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The objective ·was set to develop a procedure for determining carcinoma 
exposure among leukoplakia patients. 

Our data were obtained on a homogeneous sample of 500 leukoplakia 
patients treated during the past twenty years at the Dental Surgery Clinic of 
SOTE. Each patient had a syndrom-symptom vector of about 60 dimensions 
consisting of binary coded informations about the patient's condition and the 
results of laboratory examinations. 

The patients were classified, on the basis of their syndroms, into cate
gories of patients with more or less identical degree of carcinoma exposure. 
Naturally, we presume that the symptom vectors of similarly exposed patients 
are nearly "similar"; a concept that may be made precise by introducing a 
metric into the space of the possible symptom vectors. 

Thereby the stage of exposure of a newly diagnosed patient will be stated 
on the basis of his category. Some possible procedures of classification will he 
descrihed. 

The procedure to be described seems to he the hest possihle theoretical 
answer to the question. We intend to treat the problem in a more general 
set-up. the above classification procedure of leukoplakia will be ohtained as a 
particular case. 

Let us denote a symptom vector by ,= (Cl' ... 'n) and the range of 
possihle values of , hy S, ScRn. (We do not presume that the symptoms are 
necessarily hinary coded). Let W indicate the parameter space Jr7 = {wl •..• , 

wd and assume that to every value wtEW there corresponds a distribution Pi 
on S, which has a density function!i' In our application w l ' UJ2, ••• , Wi; stand 
for the k classes with different degree of exposure; thus PI might he the distri
hution of the symptom vectors of patients with cancer, P2 is that of patients 
with a high degree of exposure, etc., PI: is that of patients with no danger of 
cancer. 
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Let w be a random variable, that takes its values in W according to the 
probability distribution P(w = w;) = Pi' i = 1,2, ... k. The proportion of 
the different classes in among all patients with leukoplakia is known (or can 
be determined from known data), that is to say, we know the a priori distri
bution P = {Pl' ... ,Pk}' Suppose that we also know the conditional density 
functions f(x I w = w;) = fi(X), i.e. the distributions of the symptom vectors 
of patients in the different classes. The possible decisions concerning the pa
tients are represented by dl , d2, ••• ,dm• D = {dl , ••• , dm } is the space of 
decisions. Especially, if m = k and if d; means that the patient is classified 
into the group i, we get the answer to our original problem. But d; may also 
signify other decisions, e.g. decisions related to therapy. 

Let L : WxD --r R be the loss function, i.e. L(w;, d) = lij means the loss 
k 

if the parameter value is W; and our decision is dr e(P, d) = ~ [ij P; is our 
;=1 

expected loss in case we decide for dj • q(P,.) is called the risk function. 

(If k = m, d j means classifying into the class j, and 

L(w;, dj) = [;j = 1 - (jij' 

then e(P, dj ) = ~'p; 
IT) 

1. e. 1·. = f 0 IJ 1 

is the probability of an erroneous classification.) 

if i = j 
if i j 

The decision d* E D for which q*(P) = min e(P, dj) = e(P, d*) (this 
j=1, ... ,m 

is where the minimum of the risk function is attained), is called the Bayes 
decision corresponding to the distribution P. Let 0 : S -;. D be any function 
(so-called decision function). (j(x) = di E D means that we decided for di if 
the observed value of the random variable was x. 

Let LI be the space of all decision functions. For each (j E LI the value of 
the risk (the expected loss) can be determined as e(P, (j). 

q(P, (j) = ~ f L(wj , (j(x»)fj(x)pj dx 

s 

(assUlning a given a priori distribution P). 

(1) 

Our aim is to minimize the loss q(P, (j), that is to select the decision func
tion (j* E LI for which q(P, Cl*) <;; e(P, (j) for every Cl E LI. 

Let q*(P) = inf e(P, Cl). q*(P) is called the Bayes risk. If there exists a 
oEJ 

Cl* E LI, for which e(P, (j*) = e*(P) holds, it will be called the Bayes decision 
function. 

Our aim is to construct a Bayes decision function Cl* in case of a given 
a priori distribution P. 
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Under our assumptions the order of the summation and the integration 
in (1) can be changed: 

Q(P, <5) = J (~L(Wj' <5(x))fj (X)Pj) dx. 

s 

m 

Now, let us minimize the above sum17for each given xES. Letf(x) = .;EJj(x)Pj 
j=! 

be the marginal distribution of 2;. For those x E S where f(x) =0 thcrc is no 
necd to define <5(x), that is it may bc defined in an arbitrary fashion. Thus, 
instead of minimizing 17, let us minimize the expression 

for each given x (for which it makes sense at all). This is nothing but the ex
pected value of the loss function under the condition Z; = x. The distribution 
of w under the condition is called a posteriori distribution. 

So o*(x) is the Bayes decision corresponding to the distribution P x = 

= {P(w = w j ! 2; = x)}. The determination of o*(x) means in this case that 
m 

we specify some sets E i, i = 1,2, ... , m in such a manner that U Ei = R Il
, 

i=l 

Ei n E j = 0 and o(x) = di holds for every x E E i. 
Especially, if m = k and the loss function L( w, d) is chosen as lij = 1 - op 

then the risk corresponding to the Bayes function gives the probability of a 
false classification. Later, when we have a larger population sample and more 
experience, we probably shall be able to construct a better loss function than 
liJ = 1 - oij the one given above. Thc need is there, since we might make a 
larger error by misclassifying a patient of class 1 into class 3 than in the op
posite case or by taking him into some other class. 

