by g', eqn. (8) is pest-multiplied by h, and then by g;, and coa_szden ng tp
biorthogonal relations [eqns. {6) and (9; . the equaiions can b

derived:

(44

(e}

(ko v K 11 a
Xt gkl‘—ﬁ}; i 1.2}
P 3 h 1
ghy)=1r% 110

NG

3 : 1 : £ i1 ratimme com e rerel et s .
and using the meaning of §', and ', the previous equations can be rewritten as:
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¥ =k I (12.a)

J Ly (12.b)

U, =t*U, (12.¢)

U,=t5U, {12.d)
Substituiing Eq. (12.b} into the righ of Eq. {i2.a)

This identity is valid for every possible value of k' and I from 1 to e, if
k' i sk 2
[.k[.pzdl‘ (13)

Eq. {12 give the transformation law between the primitive base and the new
base. if t%. are considered to be the elements of a quadratic :ransformation
matrix [ T], then according to eqn. (13}, 5, are the elements of the matrix [ 7]}
Let the column matrices be composed from the components I* and U, be
ienoted by {71 and [U"], respectively.

So the matrix form of the transformation equations (12) can be given by:

[ =[T1" 1] (142)
[ =[T1[1] (140)
[UT=[T]*[U] (14.0)
[UT =((T]" 10" (14.d)

where * denotes the transposed conjugated, ie. the adjunct value. {The

d matrix should be taken because the row subscripts of matrix [T] in

2 d are the subscripts of summing, since these coincide

soltage components.) Only a non-singular matrix can

ix, which is a consequence of the fact that the new base

vectors are An"rly independent ones. Supposmc that the veciors k" are

linearly dependent, then, from Eq. {11.a), the rows of the matrix r¥ are also
dependent.
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The calculation of powers in both of the bases can be written as:
S=[*U]I=ULIUI=TLIU]=['1*U]

which follows from Egs (2}, (4) and (10).
If {T] is real, then [T]* and ([T] ! )* are replaced by [T], and [T], 1,
respectively.

3. The network form of Ohm’s theorem

Exclude disconnection for the time being. With the self- and mutual
impedances, the following equations can be written to express the relation
between the passive voltages and currents of the branches:

U1=lell+21212+ P +Zleje

Uy, =Z, 1"+ Z,,P+...+2Z,,I°

{at the current, there are superscripts and not exponents).
Using the summational convention, this can be rewritten in a short form
as

=271 (16.a)

Dencting the quadratic branch impedance matrix Z,, with [Z ], eqn.
{16.2) can be written in a matrix form:

[U1=[21[I] (16.5)

The [-th column of matrix [Z ] can also be defined by multiplying the
matrix by the /-th column of the unit matrix and, taking Eg. (16.b} alsc into
account, this means that if a current corresponding to the /-th primitive base
vector is flowing through the passive branches, then the I-th column of [ Z ] will
be given by the branch voltages. So, if @ unit current is flowing through, but only
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through the I-th passive branch, then the elements of the I-th column of the branch
impedance matrix will be given by the values of branch voltages.

Egs (16.a) and (16.b) are the network form of Ohm'’s theorem. They can
be written in different bases, too. Using Egs (12.c) (16.a), (12.b) and Eqgs (14.¢),
(16.b), (14.b), one can write:

Up=t827,.1"
or
U =[T1*[Z][T]I']
Introducing the following symbols:
Zyp =t Z ) (17.2)
[Z1=[T]*[Z][T], (17.b)
Ohm’s theorem in the new base will be
U.=Z.. 1" (18.a)
or
(U 1=[Z"11I'] (13.b)

Comparing these to eqns. (16.a) and (16.b), we can see that the form of
Ohm’s theorem is unchanged, but according to Eq. (17) the impedance matrix
has to be transformed by a so-called adjunct transformation.

