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1. It is a very important and not yet satisfactorily solved problem to 
classify a process into a finite set of subclasses on the basis of the time-evolution 
of some observable parameter.s. The selected finite set of subclasses represents 
either some essential differences, hetween the physical system components of 
the process: or some essential variation in the structure of interconnections, 
between the system components. 

The classification has to be based on the functional description of the 
time-evolution of the observable parameters. A theoretically complete treat­
ment of this problem can he established as follows: let us construct a complete 
metric functional space, containing all the possible evolution functions of the 
measured parameters, and the probability measures over this space, character­
izing the distribution of the evolution functions of the cumulated class as well 
as the one of the individual subclasses. HO"wever, in this case a functional space 
of infinite dimensional must he worked in, where there is no effective numerical 

method. Even therefore we propose to transpose the entire analysis into a finite 
dimensional space, "where the possihle evolution functions may he characterized 
by a finite set of highly relevant parameters. It is ,veIl known that this prohlem 
can he solved by the help of projecting the evolution functions onto a prede­
fined finite dimensional space. The most effective choice of the latter is the 
space, spanned hy the orthonormal set of functions, defined by the Karhunen­
Loeve expansion. However, this set is not easy to manage numerically, moreover 
it cannot he done if the probahility degree is not known at least up to the sec­
ond moments. In general we have no preliminary knowledge of it. Even there­

fore the usual practice in this case is hased on a finite dimensional Hilbert-space, 
spanned hy an optionally chosen orthonormal system, hoping that the projec­
tion of the evolution functions onto this space yet contains enough information 
to assure an efficient partition into the set of suhclasses. 

In the light of the ahove heuristics, any orthonormal system is competi­
tive, and even therefore ,',,-e may choose the one needing the least numerical 
effort. It will he demonstrated in the follo\\ing that this is assured by the 
Walsh-system. 
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2. The orthonormal Walsh-system [11 is defined over (0,1) as follows: 

Wo(t) = 1, 

w2"(t) = sign (sin 2n +1tn), 

j=j,(k) 

0::;::: t ::;::: 1; 

° s:: t :::;;: 1, n = 0, 1, 2 ... 

wk(t) = If w2;(t), if k = 2j
, + ... + 2j

" ° < t < 1; 
j=Nk) 

k = 0, 1, 2, ... ; 0 <jl < ... < j'].. 

This system is known [2] to be complete in L2 (0,1), to have, however, 
no good pointwise convergence properties. But in the case where only a well 
defined part seqnence of the Walsh-expansion is considered, the pointwise 
convergence behaviour will be extremely good. 

Theorem 1. LetJ(t) E C[O, 1], and denote wk(t;f) the k-th cut of the Walsh­
expansion ofJ(t): 

1 

w,,(t,j) = J Cf!jw/t); Cf!j = f wiz) . J(z)dz. 
o 

Then W2"-1(t,J) converges uniformly toJin (0, 1). 
Proof: the convergence properties of the expansion are determined by 

the kernel: 
le 

W,,(t, z) = ~ wj(t) . w/z). 
j=O 

Let k be an integer between 2n-l and 2n, i.e. 2n-l <; k < 2n. Then, by 
the definition of wj(t), the kernel is an integer constant on each cell Cn(l, m) = 
- (I - 1) . ')-n+l < t < I • 2- 11+1 / .,. .~ m . ')-n+l. I m - 1 ') 3 We 
-,jJ --........."'" -.......... . .- ." -, -, ,... • 

shall prove by induction that if k = 2" 1, then 

Wzn_l(t, z) = {2n.' on CCn«II, 1»: 1= 1,2,3, 
0, on n ,m; I c-~ m 

This assertion is evidently true for n = ° and n = 1. Let us suppose that our 
assertion is true for n = N, and consider the case n = N + 1. Now 

