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1. Introouction 

A crucial problem in computing linear induction motors is the treatment 
of end-effect. From this aspect, relevant publications belong to two groups, 
concerning either 

a) purely undamped, or 
b) damped 

traveling waves. 
A single undamped traveling wave only suits the computation of linear 

motors of "infinite length" [6, 8,12,13]. A Fourier integral yields an "infinity" 
of undamped traveling waves [3, 9J, to the detriment of ease of computation 
and understanding. Also the three-dimensional model by Oberretl [lOJ 
applying undamped traveling waves, uses Fourier series expansion to compose 
the solution from discreet tra veling waves, offering a rather high accuracy; the 
multitude of traveling waves, however, require to draw even general 
conclusions by means of a computer. 

Recently, YA.MA:VIURA [7,15, 17J, VOLDEK [5, 14J and al. stressed damped 
traveling field models; their surveyability and evaluability prevail in the one
dimensional mode of discussion. The description involving damped waves has 
the shortcomings of being not rdated any more to the theory of rotating 
induction motor, and of difficulties in the complex correct handling of the end 
and edge effects; namely the edge effect is Dest determined according to BOLTON 

[4J referring to undamped traveling waves. 
In what follows, analysis of the excitation pattern will be involved to 

approximate reality by means of some, in part fraction-order, undamped 
traveling fields. The presented algorithm reckons with all essential effects, 
theoretically founded but with certain simplifications for the sake of 
comprehensiveness. It also suits general conclusions and rapid calculation. 
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2. Analysis of the excitation pattern 

Electromagnetic field inside a confined space part is known to be 
determinable in possession of the tangential component of electric or magnetic 
field intensity (or linear combination of both) on the boundary surfaces at any 
instant. To determine the electromagnetic field in the air gap and secondary 
part of the linear induction motor, distribution of the tangential component of 
magnetic field intensity on the boundary surface of the primary part is 
considered, independent (at a close approximation) of the motor load and 
rather simple to compute from the primary excitation. 

Analysing first the case of the "infinite" primary part, the scheme in Fig. 1 
is the distribution of H = at the excitation of a single phase, where there is q = 1 
slot for each phase and pole; z being the coordinate along the travel, Lp the pole 
pitch, c the slot-opening, and e the excitation share on one slot. (Tangential 
component of magnetic field intensity on the iron surface is negligible, while 
along the slot surface it may be considered as of about uniform distribution 
supposed, that the slot-opening is sufficiently sinall.) 

le! 
~ 

z 

Fig. 1 

In the Fourier series of the periodic distribution seen in Fig. 1, only the 
amplitudes of cosine terms of odd order v = 1 + 2 k (k = 0,1,2, ... ) are non-zero, 
viz.: 

sin(v~ :) 
2e Lp 2 

H(f) = - ---=--
zv Lp n c 

v-
Lp 2 

For q> 1, the amplitude of the v-th harmonic decreases according to a 
distribution factor 
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sin(v~) 

q Sin(v 6:) 
comrared to the q-fold value. 

Thus, in the general case, excitation of one phase causes the vth harmonic 
to have an amplitude: 

20 
H(J)-- v (1) =v - qsv 

Tp 

where: 

sin(v : ~) sin(v~) 
'p 2 

~v 

q sin(v 6:) 
(2) 

TC C 
v--

!p 2 

Feeding the phase winding by sine A. C. results in standing waves for any 
harmonic, that can be decomposed in the usual manner into sums of half
amplitude waves traveling in opposite directions. Feeding the phase windings 
by a three-phase, symmetric current system, in case of v = 6k + 1 all but 
positive-order traveling waves and of negative order for v = 6k -1 are excluded 
from the resultant, while for v = 3k the resultant becomes zero. Since the three 
half-amplitude traveling waves remaining in the resultant for v=6k+ 1 are in 
phase, the amplitude of the vth harmonic wave resultant, using Eq. (1) becomes: 

3 30 
H --H (jJ_ --- qc-

v - ') =v - _ .v 
._ Lp 

(3) 