Actually Egs (16) and (18) are the subscript form and the matrix form of
the same tensor equation in the primitive and in another arbitrary base. The
tensor equation is:

U=2I; (19)

(tensors are denoted by bold-faced italics).
Z is the impedance tensor the component matrix of which in the primitive
base is the branch impedance matrix [Z ] and its component matrix in another
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base is [Z' ], which can be determined by the transformation law according to
Eaq. (17.b)

If the branch impedance matrix is a non-singular one —i.e. the impedance
tensor is not degenerated, so its matrix is not singular in any of the base, — then
from Egs (16.a) or (16.b); (18.2) or (18.b) and (19). the current can be expressed:

Im =Ymu, (20.a)
L1 =[Y][v] {20.b)
I™ =y y, (21.)
U'i=[Y1v] (21.b)
and
I=YU 22)

The admittance tensor Yis the inverse of the impedance tensor Z:
YZ=E (23)

{where E is the unit tensor).
The matrix of the tensor Yin the primitive base is the branch admittance
matrix,

Y™ or [Y]
which is the inverse of the branch impedance matrix.

Therefore, Y™ Z,, =0 (22.a)
or
[Y1[Z]=[E] (22.b)

([E ] is the unit matrix).
The matrix of the tensor Yin any arbitrary base satisfies the following
equations:

Y™K Z, =5 (23.2)
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or

1. (Z3.b)

Ly

AL

I

r—

where Z,.,. or [Z’'] is the matrix of the impedance tensor in the same base.
From Egs (12.a2) (20.a) and (12.d) or from Eqgs (14.a), (20.b) and (14.d), we
can write:

"= [Tn Ym]-; Li\kk er,

Pl=[T17 ' [YIATI LU,

If these are compared with Eqgs (Z1.a) and (21.b), then the transformation
law between admittance tensors in different bases can be derived:

ymE rr, " ymE fkk (243)
or

[YI=[T] [Y([T] ') (24.b)

The k-th column of the branch admittance matrix [ Y] can also be written
tween this matrix and the A-th column of the unit matrix
and k g (20.b} also into account, this means that if the k-th voltage
distrit DL'UOD the primitive base of the voltage distribution vector space is on
the passive branches, then the k-th column of [ Y] is given by the numerical
values of the branch currents. So if a unit voltage is connected to the k-th passive
branch and the other passive branclhies are short-circuited, then the elements of the
k-th columun of the branch admirtance matrix will be given by the branch currents
(numerically).

In the previous chapters it was supposed that both the impedance tensor
and the admittance tensor exist. Since a tensor can be given by those vectors
into which the vectors of a base transformed by the tensor, so using Egs
(19) and (22) it can be stated: the necessary and sufficient condition for the
existence of the impedance tensor is that a base of the passive current
distribution vector space generates finite passive voltage distributions, and the
similar condition for the existence of the admittance tensor is that a base of the
passive voltage distribution vector space generates finite passive current
distributions. The siraplest control can be carried out on the primitive base. It is
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easy to see e.g. that a network containing a branch with disconnection has no
impedance tensor, while networks containing no such branches have
impedance tensors. If the effective (real) part of the self-impedance of each
branch is different from zero, then the network has an admittance tensor since
the resistance limit the current to a finite value everywhere.

There are also networks which have neither an impedance tensor nor an
admittance tensor because, e.g., there may be a disconnection in one of the
branches and a short-circuit in another branch, which means that both the seli-
and mutual impedances are zero.

Disconnections can be avoided by leaving out the disconnected branches,
but in this case, the current generators of these branches should be placed into
the branches of another path between the nodes concerned to compensate for
the current generator left off.

In this way of decreasing the “¢”-dimensional number one can achieve a
network having an impedance tensor.

Coming back to the interpretation of the branch impedance and the
branch admittance matrices with the use of the primitive base, it can be seen
that the self-impedance elements in the principal diagonal of the branch
impedance matrix are the open-circuit measuring impedances, the elements of
mutual impedances are the open-circuit transfer impedances, the elements of the
principal diagonal of the branch admittance matrix are the short-circuit
measuring admittances, and the elements outside the principal diagonal are the
short-circuit transfer admitiances.

The impedance tensor having components with two lower subscripts is a
so-called (pure) covariant tensor,and the admittance tensor having components
with two superscripts is a so-called (pure) coniravariant rensor. Both types of
tensor establish a homogeneous linear relation between two different vector
spaces. (Current distribution and voltage distribution, or contravariant and
covariant.)

