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1. It is a very important and not yet satisfactorily solved problem to
classify a process into a finite set of subclasses on the basis of the time-evolution
of some observable parameters. The selected finite set of subclasses represents
either some essential differences. between the physical system components of
the process: or some essential variation in the structure of interconnections,
between the system components.

The classification has to be based on the functional description of the
time-evolution of the observable parameters. A theoretically complete treat-
ment of this problem can be established as follows: let us construct a complete
metric functional space, containing all the pessible evolution functions of the
measured parameters, and the probability measuresover this space, character-
izing the distribution of the evolution functions of the cumulated class as well
as the one of the individual subclasses. However, in this case a functional space
of infinite dimensional must be worked in, where there is no effective numerical
method. Even therefore we propose to transpose the entire analysis into a finite
dimensional space, where the possible evolution functions may be characterized
by afinite set of highly relevant parameters. It is well known that this problem
can be solved by the help of projecting the evolution functions onto a prede-
fined finite dimensional space. The most effective choice of the latter is the
space, spanned by the orthonormal set of functions, defined by the Karhunen—
Loeve expansion. However, this set is not easy to manage numerically. moreover
it cannot be done if the probability degree is not known at least up to the seec-
ond moments. In general we have no preliminary knowledge of it. Even there-
fore the usual practice in this case is based on a finite dimensional Hilbert-space,
spanned by an optionally chosen orthonormal system, hoping that the projec-
tion of the evolution functions onto this space yet contains enough information
to assure an efficient partition into the set of subclasses.

In the light of the above heuristics, any orthonormal system is competi-
tive, and even therefore we may choose the one needing the least numerical
effort. It will be demonstrated in the following that this is assured by the
Walsh-system.
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2. The orthonormal Walsh-system [1] is defined over (0,1) as follows:

wo(t) =1, 0<e<{1;

wy(t) = sign (sin 2" twr), 0<t <1, n=0,1,2...
J=i(k)

w(t) = J[ wat), if k= Qi L2k 0<t< 1,
J=j(k)
E=0,1,2,...50 <j, < ... <jy

This system is known [2] to be complete in L2 (0, 1), to have, however,
no good pointwise convergence properties. But in the case where only a well
defined part sequence of the Walsh-expansion is considered, the pointwise
convergence behaviour will be extremely good.

Theorem 1. Let f(t) € C[0, 1], and denote w,(t; f) the k-th cut of the Walsh-
expansion of f(t):

Then w,ys_ (¢, f) converges uniformly to fin (0, 1).
Proof: vhe convergence properties of the expansion are determined by
the kernel:

k
W (¢t 2) = ij(t) - wi(z).
j=0

Let k be an integer between 2"-! and 2", ie. 2"-! <k <2" Then, by
the definition of w(t), the kernel is an integer constant on each cell C (I, m) =
=(l—1) 2" <t 2" L m 27" m=1,2,3, ... We
shall prove by induction that if k = 2" — 1, then

_j2MenC (1) 1=1,2,3, ...
Wzﬂ_l(t, ﬂ) - 01 on Cn(l, m); [ == m

This assertion is evidently true for n = 0 and n = 1. Let us suppose that our
assertion is true for n = N, and consider the case n = N -~ 1. Now

¥+l
Woway(t, 2) = Waa_y(t,2) + 3 w{t) - wiz).
i~
In the diagonal cells Cyy(/, /) the factors w;(t) and wi(z) have the same sign
forallj = 9N 9N 1, ..., 2N 1. Therefore by the induction hypothesis
we have here

Woraa(t, 2) = 28 + 3 (1) - (£1) = 2V 2V = 2V
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For any off-diagonal cell Cy (I, m) with |l — m| > 1 and for any j, 2V < j <
< 2N+1 _ 1 we have

p:(J)

ﬂz’j(t) = Ivzy(t) M [[ wgp,m(t) feee "t ‘lcsz)(t),
p_px(j)

J(“) - 1'”2’7 11 wvm(’)(“) . wgm(i)(z)’
p=p{J)

with 0 < p,(j) < ... < py(j) << N + 1. Therefore

a¥+1 3

Py wit) - w,(z) =

J:‘_!N

L “1{ ps(f)

[ [ Wopyiy (£) * Wapsy (2) - -« .. wzp,({)(z)] =

p=pij)

== Wyu(t) won(z) *
j=24

= wox(t) * wy(z) * War_y(t, 2),

because the terms in the sum are the same as inWes_ (¢, z), surely each combi-
nation of the exponents occurs exactly once in both. But (I — m) >> 1 assures

1
that (t, z) is lying in some off-diagonal cell C N([—‘)—J, [_gz_]

&

with respect to IV,

and therefore
Wogii_y(t, 2) = War_y(t, 2) - [1 + w,a(t) - wys(2)] = 0 - [l + (L)} = 0.

