MODIFIED SYMMETRICAL COMPONENT THEORY AND ITS
APPLICATION IN THE THEORY OF ASYMMETRICAL
INDUCTION MOTORS

By
P. Vas

Department of Electric Machines, Technical University, Budapest
Received December 7, 1977
Presented by Prof. Dr. Gy. RETTER

1. Intreduction

Several attempts have been made to develop a generalized theory of
asymmetrical induction machines where also the winding axes have heen
assumed to be asymmetrically displaced [1, 2]. BrRown and Jra [1] have
shown that the behaviour of a machine with asymmetrically displaced stator
windings cannot be analysed by the conventional symmetrical component
theory, except where the winding displacement angle is a submultiple of 2z
electrical radians. They suggested a general rotating field theory. It can be
shown, however, that by the application of a new general modified symmetrical
component theory the behaviour of m/n-phase induction motors can be dis-
cussed even for a winding displacement angle other than 27/m (m and n being
the phase numbers of stator and rotor windings, respectively) or not a sub-
multiple of 2z electrical radians. In case of two-phase induction machines
Vaske [3] and Vas [4] used two-phase symmetrical components for the
analysis of iwo-phase winding displaced by angles other then =/2 radians,
However, the transformation introduced — but not derived mathematically
or physically — by Vaske does not lead exactly to the well-known. right
angle two-phase symmetrical components. In this paper an a-priori mathe-
matical deduction will be presented for modified n-phase symmetrical com-
ponent transformation, also physical derivation will be shown.

It must he pointed out that the general voltage equations derived by
using the general rotating field theory are analogue to those derived by the
new modified symmetrical component theory, however, the forward field
operators [1, 2] are applied on the phase quantities and the resulting symmetri-
cal components will be the new generalized symmetrical components.

In the followings, derivation of the new, modified m-phase symmetrical
component transformation will be presented.
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2. Derivation of medified m-phase symmetrical component
transformation

The analysis of the m-phase unbalanced system is based on the fact
that a single angle asymmetrical system of m-phase vector quantities is equiv-
alent to m-separate angle-asymmetrical systems of order k= 1,2,..., m.
The effect of the asymmetrical system is the synthesis of the separate effects
of the m-(modified) systems. Be the phase currents of the angle asymmetrical
m-phase system I, I, ..., I.. Resolution of these to m generalized symmetri-
cal components leads to

=Dy + I+ ... I
Iy = Ly + Iy + - -« Iy @
I,= Iml“:" Ip+ oo I

where I, is the E™ modified symmetrical component of phase j. Figure 1
shows the m-phase system, where the displacement angle between phase i
and phase a is x,; and the angle between phases ¢ and ¢ + 1is y;4q).
From Fig. 1 it follows that p;;11) = @+ — Zaw)s (2).
Figure 2 shows. the k™ symmetrical component currents of phases i,
i+ Land i+ 2 (Liggs Livaws Livatw)-

A

ligk)

=ik
(k)

lis20

Fig. 1. Angle asymmetrical m-phase system

Fig. 2. The k* symmetrical components of i,i - 1 and i + 2 phases, respectively
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The k™ (modified) symmetrical component currents are in a time delay by
£ to the k™ component current. It follows that the E™ component current
of phase (i - 1) in Eq. (1) expressed interms of the E™ component current of
phase ¢ will be:

Iivagy + Tigy exp (—jew) - (3)

Due to angle asymmetry, values of ¢, differ from each other for a fixed %.

If no winding displacement exists, in Eq. (3) exp [—jk2a/m] stands, as the

vectors of the k™ system are shifted by an angle —k2m/m from each other

in a direction opposite to the revolving of the symmetrical system. Negative

direction was assumed, as in the positive sequence system if the system rotates

in the positive direction, the phases will have an (sequential) order of a, b,
The values of &,y expressed in terms of y,;.) are:

Eitry = ASZ' -+ an/'m (45)
where the additive part Ade; is due to angle asymmetry:

2w

— YiGi+1) E=m—1

Asi% . (5)
l

If a symmetrical 3-phase system is assumed m = 3, yy) = Yp3) = Yan=120°,
the k™ component of phases a, b, ¢ are

+ yigey k=1

27 -2

Ib(l) = Ia(l) exp [—j ( — 120]] = aZIa(l)

Ly = el Io=alyey; I = Iy
Iy= @y Loy = alieyy Loy = Iy

where a = exp (j 120°), so, considering Eq. (1):

I, 1 1 1971,
I,|=] a® a 1 { I, | (6)
1411,
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From Eq. (3) it is obvious thatfor an m-phase angle asymmetrical system
the l-th-phase current expressed in terms of the modified symmetrical com-
ponents is:

Il = Il(l) + 11;2) "']— . II(m) = Iale 1 + Iale 1 ‘+‘ “ e (7)

It follows that all the phase currents expressed in terms of the modified sym-
metrical components of phase a will be