4. Sub-spaces of the divergenceless current distributions
and of the irrotational voltage distributions;
the Kirchhoff laws

In the following chapters the passive (or active) current distributions
satisfying the nodal law will be referred to as divergenceless, and the passive (or
active) voltage distributions satisfying the loop law will be referred to as
irrotational ones. The divergenceless current distributions form a sub-set of the
current distribution vector space. It can easily be seen that the result of a linear
combination of the divergenceless current distribution vectors are also
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divergenceless current vectors, so the aforementioned sub-set is a sub-space,
which will be denoted by G. Similarly, the sub-set of the irrotational voltage
distributions is the sub-space of the voltage distribution vector space, and will
be denoted by M.

If the number of nodes of the “¢” branch network considered 1s v, and it
has a p number of sub-networks where the branches are in galvanic
connections, but there is no galvanic connection between the sub-networks,
then a (v — p) number of independent nodal equations can be written which has
to be satisfied by a divergenceless current distributions. This means a (v—p)
aumber of limitations, therefore the dimensional number of G will be:

dimG=e—(v—p)=e—v+p. (25)

Irrotational or potentional voltage distributions can simply be character-
ized by the potential differences between the nodes. Adopting a reference node
in each sub-network, we shall have a (v— p) number of potentials, so

dimM=v-—p.

At the current distributions in G, there are no currents flowing out of or
into the nodes. The so-called loop-current flowing in a single closed loop is
similar. Therefore G contains the loop-currents or any linear combination of
them. If a loop-current having the same branch-current as the branch-current
of I, in the same branch is subtracted from an arbitrary current vector I; of G,
and then the same procedure is applied to the remainder, leaving the branches
already nilled, all branches can be nilled in the end, otherwise I, will not be
divergenceless. It follows that all vecters of G can be interpreted as a linear
combination of loop currents. Since loop currents with irrotational voltage
distributions have no power — for the sum of voltages in a loop is zero, —
therefore all I; vectors of G are orthogonal to all V, vectors of M. (Tellegen’s
theorem).

U,L;=0. (27.a)
Or we can simply say that G and M sub-spaces are orthogonal ones:

GLM. (27.b)

4+

w
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~1
N

Sub-sets not included in G, i.e. sub-sets of divergent current distributions
are not sub-spaces, since their linear combination can result in divergenceless
distribution. ,

On the other hand, outside of G, a (v — p) number of linearly indepsndent
current vectors can be considered, { whm form an "¢ i b 1
the (e— v+ p) number of linearly independent
form sub-space H so its dimensional number is:

dim H=v—p. (28)

There are an infinite number of such sub-space H

A su’a-set not included in A4, ie. sub-se
distributions are not sub-spaces either, {since a |
rotati OPJ Vo E tage distributions may resuit in irrotatio
formed by (e — ¢ + p) linearly independent rotational v
be considered, whose dimensional number is:

dimN=¢—v+p. {29}

There are also an infinite number of such sub-spaces N. Choose N
orthogonal to a previously selected %, a

However, this is already enough to de e th .
The sub-spaces derived this way and their characteristics are shown i
Fig. 2.{The dimensional numbers are written under the symbols oi ub-spaces.;
All ub -spaces contain the vector O
Itfollows that all passive an dactwecuremaeuor can be decomposed to
components falling into sub-spaces G and H.
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G the divergenceless sub-spoce M :the irrotationd sub-space
H:q sub-space with divergence N:a rotational sub-space

/
the e-dimensional vector space of current the e-dimensional v;ctor space
distribution of voltage distribution

From Fig. 1b it follows that the resultant of the passive and active currents in
the primitive base is:

Ik~ gk

and the resultant of the passive and active voltages in the primitive base is:

U,~V,.

Therefore, the resultant current distribution vector and the voltage
distribution vector are:

I-J and U-Y, respectively.

These resultants must satisfy Kirchhoff’s laws, which means that the
vector

I-J={I—J)+ (1 —Jy)
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can only have components falling into the divergenceless sub-space G, and the
vector

U-V= (UM - VM) + (UA’ - V:\-‘)

can only have components falling into the irrotational sub-space ‘M.
(Meanwhile we used Eqgs (31) and (32).) So Kirchhoff’s laws will have the
following forms:

I, =3, (33.a)
Uy=V, (33.b)
Substituting these into Eqgs (31.a) and (32.a):

I=I; +J,
and

U= U.\: + V,\'

Then taking into account Ohm’s theorem, according to Egs (19) and (20)
we have the following tensor equations:

Uy+V=Z1;+34) (34.a)

or

ILi+Jdy=YU,+V,) (34.b)

to determine the unknown (e — V+ p) dimensional, divergenceless I, and the
(v—p) dimensional irrotational vectors U,,.