Analysis of the finite primary part will start with the case of slots fully wound 
even at edges. In case of windings of finite length, distributions H =(z) excited by 
one phase winding are zero outside the extreme slots belonging to the given 
phase. Expanding these functions into a "modified Fourier series" with terms 
equal to the corresponding term of the F ourier series for linear motors with a 
winding of "infinite length", in the interval 2p!p symmetrically covering the 
phase winding, and outside of it they are zero. (Poles number 2p that may be an 
odd number.) This "modified Fourier series" minimizes the mean square error 
integral for the finite excitation as does the F ourier series for the "infinite" 
excitation. All three phases of the winding fed by a symmetric, three-phase sine 
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current system bring about for any (encountered) harmonic a finite standing 
wave oflength 2prp, all of them being decomposable into finite traveling waves 
of positive and negatiye order, again oflength 2pr p. Taking the resultant of v-th 
harmonic waves of the three phases, let us consider by the time the case 
v = 6k + 1. Indicating finite sinusoidal traveling waves by rectangles each, 
Figs 2a and b superpose traveling waves of positive and of negative order, 
respectively (belonging to different phases), whether there are waves of positive 
order, hence cophased, or of negative order, with phase lags of 120° but, not 
extincting each other at the edges. The case v = 6k 1 differs from the former 
one merely by the prevalence of negative-order waves over those of positive 
order. Finally, for v = 3k pbase lag between traveling waves of either positive or 
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Fig. 2 

negative order is 120°, so that finite traveling waves of either order are 
superposed as seen in Fig. 2b. These are negligible compared to traveling waves 
of fundamental harmonic (positive order), namely they arise only at winding 
extremities with amplitude H 3d3, less than third of the H 1 value because of 
~3k < ~1 according to Eqs (2) and (3), what is more, when fluxes are compared, 
division by 3k is imposed by the smaller wave length. The same is true for 
traveling waves of order (6k ± 1) resulting at winding extremities except for the 
fundamental harmonic wave of negative order, it being of the same wave 
length, division is needless in comparing the fluxes. Finally, all traveling waves 
(even the stepped ones) of order v ~ 11 may be neglected, namely for v ~ 11, 
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~v -< ~ 1 (force and impedance will be seen below to be proportional to ~;), 
furthermore comparison of fluxes requires division by a high number. In 
conclusion, nothing but the following traveling waves are worth being 
considered: 

a) fundamental harmonic, positive order (stepped); 
b) fundamental harmonic, negative order (at extremities alone); 
c) fifth harmonic, negative order (stepped); 
d) seventh harmonic, positive ord::!' (stepped). 
Let us consider now the ease where parts of all phase windings inside one 

pole pitch have slots filled to the half at both extremities (the case of two-layer 
windings). Distribution H = for one phase winding is half the value at edges of 
length r p of the interval oflength 2pr p than inside (rectangles being half as high). 
Applying a "modified F ourier series" where also the sine function sections of 
the terms at edges of length r p are half the amplitude as inside, while outside 
they are zero, the previously described method yields resultants of traveling 
waves of order v = 6k + 1, of positive and negative order as seen in Fig. 3. 

0° 3000 0° 3000 

r=r=J DD ee ee 
Fig. 3 

180°120° 180°120° : tf.y 
DD'.' 6 z ee ee 

Circumstances are seen to be similar to those for motors with fully filled 
slots, main differences being the step proportions and numbers. 

In the case v = 6k -1 the negative-order wave is stepped, while the 
positive-order one arises at extremities alone. Case v = 3k is irrelevant, yielding 
the same conslusions for traveling waves to be considered as for fully filled slots. 
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Stepped fundamental harmonic, fifth and seventh harmonic traveling 
waves of the tangential component of magnetic field intensity will be 
transformed by realizing the stepped configuration of distribution to be 
repeated within a certain - rather long - period, a distribution to be 
expanded into Fourier series, after having simplified the computation by 
replacing it by a trapezium with straight lines halving the steps at non-parallel 
sides, a substitution of slight error. Trapezium sizes for full windings, and for 
half-wound extremities are seen in Figs 4a and b, respectively. Denoting the 