In principle, this is a perfect answer to our problem. If we have to find 
the class into which the patient should be classified on the basis of the value 
of the symptom vector Z;, the possibility of a false decision has to be minimized 
by calculating the Bayes decision function <5*. (This has to be calculated only 
once, later the optimal decision arises by substituting the symptom vector 
of the new patient.) Still the problem is that the a priori distribution and the 
a posteriori density function are unknown. These and the conditional density 
functions fi(X) should be estimated from the sample. The relevant methods 
developed up to no"w require, however, relatively large samples. The sides of 
the samples required for the estimation grows exponentially with the dimen
sion - so it is difficult to estimate the original 60 dimensional distributions 
on the basis of the available samples. The considerable lessening of the dim en-
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sion would facilitate the application of any method and lessen the computer 
running time. The possible loss of information would not necessarily yield a 
less reliable solution, for it is obvious that a clastering of the points of a seL 
such that it would reflect reality, is possihle only if the elements are dense 
enough in space. 

Let us take a formarly diagnosed population of leukoplakia patients and 
diyide them into two groups: one with carcinoma, the other group of non
carcinoma patients (such data are at our disposal and we want to see how well 
the symptom vectors characterize the disease, that is: how significantly the 
symptom vectors of the patients with or without carcinoma differ). This can 
be ascertained by a test. Our zero hypothesis is that the distribution of the 
symptom vectors in the two groups are identicaL i.e. the entire sample can be 
regarded homogeneous. Our counter-hypothesis is the opposite. In case the test 
shows (on a giyen significance level) that we have to accept the hypothesis Ho, 
the entire statistical analysis, at least on the basis of the inyolved symptom 
vector, is of no use. 

If the hypothesis Ho is rejected, our next task is to decrease the dimen
sion of the symptom vectors, to omit the unessential components. Therefore 
we have to replace the symptom vectors ~ E Rn with new symptom vectors 
~ E RT(r < n). This procedure is called factor analysis.We have to apply a simple 
transformation T : Rn RT such that the procedure based on the observation 
of the ne'w symptom vector ~ = T(~) contains a minimum of errors. The theoret
ically well developed methods of extracting the essential data cannot be used 
here. because of the character of the sample at our disposal. We can use, how
ever, some more or less heuristical procedures: 

1. Lct us examine no'w the symptom vectors of the carcinoma patients 
alone, and find the distribution of the comparing these values to the distribu
tion on the entire sample we can select those components, which are consid
erahly less in the carcinoma sample, than in the full sample. Eyidently these 
must be the most important factors. But the question is when to regard the 
variance of a component "small enough" and when net, can of course be decided 
on the basis of experience and a series of tests. 

2. After omitting some coordinates from the symptoms vectors divided 
into two groups we apply X2 tests at each step and see to what extent the 
distributions of the reduced vectors differ. This method permits to single out 
the number r < n of those components, which cause the greatest differences, 
that is, which are the most characteristic of the carcinoma state of the pa
tient. In this case we must also rely on our experience, because on the basis 
of the X2 test it cannot he judged exactly which one of the two patterns of 
different dimensional vectors is less homogeneous. 

3. Let us examine every coordinate of the symptom vector one by one, 
from the point of view, wether there is a different diffusion characteristic for 
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carcinoma and non-carcinoma patients. In the case where two coordinates are 
found to have nearly identical distributions they can be omitted as they do 
not help the classification. 

Regardingthe x2testmentionedinparagraphs2 and 3, we add that means 
identical distribution in both cases, and means different distributions. 

In 1, (or in 2,3) two types of errors may occur: a) we reject Ho, though it 
is valid (error of type I). or we accept Ho, though it is not valid (error of ty-pe II). 

The prohability of the second type of error is most important to us, for 

it means the likelihood that a component of great importance has been left 
out from the symptom vector. Naturally also the probability of the first ty-pe 
of error has to be reduced, hecause it means dealing with superfluous compo
nents. The tahles used for statistical analysis contain generally the connection 

between the error of the first type p = P(X" i Ho) and the critical zone. X" 
the critical zone - is the set of those statistical values where Ho is rejected. 
On the contrary the second type of error generally exhibits a complementary 

occurrence, the force function heing E = P(X" ! HI)' The average size of the 
force function depends on the given sample size, the error of the first type and 
also on the difference of the distributions. The average value of the test can 
only be estimated if the a priori distribution is known. However, ·we know, that 
the greater, the first type error, the closer the force function is to 1. The X2 
test is known to be consistent. That is, for any first type of error s > 0 despite 
the counter-hypothesis, the value of the force function ·will approximate 1, when 
the elements of the sample are increasing. The two facts guarantee that in case 
of a higger sample the second type of error can be reduced hy employing the 
right first type of error. These three methods help to select the appropriate 
number r < n of components, so that they contain all essential information. 

The sample thus prepared may analysed by the described method of 
decision theory, hut also cluster analysis will produce reliable results. 

Summary 

A method is described for the determination of carcinoma exposure among leukoplakia 
patients using the theory of Bayes decisions. 

On the basis of the observed symptom vectors the patients are classified into groups 
characterizing their exposures so that the expected error weighted by its occasional conse
quences should be minimal. For this purpose the optimal Bayes decision function has to be 
determined. 

Besides, some procedures are contained to reduce the dimension of symptom vectors. 
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