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1. Introduction 

Several attempts have been made to develop a generalized theory of 
asymmetrical induction machines where also the ·winding axes have been 
assumed to be asymmetrically displaced [1, 2]. BROWN and JHA [1] have 
shown that the behaviour of a machine ",ith asymmetrically displaced stator 
",indings cannot be analysed by the conventional symmetrical component 
theory, except where the winding displacement angle is a sub multiple of 2n 
electrical radians. They suggested a general rotating field theory. It can be 
shown, however, that by the application of a new general modified symmetrical 
component theory the behaviour of mjn-phase induction motors can be dis­
cussed even for a ,dnding displacement angle other than 2n/m (m and n being 
the phase numbers of stator and rotor "'indings, respectively) or not a sub­
multiple of 2n electrical radians. In case of two-phase induction machines 
VASKE [3] and VAS [4] used two-phase symmetrical components for the 
analysis of two-phase vl'inding displaced by angles other then n/2 radians. 
However, the transformation introduced - but not derived mathematically 
or physically - by VASKE does not lead exactly to the well-known. right 
angle two-phase symmetrical components. In this paper an a-priori mathe­
matical deduction ",ill be presented for modified n-phase symmetrical com­
ponent transformation, also physical derivation ",ill be shown. 

It must be pointed out that the general voltage equations derived by 
using the general rotating field theory are analogue to those derived by the 
new modified symmetrical component theory, however, the forward field 
operators [1, 2] are applied on the phase quantities and the resulting symmetri­
cal components ",ill be the new generalized symmetrical components. 

In the follo,vings, derivation of the new, modified m-phase symmetrical 
component transformation ",ill be presented. 

1* 
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2. Derivation of modified m-phase symmetrical component 
transformation 

The analysis of the m-phase unbalanced system is based on the fact 
that a single angle asymmetrical system of m-phase vector quantities is equiv­
alent to m-separate angle-asymmetrical systems of order k = 1,2, ... , m. 
The effect of the asymmetrical system is the synthesis of the separate effects 
of the m-(modified) systems. Be the phase currents of the angle asymmetrical 
m-phase system la' I b, ... , Im' Resolution of these to m generalized symmetri­
cal components leads to 

la = Ial + Ia2 + ... lam 

Ib = Ibl + Ib2 + ... Ibm (I) 

where Ijk is the kth modified symmetrical component of phase j. Figure I 
shows the m-phase system, where the displacement angle between phase i 
and phase a is lXai and the angle between phases i and i + I is Yi(i+U' 

From Fig. I it follows that Yi(i+l) = lXa(i+1) - lXa(i)' (2). 
Figure 2 shows the kth symmetrical component currents of phases i, 

i + I and i + 2 (li(k)' Ii+l(k)' I i+2(k»)' 

Fig. 1. Angle asymmetrical m-phase system 

Fig. 2. The kth symmetrical components of i, i + 1 and i + 2 phases, respectively 
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The kth (modified) symmetrical component currents are in a time delay by 
si(k) to the kth component current. It follows that the kth component current 
of phase (i + 1) in Eq. (1) expressed in terms of'the kth component current of 
phase i -will be: 

(3) 

Due to angle asymmetry, values of siCk) differ from each other for a fixed k. 
If no -winding displacement exists, in Eq. (3) exp [-jk2n/m] stands, as the 
vectors of the kth system are shifted by an angle -k2n/m from each other 
in a direction opposite to the revolving of the symmetrical system. Negative 
direction was assumed, as in the positive sequence system if the system rotates 
in the positive direction, the phases "\vill have an (sequential) order of a, b, 
... m" 

The values of SiCk) expressed in terms of Yi(i+1) are: 

where the additive part Lls i is due to angle asymmetry: 

-;;; - Yi(Hl) ! 
2n 

Llsi = 
. -2n I l---;;;- T Yi(Hl) 

k..".:-m-1 

k #1 

(4) 

(5) 

If a symmetrical 3-phase system is assumed m = 3, Yl(2) = Y2(3) = Y3(1) = 1200
, 

the kth component of phases a, b, care 

[ 
. 2n· 2 )] lb(l) = la(l) exp - ] 3 - 120 = a 2l Q(1) 

l b(2) = l Q(2) exp [ - j (2~'T + 120)] = ala(2) 

where a = exp (j 1200
), so, considering Eq. (1): 

(6) 



6 P. VAS 

From Eq. (3) it is obvious that for an m-phase angle asymmetrical system 
the loth-phase current expressed in terms of the modified symmetrical com­
ponents is: 

(7) 

It follows that all the phase currents expressed in terms of the modified sym­
metrical components of phase a will be 

(8) 
where 

(t denotes transpose) (8a) 
and 

(8b) 

The generalized symmetrical component transformation is: 

r --, 1 1 1 
c~. e-j.d'l £'!n2e- jLJE2 c~me-j.d', 

C3m = . J (So) 
m-I m-I m-I 

-j >"' .dei -j :E .d'l -} Y' .dei 

L (c~l)m-l.e t=1 (c~2)m-l.e 1 c~me '1 

(asterisk denotes the conjugate), where C~, = exp [2;rk/m]. The symmetrical 
components are obtained from the phase variables hy inverse transformation. 
In a system "where all the v_th harmonics are present in mmJ, Eq. (8c) can be 
regarded as the transformation holding in case of fundamental harmonic 
components, the transformation for the v_th harmonic is, however, similar 
to that of Eq. (8c). 