@) 
(2p-1)7:p 

(2p + 1) (;p 

Fig. 4 

shorter parallel trapezium side by 2z 1, the longer one by 2z1 , and the period 
length by 2zp, the three-term Fourier series of the trapezium function T(z) of 
unit height becomes: 

where 
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The approximate function will be simplified by choosing z p so that a 2 = o. 
Meeting also the natural requirement z p > z 2 yields: 

From Fig. 4, obviously, for a fully wound machine: 

and for one half wound at extremities: 

Thus 

where 

I 
P (fully wound) 

P1 = 1 
P -- (half wound at extremities) 

2 

The approximate function being: 

where 

According to Fig. 4: 

0::= 

In final account: 

4p 

n 

Z2- z1 n 
':1.=---

Z2 +Z1 2 

(fully wound) 

-- (half wound at extremities) 
2p-l 

(4) 

(5) 

(6) 
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Let us agree partly in 0 hence H v to indicate effective values in the following, 
giving for the complex instantaneous value of the uniformly distributed v-th 
harmonic traveling wave· 

and partly-in conformity with this latter statement- in marking the wave of 
positive or negative order by v with a positive or negative sign [since according 
to (2), ~ _ v = ~v this convention causes no trouble]. Thus, the complex 
instantaneous value of the vth harmonic traveling wave of trapezoidal 
distribution is: 

or, replacing T(z) by TF(z) according to (6): 

+J2. O,32Hvej[wor+-2~J~::J+ 

+J~2. 0 32H ej[wor-('~'!-)~::l 
, v ,-Pl' "F -' 

Thus, the v-th traveling wave of trapezoidal distribution is decomposed into 

vth, (v __ 
1
_)th and (v+_1_)th harmonic traveling waves of uniform 

2Pl 2Pl 
sin (J. sin (J. 

distribution, with effective values of O,5Hv; O,32--H" and O,32--Hv' 
Cl. (J. 

respectively. It was seen above that from among traveling waves oftrapezoidal 
distribution, only harmonics of orders v = 1, v = - 5, and v = 7 merit to be 
reckoned with. Wave lengths 

and 
1 

5--
2Pl 

of uniformly distributed waves of orders (_5 __ 
1
_) and (_5+_

1
_) 

2Pl 2Pl 
obtained by decomposing the fllth harmonic wave of trapezoidal distribution 
are practically symmetric about the fllth harmonic wave length rp/5, with slight 
deviations, causing their influence on impedance and force to be averaged, 
hence it suffices to apply a single fifth harmonic of uniform distribution, of an 
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effective value: 

(
sin 11) 0,5+0,64-

11
- .H5 

This is still more valid for the seventh harmonic. For the fundamental 
harmonic, the arising evenly distributed traveling waves of orders 

v=l, V=(l __ l ) 
2Pl 

and V=(1+_1 ) 
2Pl 

are, however, to be considered separately. 
The fundamental harmonic traveling wave of negative order of non

trapezoidal distribution, arising only at extremities, will be replaced by its 
zeroth Fourier component, hence its mean value for the period length 4Pl rp, 
indicating for both winding types a wave of negative order, with a value 0, 
namely 

5" ,21! 

eN + eF"3 + eft' + eJT = 0. 

Thus, harmonic traveling waves of uniform distribution, to be reckoned with, 
are of the orders: 

v=l, 
1 

1--
2PI ' 

1 
1+-

2Pl ' 
-5, 7, 

with effective values according to Eq. (3): 

where 

1 _ 1 _ sin~::: 
bI --o --bI +-0 _-0,32---':>1 

-P, -p, et. 

(
sin 11) b_ 5 = 0,5+0,64-11- ~5 

b7 =(0,5+0,64
Si

: 11}7 

b_ I ~o. 

