THE COVARIANCE FUNCTION OF
A STOCHASTIC PROCESS

By

A. VETIER

Department of Mathematies of the Faculty of Electrical Engineering
Technical University, Budapest

Received June 20, 1978
Presented by Prof. Dr. 0. Kis

To make a mathematical deseription of the transmission of radio-locator
signs through a wide-band micro-wave channel, it is necessary to study the
following type of stochastic processes:

, " .
& =leosia —1t 4+ e o cos (w;t + )

c=1
where
t is the time parameter,
a,c, w; (L =1, ..., n)are deterministic constants,
0;.¢; (=1, ..., n) are idependent random variables,
®; is of uniform distribution between 0 and 2z (i =1, ..., n),
0; is a non-negative random variable that likes the low values, that is,

its density function is high at the neighbourhood of zero.

It is primarily important to determine the covariance function of this process.
In this article the necessary calculations are written down. As it will be seen,
the calculations are hased on the assumption that g; has a second order
y-distribution (z = 1, ..., n). In this case normally distributed random var-
iables arise, permitting in fact to calculate the expected value of some random
variables. The second-order y-distribution fits the description of the phenom-
enon since its density funection is

1 -
— e if x>0

0 if x<0.

The ecaleulatien of the covariance function

The covariance function of the stochastic process &; is defined in the
following way:
bt, 5) = M5, 5) — M(z) - M(E,).
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PROPOSITION:
g n
i=1 — .)_',‘ ¢ cos wi (t—s)
bz, s) = 5 e =1 — 1) cos aft + s) +
Zn' €2 ¢os w; (£s)
A leit —1|cosa(t — s)
Proof:

Let us assume that  and 7 are independent random variables and their
common distribution is standard normal distribution. Let ¢ and ¢, — also
random variables — be the polar co-ordinates of the point (£, 1). ¢ and ¢ are
known to be independent, ¢ to be of second-order y-distribution, and ¢ of
uniform distribution.

It is obvious that also the contrary is true: if p has a second-order y-distri-
bution,® a uniform distribution, and p and ¢ are independent, then & = g-cosgp
and 77 = g * sin ¢ are independent and their common distribution is a normal
distribution.

It follows that if ¢ is fixed, then g; cos (wi + ¢;) has a standard normal
distribution. So if ¢ is fixed, then

n
w=a-t+ >c o cos (w;t+ @;)

is normally distributed, and its expected value is @ - ¢, and its variance is

[ n .
1/ 2 cr.
=1

Lemma 1:

~ t c*

J e 2cos(c-t)dt=132ze .
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Proof:

1 . .
From the identity cos (¢t) = 5 [e + e—] we get

~oor 1 [ _~ 1 &
Je % cos (ct)dt=-—J e *éldt +— f e *eiNds
2 2 2
ger }
The substitution u = — ¢ transforms the second integral on the right side
into the first one, so:

(t—ic) c

- o — e
——-Je Peldr = ¢ 2 J‘e Podt=12me *.

— e ket

At the last step the well-known — identity was used:

N {—icy P
e 2 dt= Je Pdt = 2m.

—oa — oo

Lemma 2:

If the random variable ¢ has a normal distribution, and its expected
value and variance are m and o respectively, then

Proof:
(x — m)-
M {cos &) = J e ¥ cosxdx =
275 o/
. - x - m . - .
Substituting ¢t = ——— , then using the identity cos (m -+ ot) =
G

= cos m cos ¢t — sin m sin ot we get

=—— |e ‘cosgtdt——— | e ° sinctdi.
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Here the second integral is equal to zero, since the integrand is an odd function.
Applying lemma 1 to the first integral we get the proposition of lemma 2.

Now the proof of the PROPOSITION will be continued. From lemma 2
it follows that

PANS
=1
M(E) = M(cos ) =e > cosf{at).
Hence:
n !
X = e
_ =1 =1
M(&) M(t)=e * cos(at)e * cosas =
n
— X c
o =t !
= (cosa(t +s) -+ cosaft —s)).
2

M(EE,) will be determined from the identity

55, = eos % cos zg = - cos (o — 2) + ~cos (o, — =) -

& &

If t and s are fixed, then the distribution of the random variable «, 4 « is

normal distibution since

7

=z =a-({E+s) T ¢; 0 (cos (w;1 + ;) + cos (w;s + (p,-)) =

I
2
_—

l\/J

i=1

I

n
=a-(t+s) + 3¢ o/(cosw;t 1= cos w;s)cosp; — (sinwgt- sin w; s)-sin @,).
=1
Here p; cosg, o;sing; i = 1...., n) are independent random variables with

normal distribution, so «; - = isin fact normally distributed, and its expected
value and varianee are: a(t = s} and

;on
]7 > ci[(cos w;t = cos w;s)% — (sin w,;t - sin w;s)2] =

[~ n
= ]/ 2 Fci (1 24 coswlt — s)).
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So, lemma 2 yields:

1 1
M, - &) = -__;—.M(cos (% + =5)) + — M(cos (z; — 2)) =
n
1 - Py ci (1 + cos wi(t—s))
=—¢ = * cos a{t -~ s) -+
2
n )
1 - Z L+ cosat—s)
+~2“e = - cos aft — s) =
1
— 37t
i=1 n
e — 3 cicos ot ~s)
=0 "|e i=1 cos a(t — s) -+

n
—_ 3 €; cos w; (t — s}

L i= cos a(t — s)| -

Using this result it is easy to derive that b(t. s) = M(§, &) — M(E,) M(5)
equals the formula given in the PROPOSITION.

Summary

Theoretically it is no problem to determine the covariance function of a stochastic
process but in case of actual stochastic processes it needs sometimes long calculations and some
skill. In this work the covariance function of an actual stochastic process is determined. At
each step it is indicated what theoretical assumptions the calculations are based on.
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