It is easy to show that for a m-phase system without angle-asymmetry: 

11 
1 

:1 
c-l c-;;,(m-l) 

[C3m]symm = : m (9) 
c-(m-2) c-(m-2)(m -1) 

m m 

L c-;;,(m-l) c-;;,(m-l)(m-l) 1.....1 

in agreement with that known from the general electrical machine theory 
(5, 7). Transformation matrix (Sc) can he directly, a-priori derived mathemati­
cally by calculating the modal-matrix of an impedance matrix which can be 



_1fODIFIED SYMMETRICAL COMPONENT THEORY 7 

expressed as a power series of a (mxm) primitive cyclic matrix, where the 
members of the series are multiplied by ko = 1, kl = exp [-j,1e1], k2 = 

= exp [-j(,1e1 ,1e2)] • •• , km = exp [ _ j ~l ,1ei ]' 

Therefore, the eigenvalues are: 

m-I 
-j '" .de-

1 C I C ei e-jL1'l I C ei (m-I) e i' . 
I"i = 0 I I m I • " m-I m (10) 

(co' Cl' ••• Cm- I are the elements of the symmetrical system's impedance 
matrix). 

The eigenvectors (generalized symmetrical components) are: 

i = 0,1, ... m-I (H) 

where 
m-I 

- j '" .d.-
Sim = e;;:(m-l) • e 1 . (Ha) 

(conjugate is present to get the usual form). 
The m eigenvectors are linearly independent as the determinant of 

matrix C3m consisting of the eigenvectors 

is non-zero (det Cam 0). Therefore, the system of Si eigenvectors can be 
considered as the base-vectors of a m-dimensional reference frame, and all 
m-dimensional x can be resolved into components parallel to the eigenvectors 

(13 

where the co-ordinates of vector x in the ne,',- reference frame are the symmetrical 
components: 

, [ .f .f] 
X = XO"" X m- I t. (14) 

Using Eqs (11), (Ha) and (12), the generalized symmetrical component trans­
formation is: 

1 1 
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Transformation given by Eq. (15) is the same as that in Eq. (Sc), only 
now the last and first rows have been exchanged, as in Eq. (14) the zero­
sequence components stand in the first row of x'. General transformation is 
easy to reduce for the more practical two and three phases as shown in the 
follo"wing. 

2.1 Three-phase modified symmetrical component transformation 

From Eq. (15) the generalized three-phase symmetrical component 
transformation is directly derived, and 

rl 

T= 
r (4n )] expl- j 3 - 1'1(2) x 

[ . (sn )] L exp -] 3 - 1'1(2) - 1'2(3) 

1 1 

exp [ - j (83n - 1'1(2»)] 
(16) 

exp [ - j (4; - 1'1(2) - 1'2(3») J [ .(16n )] exp -] -3- - 1'1(2) - 1'2(3) 

holds. This can be further simplified by considering 1'1(2) + 1'2(3) + 1'3(1) = 3600
• 

From Eq. (16) in case of a symmetrical three-phase machine, the well-known 
[5] symmetrical component transformation is derived. 

2.2 Two-phase modified symmetrical component transformation 

As the generally used two-phase system can be considered as a semi­
four-phase system, several considerations must be made in deriving the gener­
alized two-phase symmetrical component transformation from Eq. (15). 

Let the displacement angle between the main and auxiliary phases 
(designated by 1 and 2) be Lb:. As the system is a semi-four-phase system, 
the displacement of the 2-nd and 3-rd "winding is (180 - Lice). If b-winding 
(main-winding) is designated by 1, and a-,\inding (auxiliary ,~inding) by 2, 
the inspection equations for the currents are easy to write: 

(17) 
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Considering Eqs (17) and (15) as well as the displacement angles discussed 
in the foregoing, the k = 1, 2, 3, 4 symmetrical components of phases 2,3 
and 4 can be expressed in terms of the symmetrical components of phase 1. 

k=l 12(1) = l 1(1)e - jC"-Ll~); 13(1) = 11(1); 14(1) = - 12(1) 

k=2 
,(3:. ) -J -;;- -Ll~ 

12(2) = l 1(2 )e - '; 13(2) = 11(2); 14(2) = 12(2) 

k=3 12(3) = 11(3)ejC:t-Ll:<); 13(3) = -11(3); 14(3) = - 12(3) (18) 

k=4 
-j(-~-Ll~) 

