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Introduction

Solution by the variational calculus of electromagnetic fields can be
derived as the stationary function of a suitable functional constructed from the
potential function. The stationary function yields a solution satisfying
Maxwell’s equations. For the case of static and stationary electrical fields and
electromagnetic wave phenomena of sinusoidal excitation suitable functionals
are found in the literature [7, 8, 9, 10, 12] sometimes referring to the physical
meaning of the functional.

It will be shown that the functionals for different cases derive from the
same principle, the principle of least action, or in special cases, Hamilton’s
principle. Thus the variational principles in electrodynamics can uniformly be
discussed and the functional for the case of arbitrary excitation can also be
formulated. The formulation of the functional and the proof that the stationary
function of the functional solves Maxwell’s equations, are deduced from the
theory of relativity using four-dimensional vectors. The mathematical for-
malism necessary for relativistic discussion and solution of the Maxwell
equations is given in the Appendix. More detailed discussion is found in [13].

It is also possible to apply the functional formulated on the principle of
least action to different cases of electrodynamics, such as electrostatics,
magnetostatics, stationary electric and magnetic fields, quasistationary elec-
tromagnetic fields and electromagnetic wave phenomena.

The principle of least action

A mathematical formalism common in several fields of physics derives the
laws of certain phenomena from the principle of least action or its special form,
the Hamilton principle. According to this theory, phenomena proceed in a way
that the action-integral (or functional) formulated by the extensive parameters
has extremal value. The necessary condition for this is the zero value of the first
variation of the action integral. The first variation can only vanish if the
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Euler—Lagrange set of differential equations corresponding to the action
integral is satisfied. This means the satisfaction of the differential equations
characterizing the phenomenon by means of its extensive parameters. So the
action integral considered as the functional of the extensive variables is
stationarized by the function satisfying Maxwell’'s equations.

The action integral of the joint set of the electromagnetic field and the
moving particles has three parts: the first and the second depend on the
properties of the field and the particles; the third depends on the interaction of
the field and the particles. Since convective current is not discussed, the part
depending on the properties of the particles only is missing. So the action
integral is:

1 !
I,=—j/c j[A+S+—— Tr (F2) |dQ {1
4

Q

where I is the action, S is the current vector of four dimensions, F is the tensor
of the electromagnetic field intensities, ¢ is light velocity and j is the imaginary
unit, mark + denotes the transpose of a matrix, and Tr(F?) means the trace of
tensor F2. The integration has to be performed over the four-dimensional
region, where the elementary domain is:

dQ=dx,dx,dx;dx, . (2

Introducing the four-dimensional vector potential,
F=rotd, 3)
the action integral as a function of the vector potential can be written in the

following form [1, 13]:

1
I,=—jjc fliA*S-i-—— Tr(rotzA)}dQ. (4)
4p
Q

If the current density is not known, equation
S=cFu=crotdu (5

may be used. Here ¢ is the conductivity of the media, u is the four-dimensional
vector of the velocities (see Appendix). Substitution of (5) into (4) yields the
functional for this case. However, the first part of the action integral should be
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divided by two, since otherwise the interaction of the field and the particles
would be considered twice. So the action integral is:

I,=—j/c J[Eazﬁ rotAu+—1—(Tr(rot2A))]dQ. ©
2 4u

Q

Performing the scalar product operation, the action integrals (1) and (6)
may be written in the following three-dimensional form:

3

Ia=J‘-H: AJ —pgo+%(E]")—HB)JdVdr, (7
o v
and
IG=J- %[aKE-{—(ED—-—HB)]dVd‘c. (8)
o v

B=rotA, 9)
_ cA
E=—gradp——
grad ¢ FT (10)
we obtain;
— g 0A \?
I,= AJ—po+-| —grade—— ~—rot?A |dVdr, (1
ot U
0 v

and
1
1 - oA PA\? 1
I,= jJ—[aA(—gradgo— )-,L—g(-—grad(p—o—) -mrotzﬁ:’dVdf.
2 ot dt U
0 v (12)

The action integral is seen to be a time integral of an energy-like function:

I =

a

W(t) dr. (13)

O e =~
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The energy-like function is:

W(z)= | LdV, (14)

where Lis the Lagrange function of the field. The Lagrange function is the
integrand of integrals (11) and (12). Also W(z) is seen to be the difference of the
electric and the magnetic energies.

In the following, the stationary function of the action integral as the
functional of the four-dimensional vector potential will be proven to satisfy the
Maxwell equations.