2 .. V+l_1 

W 29+1_1(t, z) = W2B-l(t, z) + :E w/t). wiz). 
j=2N 

In the diagonal cells CN +1(l, l) the factors wit) and wiz) have the same sign 
for all j = 2N, 2N + 1, ... , 2N+1 - 1. Therefore by the indnction hypothesis 
we have here 
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For any off-diagonal cell CN+1(l, m) with Il - mJ > 1 and for any j, 2N < j <: 
<: 2N+l - 1 we have 

p,U) 

wj(t) = W2N(t)· If W 2P,W(t) . . W"Pt(f)(t), 
p=p.(j) 

p,U) 

Wj(z) = W2N(Z)· 11 W 2P1(i>(Z) ••••• W2l'1(f)(Z), 
P=Pl(j) 

with 0 « Pl(j) < ... < P2(j) < N + 1. Therefore 

hecause the terms in the sum are the same as inW2N _ 1(t, z), surely each comhi­
nation of the exponents occurs exactly once in both. But (I - m) > 1 assures 

that (t, z) is lying in some off-diagonal cell C N{[ ; ]. [ ;]) with respect to N, 

and therefore 

Finally for (l - m) = 1, we have either I = (m - 1) or I = m + 1. In the for­

mer case, (t, z) is lying either in an off-diagonal cellCN ([ ~ 1, [; ]) - namelyif 

and only if I = 28 - or in a diagonal cell, namely if and only if I = 28 + 1. 
In the case where l = 28, 

W2N+1_ l (t, z) = 0 . [1 + (-1)] = 0 ·0= 0, 

however, for 1 = 28 
to N: 

1, hence for (t, z) is lying in a diagonal cell with respect 

In the letter case, for I = m + 1, and for 1 = 28, (t, -r) is lying in a diagonal 
cell with respect to N, and therefore 
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and othemise I = m + 1, 1= 2s + 1, the point (t, z) is lying in an off-diagonal 
cell ,dth respect to lV, hence 

With the above we have fully proven the induction hypothesis over the kernel. 
Our theorem is now easy to prove. If namely, f(t) E C[O, 1] is valid, then 

we can give each fixed E > 0 bound .1(8) for the displacement I t~ - tl I ,vith 

In addition, because of orthonormality, we have for each fixed x, ,dth 
cp(t) =f(x) the relation 

1 

f(x) = S cp(T')W2n-l(X, T) dT. 
o 

With the above: 

If(x) - W 2"-1(X;f)1 = I SI cp( T) WZ"-l(x, T) dT - Slf(T) W2n-l(X, T) dT 1= 
)0 0 

I 1 ' ,I 

= IS [cp(T)-f(T)] WZ"-l(X, T) dT ! <:.\ Icp(T) - f(T) I W~"_l(X, T) dT = 
I 0 I 0 

x+:2-'~ 

J iq;(-r)-f(T)i 
x_2-n 

x--;2-n 

WZ"-l(X, T) dT + J i cp(T) - f(T) I W 2n-l(X, T) dT + 
o 

1 

+ J Jcp(T)-f(T)iW zn_l(X,T)dT< 8' 2-n • 211 + C· 0= 8, 
x+2-n 

if 2-11 < .1(8), which proves our assertion, hecause 8 is arhitrarily small. 
Let us remark that the proof demonstrates, with respect to the speed of 

convergency, that I f(t) - Wzn-l(t; f) I <: co(2-n; f), where co denotes the 
modulus of continuity of f. 

3. Concerning the fast version of the Walsh expansion, i.e., the fast 
calculation of the value of such an expansion, let us first consider the expansion 

2n_l 

f(t) = ~ cpjw/t) , 
j=O 
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which defines a piece,\ise constant step function, "\\ith 

and the expansion coefficient 

I 

crj = J f(t) . w/t) dt 
o 

Theorem 2. Both f(t) and Cfj are linear combinations of the ep" and the 
f(t,,) , resp., with coefficients : 1. The coefficient of Cfj in the evaluation of 
f(t,J is the same as that of f(tj ) in the evaluation of Cf", disregarding the factor 
2-n+l. 