Actual calculations can be carried out only in determined bases. The
primitive base — though the matrices of Y and Z are simple in it — is not
suitable because the sub-spaces cannot be separated. Therefore, bases are
needed in which this separation can easily be done, but for this, on the other
hand, the branch impedance and branch admittance matrices have to be
transformed.
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5. Kron’s scheme of closed and open currents as a new base

Loop currents were called closed currents, and those currents which enter
a node and then leave another node without forming a loop in the network
considered were called open currents by G. Kron. Since all the vectors of sub-
space G are linear combinations of loop currents, therefore the divergenceless
sub-space G is generated by (e —v+ p) linearly independent loop currents of
unit intensity. On the other hand, a (v—p) number of unit intensity open
currents linearly independent of the aforementioned vectors and of one another
— forming no loops with one another — generate a divergent sub-space H. The
common system of closed and open currents derived in this way span the whole
current vector space, and so it is a base of that. If we also make the reciprocal
base in the voltage distribution vector space, we obtain a new base in which the
separation into sub-spaces G and H, and M and H is simple.

)

As an example, consider the network shown in Fig. 3a. in which the
number of sub-spaces p=1, the number of vertices (nodes) v=4 and the
number of branches e=S5.

In the Figure, also the reference directions of the passive currents of the
branches are shown. Since v—p=3 and e—v+p=2, then 3 linearly inde-
pendent open currents (of unit intensity) and 2 closed currents (of unit intensity)
have to be assumed.

The open currents are shown in Fig. 3.b, while the loop currentsin Fig. 3.c.

The column matrix of the vectors of the new base formed by the open and
closed paths in the original primitive base are the following:

6%
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h,, h,, h;, h,, hs, new base vectors

-1 T 0 1 1
0410 05—1 0 column matrices
040 0 0]1—1 as components in
041 0 1 1 the primitive base
0110 |-1 0/j—-1
U S
H G generated sub-spaces

(The branch components of the base-current distributions are 1 or —1
depending on whether the direction of the current of the unit current
distribution is similar or opposite, respectively to the orientation of the branch,
or zero if it has no such a branch current.)

Since the components of the new base vectors in the new base are given by
the columns of the unit matrix, therefore, in accordance with Eq. (12.b) or Eq.
(14.b), the set of the previously written column matrices is just the
transformation matrix 5. =[T]

So,
H G
) (t—p) Ae—v+p)
-1 1 0l 1 1]
0 0 0i-1 0,
t.=[T]1=! 0 0 0; 0 —1
0 1 0 1 i
0 0 —1} 0 -1
-1 0 0 1 0
E=[T]"'= 0 1 1 1 0 M
0 0 1 0 -1 (v—p)
0 -1 0 0 0 N
0 0 -1 0 0 (e—v+p)

where the details of the calculation of inversion are neglected. If [11,=[—2j; 3"
+j:0; — 1] is the matrix of a current distribution vector in the primitive base,
then its matrix in the current path base according to Eq. (12.a) or Eq. (14.a) 1s:
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-1 0 o1 o] [-2 } Cy ]
0o 1 11 0 { 3o a4
II=[T7 =1 0 0 10 -1 |14 = 24
| 0 =1 00 0|/ 0 ! ~3 |
| 0 0 -10 OJ -1 ;_—l—jl

The first three are the opened path components, the components with
divergence, and the following two are the closed path divergenceless
components. If the matrix of a voltage distribution in the primitive base is
[Ul,=[-Jj;1; —=2+j; —3; @], then in the new base, according to Eq. (12.c) or
(14. ¢), it is:

-1 1 0 1 1]

00 0 -1 0}
[U1=[UMTI=[—j; 1; =2+j; =300 | 0 0 0 0 —-1| =

01 0 1 1|

L 00 -1 0 -1

=[j; =3—j:0: —4—j; —1-2]].