I = Gy Loy (8)
where
I=[I,I,... 1,] (t denotes transpose) (8a)
and
Ty = [ty Taeoys -+ - Ia(m)]t (8D)

The generalized symmetrical component transformation is:

o1 1 R | 1
* —jde 22 ,—fdes *m,—jde
& - €741 epreIde cen. EpTeTiAn
Cym = (80)
'mf’ld .m\;l .mtl‘1
. - 2 4 . -1 X 4 i A=
L (gg)ym—t.e i=1 (ef2ym—1.e 1 eime 1

(asterisk denotes the conjugate), where ¢ = exp [27k/m]. The symmetrical
components are obtained from the phase variables by inverse transformation.
In a system where all the »-*" harmonics are present in mmf, Eq. (8¢) can be
regarded as the transformation holding in case of fundamental harmonic
components, the transformation for the p-t" harmonic is, however, similar
to that of Eq. (8¢).

It is easy to show that for a m-phase system without angle-asymmetry:

1 1
et cee g 1
[Camloymm = | * ?)
amisymm O e A I |
| ccomn | gomenmen 1]

in agreement with that known from the general electrical machine theory
(5, 7). Transformation matrix (8c) can be directly, a-priori derived mathemati-
cally by caleulating the modal-matrix of an impedance matrix which can he
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expressed as a power series of a (mxm) primitive cyclic matrix, where the
members of the series are multiplied by k=1, k) = exp [—jde ], ky =

m-—1
= exp [—j(de, + de&)] .. . km = exp [_]21 Ae,].

Therefore, the eigenvalues are:

m—1
. . — 3 4
A= ¢y + cqele L e jefmDe T (10)
(¢o: €35+ ++ €m_; are the elements of the symmetrical system’s impedance
matrix).
The eigenvectors (generalized symmetrical components) are:
g M P
siZ[Sil,sig,...S,—m] i:O,l,...m-—'l (11)
where
m—1
. —] X745
Sim = em™D v 3 (11a)

(conjugate is present to get the usunal form).
The m eigenvectors are linearly independent as the determinant of
matrix C;,;, consisting of the eigenvectors

C?m = [Sov 510 Sas « v Syl (12)

is non-zero (det €y, = 0). Therefore, the system of s; eigenvectors can be
considered as the base-vectors of a m-dimensional reference frame, and all
m-dimensional x can be resolved into components parallel to the eigenvectors

x = Cypn' (13

where the co-ordinates of vector x in the new reference frame are the symmetrical
components:
. " P . LA Wi -7 4
X = [ ... Tpnls 2 = [ag .o X q]s (14)

Using Egs (11), (11a) and (12), the generalized symmetrical component trans-
formation is:

1 1 R | ~1
Sn#;me —jdey 8;:;116 —jdey . 8';;"_18 —fdey
CBm =
. m m—1
—] ‘E' Asz A —J 2 Aai
Fmym—1 #1\ym—1,—jde Fm—1\m—-1
(eFmym—le 1 (efhym-te—l4s . (gfmhm=le 1|
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Transformation given by Eq. (15) is the same as that in Eq. (8¢), only
now the last and first rows have been exchanged, as in Eq. (14) the zero-
sequence components stand in the first row of x’. General transformation is

easy to reduce for the more practical two and three phases as shown in the
following.

2.1 Three-phase modified symmetrical component transformation

From Eq. (15) the generalized three-phase symmetrical component
transformation is directly derived, and

-1
o]
T— P[ e 18 o

.(8z

expl{ —7j ("‘ ™ Yue) Y

- 3

1 1 -1

x| 7[2 ) oxp[~1[2 = ]|

v Pl 7 3 Y1) P -J 3 Y12 (16)

4z .(léx
eXpi—1J —3— — Yu2) — Y2) expi—J —:9,_ —71@ " Ya3) i

holds. This can be further simplified by considering v,y -+ ¥a@) -+ Vs = 360°.
From Egq. (16) in case of a symmetrical three-phase machine, the well-known
[5] symmetrical component transformation is derived.

2.2 Two-phase modified symmeirical component transformation

As the generally used two-phase system can be considered as a semi-
four-phase sysiem, several considerations must be made in deriving the gener-
alized two-phase symmetrical component transformation from Eq. (15).

Let the displacement angle between the main and auxiliary phases
(designated by 1 and 2) be dx. As the system is a semi-four-phase system,
the displacement of the 2-nd and 3-rd winding is (180 — Ax). If b-winding
(main-winding) is designated by 1, and a-winding (auxiliary winding) by 2,
the inspection equations for the currents are easy to write:

I,=1I=—I,. 17)
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Considering Eqs (17) and (15) as well as the displacement angles discussed
in the foregoing, the k=1, 2, 3,4 symmetrical components of phases 2,3
and 4 can be expressed in terms of the symmetrical components of phase 1.