Proof: The assertion ahout the coefficients is evident, hecause i W/tk) : = 
== I, for all j and k. We must only demonstrate that the signs are the same, 
namely that 

The assertion is trivially true for n = 0 and n = 1. and also for n = 2, because 
for the latter 

Ifrit1) = wo(tz) = WO(t3) = I = w1(tO) = U"z(to) = W3(tO); 

w1(tZ) = w 1(t3 ) = - I = w2(tl) = W 3(t1); 

w2(t 3) = It'3{tJ = 1. 

Let us now suppose that the assertion is true for n lV, and consider the case 
n 1. For the suhscript j < 2N

, w/t) is the same function for n = lVand 
11 = ]V + I, hut the hase point t)~V-i-1) coincides with no base point t~~V). 
However, for any even k and odd k + I, the hase points t~t'7-i-1) and t):~tl) 

emhrace the hase point t;J2 and both are lying on the interval (ti;~) 2-N-\ 
t(N) ..L ")-N-1). thus w(N)(t(N+1») = uP''')(t(N-i-l) = If(N)(t(N)) 
kj2 I ~ , J k J k+1 J "j2' 

By our assertions, for any j < 2N , and any even 2 . k we have 

To prove our assertion for the considered case, we have only to prove that 
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is valid. However, latter is valid if and only if it is valid for any k = 2r, be­
cause by the definition of the Walsh-functions, wkis generally the product of 
such Rademacher- Walsh functions. Let us now suppose that k = 2', hence 
2k = 2r+1. Now if tj is lying on such an interval, where W2,+1(tj ) equals 1, then 
WZf(tzj ) has the same value, and for W 2,+1(tj ) = -1, the same is true for wzr(t2j ), 

because every positiv and negativ interval of w2, is halvedinw2,+lo latter hav­
ing a positive value over the first, and a negative value over the second half. 
Let us now consider the case j < 2N

, and an odd 2k + 1. Then 

m(N+1)(t(N2.. 1» = .n(N)(t(N» = w(N)(t(N» = 1n(N+1)(t(lY+1» 
<'VJ 2k+1 <VJ k le J ""k 2J+1' 

and we have to prove that w(N+1)(t(lY+1» = (t(N»w(N+1) 
le 2J+1 J 2k+1 , 

W~V+1)(tW+1» = w!ii+1)(t)N+1» is seen to be valid, therefore we have to dem­

onstrate that W<:+1)(t<:j.tl1» differs by the same factor from W\["+l)(t~~+l» as 
(N+1)( ) d'ff f (N"'-l)( (N.l.1» Th' . b 102',:+ 1 tj 1 ers rom W21e' tj '. IS statement IS true, ecause W ZIe+ I = 

= It'2k • W I _ and therefore both have the same value for tjN+1) < 1/2, and an 
opposite value for t)N+l) > 1/2. The latter is, however, impossihle, because we 
are treating the case j < 2N. The same is true for w\["+1)(t~7+1» and W\["+1)(tW+1», 

because also k < 2N is true, and therefore WW+l)(t~~+I» = W\;N)(t]N» = 
_ l{·(N+l){t(N+ll» 
-" 2j+l' 

Thereby we have demonstrated our assertion for any k and for j < 2N. 
For j ;;> 2N , we have 

lO(N+1) = 10(1":+1) 
J :1"'\ 

Moreover, for j = 2', and for j - 2N < 2N we have already proven our 
assertion, that is therefore also true for its product, because 

·jO(N.-l)(t(N+I» = In(N..;.1)(t(N+1» • W(!"+1)(t(N+1» = lC(N+1)(t(f\[+1» • W(N+l)(t(!"+l» = 
J le V2 N le J-2-V le le 2li le J-211 