-1; 

(8) 

(9) 

[he PI' et. and C;v values will be obtained from Eqs (4), (5) and (2), respectively. 
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3. Computation of the terminal impedance and the force 

In knowledge of the slot excitation El, relationship (8) permits to determine 
the tangential component of the magnetic field intensity of every traveling 
harmonic wave to be taken into account along the boundary plane of the 
primary part of the double-sided linear motor shown in section in Fig. 5; a 
boundary plane has the co-ordinates x = ± (j in the assumed co-ordinate 
system, therefore, considering the phase position of e to be real, for the phasor 
Hzv given with its effective value: 

(10) 

x 

Fig. 5 

Complex momentary value of the v-th harmonic of the field characteris~ic 
being: 

by convention, field characteristic phasors do not contain the dependence on z 
either. In the coordinate system fitted to the primary part W = Wo = 2nf, where f 
is the line frequency; in the co-ordinate system fitted to the secondary part 
W = Wv where Wv is the circular frequency of the current induced by the v-th 
harmonic field in the secondary part. 

Velocity of the fundamental harmonic of the traveling field, compared to 
the primary part: 

(11) 
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and the slip in case of a secondary part traveling at velocity v along z, compared 
to the primary part: 

vo-v 
s=-

v 
(12) 

The v-th harmonic traveling field has a velocity vo/v compared to the primary 
part; its slip being: 

vo 
--v 
V 

S,,=--= I-v(l-s) 
Vo 

v 

(13) 

hence the circular frequency of the current in the secondary part (due to the v-th 
harmonic): 

(14) 

For a linear motor of infinite width (in direction y), among field characteristic 
components only H=, Hx and Ey=E are non-zero and they are independent 
of y. 

Hence phasors H zv, Hxv, E" depend only on x. Substituting the complex 
momentary values into the Maxwell equations, in the co-ordinate system fitted 
to the secondary part, phasors will be expressed by the following ordinary 
differential equation system: 

(15a) 

(15b) 

(15c) 

where y is the conductivity of the non-ferromagnetic secondary part. For 
positive x values, E and - H = yield power flow toward the secondary part. 
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Accordingly, the field impedance to be interpreted will be: 

advisably converted to the primary part, taking into consideration that the 

electric field intensity is transformed into the primary one by the factor Wo , H= 
W" 

being (practically) invariable. Hence, field impedance referred to the primary 
part: 

(16) 

Re-writing differential equations (15) accordingly, yields: 

where 

(17) 

General solution of the differential equation for Z,: 

T pWoJ1o (TCVX --- ') 
---'--;:=== tg j T

p

' -J'1 +jm .. + C 
vTC-J'1 + jm" 

(18) 

Because of symmetry, for the secondary part: 

for x =0, 

TC 
corresponding to C =-; substituting x = d, the total field impedance of the 

2 
secondary half-part becomes: 

Zx 
\'2 U9) 
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where 
1 

(20) 

(superscript co refers to the linear motor of infinite width). 
The air gap field impedance will be obtained from (18) by substituting 

y = 0, hence from (17), substituting mv = 0: 

because of the continuous transition of the field impedance: 

hence: 

( 
nvd ) 

tg j--+C1 =k~ 
, Tp 

Field impedance taking also the air gap effect into consideration, rela~~d to the 
voltage induced in the winding, along the boundary plane of the primary part, 
at X= 13: 

T pWoJJ.o (. nv(5 ) ---tg ]-+C1 
vn Tp 

eliminating Cl: 
T W 11 

P 0,..0 KX 
\' , (21) 

vn 

and 

(22) 

In discussing linear motors of finite width, it is normally taken into 
consideration that the secondary part is generally wider than the primary part 
to keep the bend of eddy current flows apart from the iron core conducting 
most of the primary flux (Fig. 6). 