Finally for (I — m) = 1. we have either ] = (m — 1) or I = m + 1. In the for-

!
mer case, (¢, z) is lying eitherin an off-diagonal cellC, {[—9—] s [%]

=

— namelyif

and only if ] = 2s — or in a diagonal cell, namely if and only if | = 2s + 1.
In the case where Il = 2s,

Wower_y(t.2) = 0 - [L4+ (—1)] =0 -0 = 0,

however,for I = 2s + 1, hence for (t, z) is lying in a diagonal cell with respect

to IN:
Warisalt:) = Waga(t9) - [1+ (1) - (FD)] = 2¥ - (1 — 1) = 0.

In the letter case, for [ = m 4 1, and for I = 2s, (¢, 7) is lying in a diagonal
cell with respect to IV, and therefore

W2N+1_1(t, Z) = 2N . (1 e 1) =0,
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and otherwisel = m +- 1,1l = 2s - 1, the point (2, z) is lying in an off-diagonal
cell with respect to IV, hence

H-/z_v+1_1(t, z) = - [1 -+ (i].)] = (.,
With the above we have fully proven the induction hypothesis over the kernel.
Our theorem is now easy to prove. If namely, f(z) € C[0, 1] is valid, then
we can give each fixed € 2> 0 bound 4(¢) for the displacement |1, — ¢, | with

) — fle)] < e if (1, — 1) < de.

In addition, because of orthonormality, we have for each fixed x, with
@(t) = f(x) the relation

= Oj (1) Won_ (%, T) d7.

With the above:

Ux) — 1ep— o im(%; 7) dT — j () Wor_ylx, 7) d7| =

1

— [~ W 1t | < [ k) = 0] Worerr 95 =
0 !
=1 @ — oy

x—a—1

Won_y(x, 1) d7 + O‘S' L o(7) — f(7) | Wanoalx, 7) dT +

1

[ 19(@) —f@) | Wa(x,0)dr<e 272" L C- 0=,

Qen

X+

.,‘A

if 2-" < A(e). which proves our assertion, because ¢ is arbitrarily small.

Let us remark that the proof demonstrates, with respect to the speed of
convergency, that | f(£) — wem—y(t; f) | < @(27"; f), where « denotes the
modulus of continuity of f.

3. Concerning the fast version of the Walsh expansion, i.e., the fast
calculation of the value of such an expansion, let us first consider the expansion

an_.1

flt) = 2 @jwt),



~1
[#]]
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which defines a piecewise constant step function, with

fly =fg) if t€[(k—1)2n, k- 27041,

and the expansion coefficient

an—1

¢ = Off(t) (1) dr = 27 nhlthA) o{ty)

Theorem 2. Both f(t) and ¢; are linear combinations of the ¢, and the
f(t,). resp.. with coefficients £ 1. The coefficient of ¢; in the evaluation of
J{t;) is the same as that of f(t;) in the evaluation of ¢,. disregarding the factor
) -1+ _1
Proof: The assertion about the coefficients is evident, because | u"j(t,{) ==
=1, for all j and k. We must only demonstrate that the signs are the same,
namely that

wilty) = w,(t;): j.k=01. ... 27"%

The assertion is trivially true for n = 0 and n = 1. and also for n = 2, because
for the latter

wt;) = wo(ty) = wol(t;) = 1 = w,(ty) = wilty) = ws{ty);
wi(ty) = 104(t3) = — 1 = wy(t;) = w,y(ty):

w,y(ty) = wy(ty) = 1.

Let us now suppose that the assertion is true for n = IV, and consider the case
n= N-1.For the subscript j <7 2V, w0, (t) is the same function for n = N and

'

n = N -+ 1, but the base point t( _1) commdes with no base point t( .

(V D and tff_r"lf'l)

2-N-1,

However, for any even k and odd k& - 1, the base points i
embrace the base point #}), and both are lying on the mtenal () —

1)+ 2797 thus WA ) = wV(ETY = wM(Y) .

By our assertions, for any j < 2N, and any even 2 . k we have

.w}Nﬂ) (t&y‘—%l)) — u.,.(;\’) (t;;\")) — u(x\) t‘M) — u(N -1) (t“\' 1))

To prove our assertion for the considered case, we have only to prove that

ANS1) [ (N+1 (N1 (N1
D (1) = YD ()
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is valid. However, latter is valid if and only if it is valid for any k = 2", be-
cause by the definition of the Walsh-functions, w,is generally the product of
such Rademacher— Walsh functions. Let us now suppose that k= 2", hence
2k = 27+ Now if ¢, is lying on such an interval, where wy.1(t;) equals 1. then
10y(t,;) has the same value, and for w,.1(t;) = —1, the same is true for wy(ty;),
because every positiv and negativ interval of w, is halvedinte, .1, latter hav-
ing a positive value over the first, and a negative value over the second half.
Let us now consider the case j <Z 2V, and an odd 2k - 1. Then