- (-1) . 'v(N+1)(t(N+1» - t .. (N+l)(t(N+~) ,) - lV(N+1)(t(N+l» 
- • le j-2N - Vie j-2li +21i - le j 

namely for k ~ 0; W\:'V+l)(t~~+l» = -1, and 

for 

Our assertion is valid for k = 0, because w/to) = 1 wo(tj ). 
Our proof is now complete. 
Theorem 2 demonstrates that the evaluation of the rpj and that of the 

!(t,,) - s may be done identically except for factor 2 -N. 
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Theorem 3. In the computation pattern 

all ~l = all + a I2 a 31 = a 21 aZ3 a4.1 = a 31 + a 35 an,l = 
a 12 ~ = all - a 12 a 32 = a2% + a21. a42 = a32 + a 36 an-l,l + an- I ,2n-1 

a l3 tZ:!3 = a l3 a 14 a 33 = a 2I - a23 a43 = a33 + a37 

a14 a24 = a l3 - aa a 31 = a22 - a24. aH = aM + aag 
a l ; a25 = a l5 + a I6 a 3S = ~ + a27 a45 = a31 - a 35 

a l6 aZ6 = a l5 - a I6 a 36 = a26 a23 a46 = a32 - a36 

a l7 a27 = a l7 a l3 a 3? = a'Z5 - a27 a47 = a33 - a3? 

a 13 a28 = a l ? - a l8 a 3S = aZ6 - azs a48 = a¥l - aag 

a1,i' = f(ti<(i»)' where i* is the number in dyadic form, given by the reserved 
dyadic representation of i - 1. Then an,j gives the value of rpj in the expansion 
off(t). 

Proof: A similar pattern, accomplished with some factors of the form 

i".'!. 
er, is known to give the values of the Fourier polynomial in the fast version. 

I t is easy to prove that the same ideas can be used here with some simpli­
fication, according to the above given scheme. In the Fourier version we have 
partitioned the polynomial into an even and an odd part, and the latter into 
a product with factors z and another even polynomial. The former contains 
the coefficient with even subscripts, the latter ~ith odd subscripts. Giving 
the subscripts in dyadic form, and reverting them, the formers are less than 
the latters. In our case the Walsh-functions with even subscripts do not, the 
functions with odd subscripts do contain the factor lO l and therefore the latter 
part can be factorized into lOI multiplied by Walsh functions with even sub-

1 1 
scripts. The factor lO I has the value + 1 for t" < 2"' and -1 for tIc < 2 . In the 

second step both parts are partitioned in the Fourier case into two subparts. 
the formers containing a polynomial with exponents divisible with 4, the lat­
ters are factorizable into z2 and into another polynomial with exponents divis­
ible by 4. Accordingly both parts can be partitioned into two subparts, the 
formers with indices divisible by 4 - (they do not contain the factor wz), the 
latters factorizing into the factor lOz and a subpart, which does not contain lO2• 

113 
The factor lO., has the value + 1 for tIc < - and for - < tIc < -. and the value 

- 4 2 4 ' 
1 1 3 

-1 in the intervals - < t" < - and - < t" < 1. Continuing the process in 
4 2 4 
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this way we get terms of the formw2.N-1(qJi qJj W2K) at the end, 'where Cfi has a 
factor + 1 anywhere, whereas the factor f{Jj takes alternatively the values 
+ 1 and - 1, moreover the factor W21t'-1 takes the values +1, +1, -1, -1, 
+1, +1, -1, -1 ... It means that in both cases we have the same partitioning 
and factorizing possibilities, and a similar modularity, which is, however, 
simple in the Walsh-case, because all the factors take periodically the only 
values 1 or -1 at the basic points. Our proof is no,',- complete. 

Summary 

For the classification of processes into a finite set of subclasses by the help of the time 
evolution of some measurable parameters, every orthonormal system is competitive for the 
projection into a finite dimensional space in lack of a priori knowledge of the probability 
degree in the space of the sample functions. In this case the Walsh-system has favourable 
properties, because it guarantees a good Chebyshev-approximation and the most effective 
computer use. These properties are presented and proven in this paper. 
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