126 GY. TEVAN 

In the part of the secondary plate overhanging the iron core, volt ages 
induced by the winding head flux and the dependence on x of the field 
characteristics will be ignored, yielding for the components of potential electric 
field intensity in the domains 

Is I 
2, 

1 1 
- I ~ ly'l ~ - (I + I ). 2 - -2 s· 

secondary part 

l'~----------------------------

15 I 
2, 

---~o z-,~ 
primary part I 

I secondar}: part: 

Fig. 6 

where V,. is the potential phasor in the v-th harmonic traveling field. Since no 
current can leave across the edge of the secondary plate, 

'. ( dV,) i~l- ___ -(K,.Jri=---'-\ d i~J -0 
• • 2 Y 'y;=--.;-' 

Solution of the Laplace equation for V v meeting this boundary condition is: 

yielding the prescription for the inner domain edges: 

(23) 

IT 

er,vi, -1 

(
nVI \) 

tanh --" 
2,p/ 

(24) K 
IT 

er, vi, + 1 
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The electromagnetic field in the part of the secondary plate below the iron core 
is considered to consist of two parts. One is the field with phasors Hxv, Hzv and 
Ev discussed in connection with the linear motor of infinite width, the other 
being a correction electromagnetic field containing component phasors E~v' E~v 
and H~v' thus: 

(25) 

Correction field characteristics are considered (with an approximation) to be 
independent of x, and replacing them into the Maxwell equations yields the 
system of differential equations 

eliminating Hxv and applying notations in (17) yields the system of differential 
equations 

(26a) 

(26b) 

Symmetry requires E~v to be an odd function, giving the solution for (26): 

E~v = Eo sinh (~ vJ 1 + jmvY ) (27a) 

(27b) 

To determine Eo, relationships (23), (25) and (27) will be confronted. 

3* 
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In (25), Ev depends on x, so that (23) can only be met by a mean value 
along x. Introducing notation 

d 

E~=~ f Evdx (28) 

o 

yields 

(29) 

where 

(30) 

Calculation of the correction impedance needs the mean value of E~,v along y 
modifying the Ev value; thereby, using interpretation (16), correction field 
impedance of the secondary part becomes: 

(E~v with H=v yielding -no power) 
Considering relationships 

dH_ v (' 

-d - =j-(l+jmJE,. 
x mv 

obtained from (15a,c) using notation (17) and 

obtained from it" using notation (28) and equation (H=..)x=o=O as well as Eq. 
(26b) and notation (17): 

2 WOfloT; 1 (E~v\'=~ 
id l1h 3 (1 + jmY E::' 
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Finally, taking Eqs (27a), (29) and notation (30) into consideration: 

(31) 

where 

k~ 
(1 + jmJ[K(1 + jmJ + J 1 + jmvcoth aJ 

(32) 

Thus, the secondary field impedance referred to the primary part, modified by a 
correction term (for the v-th harmonic): 

Taking (19) and (31) into consideration: 

(33) 

where 
(34) 

Remark that this computation method of the transversal edge effect due to the 
finite machine width is essentially the Bolton model [4J adapted to this 
computation method. Thereby the skin effect and the transversal edge effect 
can simultaneously be taken into consideration, with the approximation that 
the correction of the transversal end effect does not contain the skin effect, 
furthermore, the transversal edge effect can be reckoned with for every 
harmonic, permitting correct handling of the co-existence of longitudinal and 
transversal end effects. Because of the finite width, magnetic flux leaves the air 
gap also along y, omitted for the two-dimensional model of the linear motor of 
infinite width. Computing the v-th harmonic of the potential magnetic field of 
the air gap using a three-dimensional model: 

awv H =--xv ~ 

ox 

where W v is the potential phasor. The Laplace equation being valid for W v: 
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Replacing the rectangular relative flux distribution along y seen in Fig, 7 by a 

function 1,17 cos (2,34 i) of the same area (flux) as the rectangle, 

approximating it with a minimum mean square error, then the Laplace 
equation will be met with respect to y by the distribution y: 

yielding the following two-dimensional Laplace equation: 

..... - -...-;-117 cos (2.34 1f) 
,/ 1 .... ,"-

/ 'r--.,,\ 
---L~/------r-----~/~~--_y 

-2 2 

Fig. i 

The same equation results from the two-dimensional model for l-t 00 if the Tp 

value is changed into Tp/P in order to obtain: 

thus: 

P= 
T2 

1 +0,554 12~2 (35) 

Thereby T p replaced by T p/ P in (22), approximating the effect of the finite width 
on the air gap; of course k~ in (22) will be replaced by kv, thus, according to (21) 