The first three are the irrotational, the following two the rotational
components. The separation to sub-spaces can generally be denoted by the
partitioning of matrices [ 7] and [T]™'. Let subscripts a and b denote the
opened path or the irrotational components, i.e. the components in the sub-spaces
H or M and subscripts v and s denote the closed path, or the rotational
components in sub-spaces G or N. Then the required partitioning is:

ﬁk;[T]:[ﬁf;L 1} (35.a)
and
‘ t% |} (v—p)
- _lz{k} ) 35.0)
=0T] thd } (e—v+p) .

Then according to Egs (12.a) and (35.b)

f=1%; 1agv—p (36.2)
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and
I'=t"I%; e—v+p<r=<e. (36.b)
Moreover
I 0]} @w=-p
[I]{— }FE—J ’ 36.
01701} e-vp) o)

and, in accordance with Eqgs (12.c) and (35.a),

U,=Utk (37.2)
and
U,=U,* (37.b)
and
U, 01} @w—
[U’]%- }{} S (37.)
0 Ud }e—=v+p)

If we want to determine the components in the primitive base from those in the
current-path base and the summational convention is used also in the
subspaces, then according to Eqgs (12.b) and (35.a) and later Egs (12.d) and
(35.b)

=t I+ I (38)
and
° Uk - Uaf.ak + U,?:k (39)

(The symbols of conjugation can be omitted, since the transformational matrix
is a real one.) Similar equations can be derived also for the active currents and
voltages.

The form. of Kirchhoff’s 1. law in the new base, in accordance with Eq.
(33.a), is:

=y (40.2)

It

or using Eq. (36.a), too,

oIk =12 J¥ (40.b)
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The form of Kirchhoft’s II. law in the new base, in accordance with Eq. (33.b),
is:

U=V, (41.a)
or using Eq. (37.b), too

Ut =Vt (41.b)

°r

Performing the transformations of Eqs (17) and (24) and partitioning the
matrices the form of Ohm’s theorem in the current-path base, in accordance
with Egs (18) and (21), will be

(v—p) (e—v+p)

U, Zo + Ze [I] (o~
e s e, e
U, Z,  Z Il (e—v+p)

T RS
e el (42.b)
I Y© v=*ALU J (e—~v+p)

5

or

Then the solution of the basic problem of network calculation is as follows:

Substituting Kirchhoff’s laws (Egs (40.a) and (41.a)) into the equation of
Ohm’s theorem (Eqs (42.a) and (42.b)), then parting the equations into two
parts, we can write that:

Ua = Zab']b + Zasls}

43.
V,=Z,J'+Z, I (43.0)
and
Je=Y®U, + YV,
> } (43.b)
r=Y?U,+ Y™V,

The unknown mesh-current I° can be calculated from the second equation of
43.a and the irrotational voltages U, i.e. the potentials can be calculated from
the first equation of 43.b provided that the active quantities J* and ¥, are
known.
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The algorithm of the mesh-current method:

1. Determination of the components with divergence of the active currents
in accordance with Eq. (36.a)

II. Calculation of the rotational components of active voltages in accor-
dance with Eq. (37.b)

V=W

IIL. Transformation of the impedance matrix in accordance with Eq. (17)
Zpp =02t [Z1=[T1IZ][T]

IV. Partitioning:

(b—p) (e—v+p)

7 =E _Zib _1. _Zaf" _:I (U“'p)
v Zrb | er (e'“U+p)

V. Solution of the set of linear equations
Z, IF=V,—Z,J°

derived from the second equation of Eq. (43.a) for I°.
VI. Calculation of the potential voltages from the first equation of Eq. (43.a)

Ua:Zabe+ZasIS
VII. Calculation of the passive branch currents from Eq. (38) with the use of
Eq. (40.a)
Ikzt{cbjb'}‘t{(_;[s
VIIL. Calculation of the passive branch voltages from Eq. (39), using Eqg.
(41.a)

Uk == Ual?k + Ktrk
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Algorithm of the potential method

(Only the steps different from those of the mesh current method are
indicated) :
III. Transformation of the admittance matrix in accordance with Eq. (24):

Y™ = Y (Y] =[T] Y[ T]