The Euler—Lagrange differential
equation of the action integral

Asitis known, if the first variation of a functional equals zero, the Euler—
Lagrange differential equation of the functional is satisfied. The Euler—
Lagrange differential equation of functionals (11) and (6) can be written on the
basis of the following formula:

6L & ¢ oL

04, jzl"é;;a<a,4,.>

0x;

=0 i=1,2 3,4 (15)

The Lagrangian functions are, according to (1) and (6):

1
L= ~jjc [AS-%;——(Tr(rotz A)):I, (16)
7
T 1 |
L= —jjc [—O‘A ' rotAu+— (Tirot? 4)) :l , 17
2 4u

respectively.

It is to be proved that the Euler—Lagrange differential equations of
functionals (6) and (1) are the differential equations for the four-dimensional
vector potential derived from Maxwell’s equations. In order to obtain this
formula, (15) has to be reformulated by means of four-dimensional vectors:

oL oL
04 8(AVY)

V=0 (18)
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(V is the four-dimensional differential operator, and laws of derivatives on
matrices and column vectors are found in the Appendix.) On application to
Lagrange function (16):

cL JcS 19
e T c 5
o4’ 1)
and
oL i1 (VAT - A4V J
=" (VAT —AV*)= — 2 rotA.
AV > ) o rot4 (20)
Thus
1
§+—divrot A=0. (21)
u
Using the identity:
divrot A=graddiv4A -4, (22)
we get: \
OA4d=—us,
and )
divd=0. (24)

(Mark [ denotes the four-dimensional Laplace operator (see Appendix).) Eq.
(23) is the differential equation for the vector potential derived from Maxwell’s
equations, and Eq. (24) is the Lorentz condition.

If current density is not known, Lagrange function (17) is to be used. In
that case the equations are:

oL

J
EEz»-ZarotAu, (25)
oL il 1 1 , N ]
=—>| —— AV u+— (VAT —AV*) |. (26)
HAV*T)  cbL 2 U d

So the differential equations are:

(JA+pcAViu=0, (27
and
A*V=coud*u. (28)

Eq. (27) is the differential equation for the vector potential derived from
Maxwell’s equations, and Eq. (28) is the Lorentz condition.
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Action integrals of electrodynamics

In the following, the three-dimensional action integrals (11} and (12) will
be discussed in several cases of electrodynamics.

1. Electrostatics

In the case of static electric field there is no magnetic field and the field
intensities are independent of time. So the minimum of action integral means
the minimum of energy function (14). Using the equations:

o - 0
H=0, J=0, —=0, and
ot
E=—grade, (29)

the energy-like functional of the electric field to be minimised is:
1
W= 5 [ e grad?pdV—| pedV, (30)
2% g

where ¢ 1s the scalar potential.

2. Magnetostatics

A duality is known to exist between electric and magnetic fields [ 7, 137. So
the equations of electric field are valid for magnetic field, too. Using the
equation

H= —grado,,, (31)

| o

(where g, is the magnetic scalar potential)and E=0, — =0, the magnetic field

jo¥)
o~

energy-like functional to be extremized is:

1
W,= — J% pgrad?e, dV. (32)

v
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3. Stationary electric field

Stationary electric fields can be discussed on the basis of the analogy to
static field. Therefore p=0, and replacing ¢ by ¢, functional (30) is of the
following form:

W= Jf ograd?p dV. (33)

DO

¥

4. Stationary magnetic field

-~

. C e i . . C
Since the electric field is omitted, ¢ =0 and —a—=0. But the interaction of
t

electric and magnetic fields has to be taken into account. So the functional is:

10 - "
We= -3 j— rot> AdV+ J AJadv. (34)
u

1

Iz

5. Quasi-stationary electromagnetic field

In the case of static and stationary electromagnetic fieid the scalar and
vector potentials are independent, so they can be determined independently.
{Except stationary magnetic fields when the current density is not known. In
that case the electric field can be determined at first, and in the knowledge of the
electric field, the magnetic field can be calculated.) Time-varying electric and
magnetic fields are not independent of each other, so it is necessary to. know
both the scalar and the vector potential for the solution. It is sufficient to know
the vector potential for the solution in the case of quasistationary field or wave
phenomenon in an ideal isolator. Both the electric and the magnetic field can be
derived from the vector potential, since the scalar potential may be termed by
Lorentz condition (28):

1
o=——divA. (35)
Lo

This means, that if p=0, ¢ is arbitrary, so ¢ can be zero. Thus the action
integral is:
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1
fj[———a ——Zrotz :’dth (36)

If the assumptions of the problem cannot be met in this way, using formula (35),
the action integral is:

?