12(4) = 11(4)e 2 ; 13\'1) = l 1(4); 14(4) = 12(4)' 

As defined in Eq. (1) the first subscript refers to the phase, and the second 
to the order of symmetrical components. It follows that phase currents "b" 
and "a" are: 

and by considering the inspection equations (17): 

Ib = -(13(1) + 13(2) + 13(3) + 13(4» 

la = -(14(1) + 1,1(2) + 14(3) + 14(4», 

From Eqs (19) and (20): 

and from Eq. (19), by considering Eq. (21): 

la = 12(1) + 12(3) = l a(1) + l a(2) 

(19) 

(20) 

(21) 

Ib = 11(1) + l 1(3) = I b(l) + I b(2) (22) 

where l acl), l a(2), I bCl ), I b(2) are the symmetrical components of phases "a" 
and "b". Considering Eq. (19), if k = 1, in Eq. (22): 

l a(1) = I b(1) exp [-j(n - Llo::)] 

I a(2) = I b(2) exp [j( n - LlCG)] (23) 

From Eqs (22) and (23) the symmetrical components of phases "a" and "b" 
expressed in terms of the symmetrical components of phase currents "a" and 
"b": 

I _ . (Ia exp [jLlCG]) + Ib . 
aCI) - -} 2' A ' SlnLJCG 

I _. (Ia exp [-jLlCG]) + Ib 
a(2) -} 2 . A 

SlnLJCG 

1 _. (lb exp [-jLlCG]) + le 
bel) -} 2 . A 

SlnLJCG 

1 _ .(lb exp [jLlCG]) + la 
b2 - -} 2 . A 

SInLJCG 
(24) 
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Eq. (24) leads to 

l' = T-II (25) 
where 

and the inverse of the new modified symmetrical transformation is: 

[ 

-j exp [jLlo.:] 
2 sinJo.: 

T-l = 
j exp [-jLlo.:] 

2 sinLlo.: 

-j l 2 Si;Llo.: 

2 sinLlo.: --1 

(16) 

so 

T = [1 
exp (-jLlo.:] 

(27) 

in agreement "\vith the transformation presented in [4]. 
The transformations for the v-th harmonic are similar, only that Llo.: 

has to be replaced by J!Llo.: in the transformations. Therefore 

T = [1 
v exp [-jJ!Llo.:] :xP [jJ!Llo.:]] 

(28) 

and 
r 1 i 

,m1Vd< J 4 1 = 
1 e-j;-~~ 2 

1 _L 
sin 11'LlC%: L1 ej"~~ 2 

The derived two-phase tTansformations are in agreement ·with those of STEPli'iA 

[6], who has, however, not given a general treatment of the derivation of 
m-phase modified symmetrical component transformations. 

3. Compatihility "With earlier publications 

In [4] it was shown how the new transformation can be applied for cal­
culating two-phase induction machines where the stator ,vindings were not in 
strict quadrature. It is not the purpose of present paper to derive general 
equations for m-n-phase machines 'vith stator and/or rotor vvinding asymme­
tries using the derived general transformation. 



MODIFIED SYMMETRICAL COMPONENT THEORY 11 

This ,dll be discussed in a following paper. It can be shown, however, 
to exist a close relationship between the generalized symmetrical component 
equations and those obtained by the theory of BROWN and VAS [8]. The posi­
tive sequence field operator applied on the phase quantities will lead to the 
new modified symmetrical components derived above. Therefore, the version 
of the voltage equation by BROWN and JHA [1] - holding for two-phase ma­
chines - extended to m-phase winding asymmetrical machines gives extended 
rotating field equations which are the most general rotating field equations 
and include the newly derived symmetrical components, too. The general 
equation in terms of the rotating field components for a machine with m-phase 
on the stator is [8], [9], [10]: 

where 

U = zl + ~FvZ"fI 
" 

U = [Ua, Ub, ... U"zJt; I = [la' lb' ... lm]t ; 

Z = dIag (za' Zb, ••• zm). 

The parameters are the same as defined in [2], and 

(29) 

holds for the forward fields operators (F 0' ••• Fm-I) but So, ... Sm-l are the 
newly defined isequence operators. 

Subsequently, at a later paper, equations governing the behaviour of 
general asymmetrical induction machines ,\ill be given by using the new, 
modified symmetrical component transformations. AnaI-ytical treatment ,~ill 

also be given for a single-phase motor, with asymmetrical arrangement of the 
stator winding. Equations ,~ill he compared to those derived by generalized 
F.Otating field theory. 

Summary 

New, modified symmetrical component transformation has been derived a-priori on 
a fully mathematical basis, giving also a physical interpretation. Using this transformation, 
m-phase machines with general winding displacement angles can be studied. It is pointed out 
that application of such a theory will lead to one with close relationship to that using the general 
revolving field theory. It was proved that by adequate definition of sequence operators, 
the general rotating field theory involves even the generalized symmetrical component theory. 
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