N (D) — 16 — (M) — N I(AD),

and we have to prove that wf ™ I(e{YY) = (MY,

WYY = wll T is seen to be valid, therefore we have to dem-
onstrate that w{N V([ 7)) differs by the same factor from w{M )} ™) as
u(,;\’_"ll)(t) differs from w(N 1)(t(N'“l)) This statement is true, because wy 4| =
= W,y - w;, and therefore both have the same value for t(N Y« 1/2, and an
opposite value for tﬁ\l D~ 1/2. The latter is, however, lmpossﬂ)le, because we
are treating the case j <C 2N. The same is true for w{’ *(e{ ™) and w{ T +Y),
because also k < 2N is true, and therefore w{¥ V(YY) = wﬁv)(t}m) =
),

Thereby we have demonstrated our assertion for any k and for j < 2N,
For j > 2N, we have

sl N+ 1
Iv(j’\" )= Wi wg-[\_lizv).

Moreover, for j = 2’ and for j — 2N 7 2N we have already proven our
assertion, that is therefore also true for its product, because
Nl - 1) (N4 N1/ (N=1 N+l <1 N41 1
W™ DN ) = ¥ N D) - wVEDENTY) = M TIEEEY) - NN =

= (—1) - w™ N E) = WV ) = wMTHEN )

= 2512

namely for k== 0; w{ *V{*Y) = —1, and

2o -

1
wi(t;) = — 1w, (—2— + ¢ for ;<

Our assertion is valid for k = 0, because w(ty) = 1 == w,(¢;).

Our proof is now complete.

Theorem 2 demonstrates that the evaluation of the ¢, and that of the
f(¢,) — s may be done identically except for factor 2N,
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Theorem 3. In the computation pattern

8y Gy =@y G Gy = Gy T Gyy Oy = Gy + g Gp1 =

Qo Oy == Gy — @1y Qgp = py + Gy Q= Bz T Qg Qg7+ Gp_qgna
Q13 Gy = Gy T Gy G35 = Gy, — Gy Qy3 = G5 + Gy

@y, Gy == Q3 — Q) Gy = Gy — @y Gy = Ay | Gy

Q15 Gy = Qg5 + By Gy = o5 + Ay Qg5 = Qg3 — G35

Qg Qo5 == Qg5 — Q15 Ggg == Gy + Gy Oy = O3y — Gyg

Q1; Gy == Gy, 1 Qi gy = Gy5 — Gy gy = Q33 — Qg

Qs Qo = Gyy — Gyy Agq == By — Qyg Qug = Qg — Gy

@ipn Boon = @yony — Gygn Ggon = Gpgn_y — Gpon  Ggon = Gggn_y — Gggn let

a,;. = f(tiqy), where i* is the number in dyadic form, given by the reserved
dyadic representation of i — 1. Then a ; gives the value of g, in the expansion
of f(z).

Proof: A similar pattern, accomplished with some factors of the form

L o .

e .is known to give the values of the Fourier polynomial in the fast version.

It is easy to prove that the same ideas can be used here with some simpli-
fication, according to the above given scheme. In the Fourier version we have
partitioned the polynomial into an even and an odd part, and the latter into
a product with factors z and another even polynomial. The former contains
the coefficient with even subscripts, the latter with odd subscripts. Giving
the subseripts in dyadic form, and reverting them, the formers are less than
the latters. In our case the Walsh-functions with even subseripts do not, the
functions with odd subscripts do contain the factor w, and therefore the latter
part can be factorized into w,; multiplied by Walsh functions with even sub-

1 1
scripts. The factor w, has the value +1 forz, <C 3 and —1 for ¢, <C R In the

second step both parts are partitioned in the Fourier case into two subparts,
the formers containing a polynomial with exponents divisible with 4, the lat-
ters are factorizable into 22 and into another polynomial with exponents divis-
ible by 4. Accordingly both parts can be partitioned into two subparts, the
formers with indices divisible by 4 — (they do not contain the factor w,), the
latters factorizing into the factor w, and a subpart, which does not contain 1w,.

1 1 3
The factor w,has the value - 1 for ¢, <C " and for - << 2 and the value

1 1 3
—1 in the intervals 7 <t <+ and Y < t, <<1. Continuing the process in
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this way we get terms of the form w,y—1(p; -+ @;w,y) at the end, where ¢; has a
factor - 1 anywhere, whereas the factor ¢, takes alternatively the values
-~ 1 and — 1, moreover the factor w,y-. takes the values -1, -1, —1, —1,
+1,-1,—1,—1 ... It means thatin both cases we have the same partitioning
and factorizing possibilities, and a similar modularity, which is, however,
simple in the Walsh-case, because all the factors take periodically the only
values -1 or —1 at the basic points. Our proof is now complete.

Summary

For the classification of processes into a finite set of subclasses by the help of the time
evolution of some measurable parameters, every orthonormal system is competitive for the
projection into a finite dimensional space in lack of a priori knowledge of the probability
degree in the space of the sample functions. In this case the Walsh-system has favourable
properties, because it guarantees a good Chebyshev-approximation and the most effective
computer use. These properties are presented and proven in this paper.
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