M _ /1 . 8RN\ 1
I,= ~ A" |—graddivA—— |——rot?A |dVdr. (37
J J L2 uo ot 2u

6. Electromagnetic wave phenomena

In the case of electromagnetic waves in an ideal isolator, the action
integral can be derived from Eq. (12), substituting ¢ =0 and ¢=0 into the

equation:
- HG

The most general form of the action integral has to be used in the case
where the assumption ¢ =0 contradicts the conditions of the problem or the
isolator is not ideal. In this case the vector potential A and the scalar potential
@ cannot be determined independently. Therefore, in the case of not ideal
isolator, the action integral is:

1
).__rofz ‘ldVdr (38)
‘Ll _

0A g 1
+8~é—* gradp +— grad2¢—-2—r0t2 }dth
u

and the Loreatz condition

- oo
divA= —puo—pe— (40
ot

is valid.
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Appendix

In the following the formulation and the solution of Maxwell equations
are discussed by means of four-dimensional mathematical formalism. First of
all, the three-dimensional form of Maxwell equations are considered:

—~—

rotH=J+
ot
_ B
ot Ee= ——
&t
divD=p
divB=0

D=c¢E: B=uyH: J=0E; e=¢4s, ;

(the inserted electric field intensity E; being zero.)
The four-dimensional form of the equations is:

divF=pusS
divP=0
S=cFu
.
=—j [—F*,
Vi
where
0 - B.  —B,
—B. 0 B,
F=
B — B, 0

JIcE,  jicE,  jJcE.

)
S= ,
jep

(F.1)
(F.2)
(F.3)
(F.4)
O E=Hold, (F.5)
(F.6)
(F.7)
(F.8)
(F.9)
_j/cE, |
—sz ZE} 1 (F.10)
0o |
(F.11)
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% is the velocity vector of charges, ¢ is light velocity.
Let us introduce the four-dimensional vector potential:

A
L)
lco

(F.12)

(F.13)

where A is the three-dimensional vector potential and ¢ is the scalar potential.

Introducing

the four-dimensional differential equation
A= —us,

and the Lorentz condition

divA4A=0

is derived.
If current density is not known, using Eq. (F.8) we gat:

OA4A—puocAvV - u=0,

AT V=cpdA u.

(F.14)

B
et
=J

3

e
o,
0

The most important definitions and operations relating to four-

dimensional vectors and matrices are summarized in the following.

In an alternating or antimetric matrix. the elements symmetrically

arranged with respect to the main diagonal differ only by sign:

Vai=—V,

ki

Hence,

V=0

A matrix V¥ can be assigned to an alternating tensor ¥ with elements:

I/‘Z:! = I’

mn®
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Here k, I, m, n represent the even permutations of the numbers 1, 2, 3, 4. V*
constructed in this way is the dual matrix of matrix V.
Thus if

Vi 0 Wi Vmil
13 —V23 O V34 1
t
i

r 0 Via Vis V1ﬂ
l -V Vi =V O

_V"3 Vl3 _—Vl?. 0

then the dual matrix is:
— . ]
0 Ve — Vo Va3 |
| ) ]
Vé o L=V 0 Vie —Vis |
Vo =V O Vi
{
B

The four-dimensional Hamilton’s operator is given by

e

[

a

P

1

(5]

QD
Be
o

(&)

Q)
e
W

in5)

(V™ denotes the transpose of V).
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The operations on the operators are controlied by the formal rules of
matrix algebra:

grad§=VS {S is scalar)
divV=V  V=V"V
otV=vy —vy-~
grad V=¥V~
dvT=TV=[V"T" ]~
divgradS=V~ VS=r7Js
divgrad V=VV~ V=V

diviot V=[VV" —VV V=V ¥ V-VV V=graddiv¥-¥[].

rotV=—divi¥= —%¥V (if ¥V is an alternating matrix).
The derivative of a scalar by a column matrix is:
" es

éX, o

S X,

¢S cX, X,

= , where X= |

cX és C Xy

cS
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The derivative of a scalar by a matrix is:

S ¢S S
60X, X, cX,yy
oS oS
as " -
PR 0X3, 0X oy
cX
) ¢S
0Xyy X,
[ — —_
where
Xy X Xy
. X-Zl X24
X=
X41 X44
Summary

Functionals used in variational calculus of electrodynamics by means of the least action
principle are formulated. The four dimensional mathematical formalism of the relativistic
electrodynamics is used for.discussion. Functionals for electrostatics, magnetostatics, stationary
electric and magnetic fields, quasistationary electromagnetic fields and electromagnetic wave
phenomena are derived from the general principle of least action.
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