E=1 Iy = Ige 4 Iy = Iy Ly = — Iy,

—J (—3"—1 —A:x»
k=2 Lg=ILge ‘\* 50 Iy = Ly Loy = by

=3 Iy = e/ Ly = —Iia; L= —Iyy (18)

-7 /;i — 4=
E=4 Iy= 11(4)9 (“ >? Iy = Iys Iy = 12(4)'

As defined in Eq. (1) the first subscript refers 1o the phase, and the second
to the order of symmetrical components. It follows that phase currents “b”
and “a’ are:

I, = Ligy + Liey + Lugy + Iy

I, = Ly + Loy + Io + Iog (19)
and by considering the inspection equations (17):
Ib = "‘(Is(n -+ Ia(z) + 13(3) + 13(4))
Ia = —(14(1) + 1-1(2) + 4(3) -+ 4‘4))- (20)
From Eqs (19) and (20):
Ly = Iy = Iyy = Lyyy = 0 (21)
and from Eq. (19), by considering Eq. (21):
Ia = 12(1) =+ 12(3) - Ia(l) + Ia(z)
Iy = Ly + Iy = Ly + Iny (22)

where Iy, Ia@): Toqys In@y are the symmetrical components of phases “a’
and “‘b”. Considering Eq. (19), if £ = 1, in Eq. (22):

Iy = Ly exp [—j(m — da)]
Ia(‘?.) = Ib(?.) exp [j(z — dx)] (23)

From Egs (22) and (23) the symmetrical components of phases “a” and *b”
expressed in terms of the symmetrical components of phase currents “e” and

c:bsa,

AL exp [jdx]) + T AL exp [—jdx]) + I
T = —J (L exp U DEELP Ly=j Unoxp [ - DEZE
2 sinAdx 2 sinAde
Ty exp [—jdx]) + I Alyexp [jAx]) + I
Ib(l) =j ( » €XP [ ] “]) ¢ : Ibz — _]( » €Xp [] “]) a (24)

2 sin e 2 sinAx
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Eq. (24) leads to
I' =7T-1 (25)
where

I' = [Ia(l)v Ia(z)]t i I =[I, L]

and the inverse of the new modified symmetrical transformation is:

—j exp [jd4] —j
2 sin e 2 sinAa
T-= y ) (16)
j exp [—jda] J
2 sindx 2 sinde i
S0
= b ] 1)
exp (—jdo] exp [jd«]

in agreement with the transformation presented in [4].
The transformations for the y-th harmonic are similar, only that Ax
has to be replaced by v4x in the transformations. Therefore

- | -
exp [—jrdax] exp [jrde] |
and
r 1 j 1 -
1 1 — g—/rds -2 sin vdx
' 1 i1
L1 — e 2 sin pdo

The derived two-phase transformations are in agreement with those of STEPINA
[6]. who has, however, not given a general treatment of the derivation of
m-phase modified symmetrical component transformations.

3. Compatibility with earlier publications

In [4] it was shown how the new transformation can be applied for cal-
culating two-phase induction machines where the stator windings were not in
strict quadrature. It is not the purpose of present paper to derive general
equations for m—n-phase machines with stator and/or rotor winding asymme-
tries using the derived general transformation.



MODIFIED SYMMETRICAL COMPONENT THEORY 11

This will be discussed in a following paper. It can beshown,however,
to exist a close relationship between the generalized symmetrical component
equations and those obtained by the theory of BRowN and Vas [8]. The posi-
tive sequence field operator applied on the phase quantities will lead to the
new modified symmetrical components derived above. Therefore, the version
of the voltage equation by Browx and Jaa [1] — holding for two-phase ma-
chines — extended to m-phase winding asymmetrical machines gives extended
rotating field equations which are the most general rotating field equations
and include the newly derived symmetrical components, too. The general
equation in terms of the rotating field components for a machine with m-phase
on the stator is [8], [9], [10]:

U=zl 4+ SFZ]+ IFZ,] (29)

where

U= [Uy Up...Unly: I=[IpTp... 1]

3

z = diag (34 s + + + Fm) -

The parameters are the same as defined in [2], and

Lp s,

m

1
Fm-—l = Sm——l
m

holds for the forward fields operators (F,, ... F,_,) but §;,...8,_, are the
newly definedisequence operators. 4

Subsequently, at a later paper. equations governing the behaviour of
general asymmetrical induction machines will be given by using the new,
modified symmetrical component transformations. Analytical treatment will
also be given for a single-phase motor, with asymmetrical arrangement of the
stator winding. Equations will be compared to those derived by generalized
rotating field theory.

Summary

New, modified symmetrical component transformation has been derived a-priori on
a fully mathematical basis, giving also a physical interpretation. Using this transformation,
m-phase machines with general winding displacement angles can be studied. It is pointed out
that application of such a theory will lead to one with close relationship to that using the general
revolving field theory. It was proved that by adequate definition of sequence operators,
the general rotating field theory involves even the generalized symmetrical component theory.
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