(36) 
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and 

K" {37) 

Field impedance Zvi is valid at x = b, boundary plane of the primary part; at the 
same place the electric field intensity in the co-ordinate system fitted to the 
primary part, using (10): 

spatial mean voltage induced in a lead of the winding of slot-opening c by the 
v-th harmonic wave being for q = 1, and in case ofa primary iron core of width I: 

For q =F 1, it has to be multiplied by the chord factor 

hence, using notation (2), formulae (8) and (36): 

Remark, however, that for a traveling harmonic wave of fraction order, the 
motor winding is other than diametral. Therefore the ~v value has to be 
mUltiplied by a winding factor taking this fact into consideration, modifying 
formula (2) to: 
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sin (v~) , 
( )

• ~v, 

q sin v 6
n
q 

(2*) 
sin [Pl (v -l)nJ [n(p -Pl)] 

--.-==[C-(V-_-l-)-n=]· cos 2Pl . 
2Pl SIll 2 

[The last factor yields for odd v values % to be taken as unity; it gives a value 
1 

less than 1 only for v = 1 ±-; so right-hand sides of Eqs (9) are inaffected by 
2Pl 

modification (2*).J For traveling waves of fraction order, also phase-shift of 
voltages induced in the phase windings slightly differ from 120°, resulting also 
in voltages of negative order. For the two waves of fraction order, however, 
deviations from 1200 are offset opposite to each other, permitting to neglect this 
effect. Among all the considered harmonic fields, only the v = -l-th one is 
considered to induce voltages of negative order; hence, all the inducedvoltages 
of positive order are: 

and those of negative order: 

3 
U I = --qlwof.10 8 -l(-lK_l~O, 

n 

both being due to excitation of positive order. Accordingly, the impedance 
referring to a slot, interpreted as 

(38) 

(Factor ~; referred to in Chapter 2 appears now in Eq. (38) based on (9) in the 
case v ~ 5). Neglecting the excitation share of teeth and core, excitation 8 for the 
slot equals the total slot current, and winding resistance as well as slot and 
winding overhang leakage reactance for a slot are connected in series with the 
internal impedance Zi' Terminal impedance for a slot becomes: 

(39) 
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Notice that in possession of these results, determination of the tooth induction, 
and from it, knowing the magnetization curve, the excitation excess il@ is not 
difficult, yielding for the current flowing through the impedance R + jX/: 

not to be treated in detail. 
For determining the thrust oflinear induction motors, let us mention first 

that equations of the considered harmonic traveling waves constitute an 
orthogonal function sy.stem; namely repetition interval 4Pt'fp is integer 
multiple of the period length of harmonics of fraction order too, namely: 

an integer number according to (4). 
Thus, interaction between harmonics of different orders results in no 

power or force. 
Air gap power of the v-th harmonic wave equals the effective power on the 

internal impedance, thus, according to (38): 

3 I bv~v 2 P Qv = - q W of1o - e Re(KJ 
1t v 

Travel velocity of the same field being, from (11): 

Vo worp 
=--

v 1tV 

with a thrust 

and the total thrust for a slot: 

(40) 

On the other side of the double-sided linear motor, the same impedance and 
force result for each slot. Computation needs the following formulate, in that 
order: 
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(7), (14), (17), (20), (24), (30), (32), (34), (37), (2*), (4), (5), (9), (38), (39), (40). 

Remark that impedance Zi is serial resultant of impedances belonging to each 
harmonic wave; for each impedance an equivalent circuit analogous to the 
rotating induction motor ·can be constructed; to be find in [16J for the 
fundamental harmonic. 

Summary 

Tangential component of the magnetic field intensity along the boundary plane of the 
primary part of a linear induction motor is approximated by six undamped traveling harmonic 
waves, two of them being of fraction order compared to the fundamental harmonic datermined 
by pole division. For all traveling waves, an impedance taking (approximately) the effect of finite 
width into consideration is defined: the motor impedance is their resultant. The algorithm is 
concluded by Calculating the force. 
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