Ym’k' [Yab Ya.s]
- Yrb Yrs

V. Solution of the linear equation system

IV. Partitioning:

Yab Ub =J% YasI/S

for U, derived from the first equation of (43.b).
VI. Determination of the mesh-currents from the second equation of (43.b)

r=Y"U,+ Y™V,

Cases at which there are nodal current inputs are not included in the
arrangement of Fig. 1. (Of course, the sum of these inputs in a sub-network is
zero). It can be seen that these are linear combinations of opened currents and,
as such, their opened path components can easily be written. For example, if
the current inputs at the nodes according to Fig. 3a are K% K® K¢
KP= —~K*—~K®?—K¢, then this current distribution, with the (unit) open
currents indicated in Fig. 3b, can be written as follows:

K*h, +(K?+ K*h, +(K°+ K®+ K*)h;
and this means that the opened path components are:
K'=K*K*=K*'+K’K*=K"+K*+K*

Then the outer nodal current input have to be taken into account by adding K*°
to the opened path components of the active currents, i.e.

J¢+ K*® is written instead of J*

in V. and VL
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The following theorem is very important from the point of view of
solvability of the basic problem of network calculation:

If among the elements of the symmetrical branchimpedance matrix only
the self-impedances have non-zero real parts and these are finite and positive,
then the matrix Z,, is a non-singular one, and so it can be inverted. To prove
this theorem, consider the divergenceless current distributions. In this case, the
current distribution has no opened path components, i.e.

0, if K=12,...,v—p

1° =0, I"'={ .
r, if k>v-p

and therefore the power is:
S=1¥z, 1"=I'Z, I
Because of the invariance of power
Kz, " =1z,I'
thus,
S=I'z I*=1*Z,,I

(k, I are subscripts in the primitive base).
On the other hand, according to the condition

Zu=Ryu+ijXy (and Xy =Xp),
therefore

S =< > Rkkl"fk> +i(* X, I') =( Y Rkk]I"[2> +j0Q

k=1 k=1

(Q is real because I*X,I'=T'X , J*=T'X  [* = I"X .1

So Re(S)>0 (except in the case of zero current distribution).

Therefore, the form of second degree S = I'Z, I* is never zero, except when
I"=0, and so Z,, is not singular. The non singularity of Y*® can be proved in a
similar way.
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6. Diakoptics

The calculation of networks, the solution of the set of linear equations
needs a great deal of calculations and operations requires high storage
capacity. Its matrix is usually “sparse”, i.e. it contains many zero elements.
Diakoptics, the method worked out by G. Kron tears the network into sub-
networks and then connecting the simplified subnetworks, the problem can be
solved. In this way, there are a number of small compact quadratic matrices
instead of a large “sparse” one. Obviously, the storage capacity requires is
reduced and the calculation work is also much less, since the number of
operations in solving a set of linear equations is proportional to the cube of the

n3

3
size, and so about k (E) =? operations are required instead of n® operations.

(n is the size of matrix of the set of linear equations before tearing, and k is the
number of sub-networks.)

A general theorem of network calculation has an important role in
diakoptics. The theorem can be easily understood on the basis of the previous
chapters.

Conversion into equivalent loopless network

The conversion theorem is applicable to networks which are not
inductively coupled with other networks.
The potential methods are based on the first equation of (43.b).

Yab Ub =Ji - Yya ‘[/S
J*¢ is the opened path (with divergence) component of the current generators,

which also contains the converted values of the nodal current generators
originally included, i.e.,

Je=r4I*+ K* (44.a)
V, is the rotational component of voltage generators, ie.,
V.= Wtk (44.b)

U, is the potential component of the passive voltage wanted. Also the
irrotational component of the voltage generators will be needed:

V,=V.t% (44.0)

The meaning of 4. and t* is according to Eq. (35).
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The equivalent conversion will be used for the coherent sub-network of a
large network. In the sub-networks, torn out from the network, the other parts
of the network will be considered by the help of nodal current generators which
will be denoted with K' while K* will denote their divergence current
components in the following. (It will be seen that there is no need of the value of
K?). J%does not contain this K¢, therefore it should be added to the right side of
the equation preceding Eq. (44.a):

YU, =J*— YV, + K°

If the (existing) inverse of Y is denoted with W,,, i.e.,
(Y) "l =W,,, (45)

then, from the previous equation, one can write:

Uy= W (J" = Y*V,+K°). (46)
Considering Eq. (46) to be Ohm’s theorem in the primitive base, it can be
stated that outwardly, i.e. from the point of view of the voltages between the
nodes and the outer currents flowing into the nodes, the network examined
behaves as a loopless network, containing only opened paths at which the voltage
generator of the opened paths is V,, its current generator is

jb . YbSVS,

its self-and mutual impedance is W, ,, and its outer nodal-current is K®. The b-th
branch of the substituting opened path network is shown in Fig. 4.

Jooyesy,

Vs

[N
7\
A/ Wopy Wpq

Ib
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The substitution discussed above means that not only the closed paths are
omitted but also that every opened path is replaced by a new one and Eq. (46)
expresses Ohm’s theorem in the primitive base, concerning these new paths. To
enlighten this, consider the network shown in Fig. 5.a and take the system of
opened paths according to Fig. 5.b. The new network built up from these
opened paths is shown in Fig. 5.c.

=<

Then consider a large connected network (Fig. 6.a) and tear it into sub-
networks (Fig. 6.¢) in such a way that after removing the total of the torn
branches — the so-called inter-subnetwork (Fig. 6.d), — the sub-networks are
still connected to each other without loops (Fig. 6.c). We are going to discuss in
the following, how this can be carried out practically. If the sub-networks have
no mutual impedances with one another and with the inter-subnetworks, then
the passive current and voltage distribution of the whole network can be
determined as follows:

a) The sub-networks are replaced by meshless network according to the

teorem discussed above.

b) Connect the substituting networks of the sub-networks and the inter-
subnetwork (consisting of the torn branches), so K® will be dropped
out (that is why it ' was not needed to calculate its value); and since the
sub-networks are connected to one another without loops, the
substituting network contains only as many meshes as the number of
the torn branches.
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c) Determine the voltage and current distribution of the substituting
network with the mesh method.

d) At the end, ralculate the real currents of the sub-networks.

Disintergration into sub-networks can be done as follows: First
determined nodes and their branch connections will be comprised into sub-
networks, with carefully leaving out as few branches as possible. (Fig. 6.a and
6.b). Then one more node, with the appropriate branches, will be connected to
all the sub-networks except one (Fig. 6.¢), and the common nodes obtained in
this way will provide the loopless connection of the sub-networks. Namely, let

Uiy Uy v v oo Uy

the number of nodes of the separate sub-networks, then after establishing
common nodes, the number of nodes of all the sub-networks, except say the i-th
sub-network, will be increased by one. So the final number of nodes of the sub-
networks are:

Ul+13U2+1’“"Uia"-:vm+1~
After forming the sub-networks into loopless network, they have
Uy, Loy ,,_,Ui—-l, ey Uy

branches, therefore the total number of the branches of the substituting sub-

networks Is:
(Z vk>—-1=v—1
k=1

where v is the total number of nodes. So the branches solely of the substituting
subnetworks form

[(b—1)—s]+1=0

number of loops.

The branches left out constitute the inter-subnetwork (Fig. 6.d) Fig. 6.e shows
how the same disintegration can be obtained, using the original tearing
technique. There is an important, special case in which the sub-networks are
connected to one another in a single common node (on the 0-bar). In this case,
this common node is assumed to belong to the sub-network without branch
growth.
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a
o e}
o o
O—0 0
d

This paper, did not discuss the calculation of the transformation matrices
from the graph of the network. This problem — important from practical point
of view — is discussed in detail in a paper, following the present one, of Gyorgy
Tevan, of the authors of the present paper, “Algorithm to determine the
transformation matrix of Kron’s method for calculating networks and for
diakoptics.”

Summary

According to this paper, Kron’s method of network calculation is given a simple, clear
linear algebraic foundation in such a way that the sets of stationary current and voltage
distributions are regarded as linear vector spaces of dimension equal to the number of branches,
and the scalar multiplication, resulting the power, is explained as an operation between these
vector spaces. The base transformations of these two vector spaces are connected to each other
by the realization of the invariance of power. The current vector space and the voltage vector
space can be divided into a direct sum of the sourceless and a source subspace, and the
irrotational and a rotational subspace, respectively. The base chosen according to this
corresponds to Kron's “orthogonal network”, comprising opened and closed current paths, and
the base chosen according to the branches corresponds to the “primitive network™. Finally, this
paper shows Kron’s diakoptics from the point of view of the previous chapters.
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