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1. Introduction 

This paper is devoted to the study of interpolation by cubic spline func­
tions, i.e., piecewise cubic polynomials. It -will he shown that, given a suitable 
partition .c1 of I = [0,1] and the derivative values of a given function f(x), 
at the knots of .J, together with the function values at the end points there 
exists a unique cuhic spline on I, of class C2(I), which is the interpolent off. 
The same can be said if the derivative and function values are given consecu­
tively rather than the derivative values at the end points of J. :Moreover, given 
the function values at the even knots and the derivative values at the odd 
ones, or given the function and derivative values at the odd knots together 
with the function values at the end points of Ll, there exists a unique spline 
s(x) E C1(I) which is a piecewise polynomial on each double suhinterval. To 
this end the follo",ing notations, definitions and results will be needed (see 
[1], [2], and [3]) throughout this work. 

Let I = [0,1] and Ll: ° = Xo < Xl < ... < X N + 1 = 1 

be a partition of I, J; either a real number given at the point Xi or the value 
of a given functionf(x) at this point, i.e., ff = f(xi) and Df(Xi) = fl. For each 
non-negative integer m and for each p, I P =, let Pcm,P(a, b) denote the 
collection of all real valued functions q:(x) such that: q;(x) E Cm - 1 [a, b], and 
such that Dmq: E C(xi' X i+ 1): (Xi' Xi+ 1) is an open suhinterval and Dmq: E LP[a, b] 
where 

Xi-:-l 
''V ' . lip 

I~ J IDmrp(x) pI' < co , 

Xi 

o -::;;, i 
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Definition 1.1 

Given .:1, let the space of cubic splines with respect to .:1, S(.:1), be the 
...-ector space of all twice continuously differentiable, piecewise cubic polyno­
mials on I with respect to .:1, i.e., 

S(J) == {p(x) E C2(I) I p(x) is a cubic polynomial on each subinter...-al 
[Xi' Xi+ll 0 ::::;; i < N, defined hy .:1}. 

Definition 1.2 

Given f = {fo' ... ,fV+IJ~,fJv+l}, let f}~f the S(.:1) - interpolate of f, 
he the unique spline, s(x), in S(J) such that s(xJ = fi' 0 N + 1, and 
Ds(xJ = it\ i = 0, N -+- 1. 

It is a known resnlt [2], that this procedure is well defined according to 
the following 

Theorem 1.1 

Given numbers ft, 0 :< i 
unique spline s(x) sllch that 

lY -+- 1, and f/' i = 0, N -+- 1. there exists a 

N 1, 
and 

Ds(xJ =f}, l = 0, N + 1. 

2. Approximation theorems 

2.1 Single step interpolation 

Here, we are going to soh-c the following prohlem: given f = {f~, ff, 
... J~+l' foJN+l}, let */Jsf, the S(J)-interpolate off he the unique spline, 
s(x), in S(J) such that 

Ds(xJ = itl, 0 N-+-1. 
and 

s(xJ =fi' i = 0, lY -+- 1. 

We have to prove that this procedure is well defined. 

Theorem 2.1 

Assume that hi + 1 > hi for all i, or let N be even and the partition be uniform. 
Given numbers it\ 0 i < N + 1, and fi' i = 0, N -+- 1, there exists a unique 
spline s(x) such that Ds(xi) = ft, 0 ::; i < N -+- 1, and s(xJ = fi' i = 0, N + 1, 
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Proof 

In the subinterval [xi' Xi+ 1]' choose s(x) to agree with the cubic polyno­
mial p(x) such that 

p(Xi) = Si' p(Xi+l) = Si+l' 

Dp(xJ = f~, Dp(xi+1) = f7+1' 

such a polynomial exists hy the theory of Hermite interpolation (see [2]), 
therefore 

6 
-J~ Si 

17 

6 4 I'l 2.('1 -,.> Si+l - -h. Ji - -h. Ji+l' 
IT 11 

A similar expression for D 2s(xi) in [Xi-I' xJ is given by 

D2 s(x.) = _6_ s. 1 __ 6_ s, 
I /9 1- J') , 

tT-1 17-1 

4 fl 2 1,1 __ . ...1- __ . 
I I I-I' 

hi- 1 hi_ 1 

Hence, for D2S(X) to be continuou5 at Xi' we ohtain (with the notation lzi = 

= xi+l - Xi) 

(2.1) 

For 1 lV, (2.1) is a system of N linear equations in the unknowns 
Si' i = 1, 2, ... , XV. It can he written in the matrix form As = d, where 
A = [aij] is 

and 

A= 

hr+l - hr 
kr+1 

f-li = --'-'-''----
hr+l - hr 

(2.2 

o PN-l 

i = 0, ••• , lV - 2, 

i = 1, ... , N - L 

i = 1, ... , N - 2. 
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For the existence and uniqueness of the solution, the matrix A has to be non­
singular, i.e., det (A) 7"- 0, but this fact can be proved by Gauss elimination if 

hi+1> hi· 
In the case of a uniform partition, i.e., hi = hi - 1 = h, 1 < i < N, (2.1) 

takes the form 

- 3Si - 1 + 3Si +1 = hfLI + 4hf? + hf/+1' 1 <i< N, (2.3) 

and hence the matrix A will be: 

ro 
1-3 

'
I A= 

o 

3 0 
o 3 o 

o 3 
-3 G, 

In the case where N is even, obviously the matrix will be non-singular 
and it will be singular if N is odd. 

Remark 

Equation (2.3) is exactly the Simpson's Rule applied to s' (x), which is 
a polynomial of degree t·wo, in the interval [x i - 1, Xi+ 1]' i.e., 

, _ 1 I 1, 1 
Xfi+1 h 

S (x) dx - "3 [si_I t 4s i t Si+I] , 

where si = J? ,.,.-here N is required to be an even integer. 
Now, combining the two cases prescribed by the previous theorems we 

obtain: 

Theorem 2.2 

Let N be even and the partition be uniform. There exists unique spline 
S E S(L/) such that 

1 
j < 2 N; S(XN+I) =fN+1' 

1 
2(N - 2), 

(iii) Ds(x;) = fiI, i = 0, N 1. 



INTERPOLATIOS BY CUBIC SPLINES 95 

Proof 

In the subinterval [x, XI-t-l]' i even, we choose sex) to agree "With the cubic 
polynomial p(x) such that 

P(Xi) = fl, p(x i + 1) = SiH' 

Dp(xi) = s~, Dp(Xi+ 1) = fi+ l' 

where s~ and Si+ 1 remain to be determined. 

Hence 

D2 s(x,·) = ~f' ..L ~ s· 
ho 1 i I') 1+1 

T IT 
~S~ - ~f,.1'1' 
I 1 h h-

11 i 

A similar expression for D~s(x;) i;]. the suhinterval [Xi-I' xd is given by 

6 , 4 1 

'--Si hr hi - 1 

So, for D2S(X) to be continuous at the even knots, we obtain 

3hi:l Si-l + 2 (hi l + h{::.\) s} 3hi-25i+l -

= -3(1(i2 
- hi~l) Ji - hi'·\fl-l - hi1fl+l' 

(2.4) 

In the case where i is odd, for D2S(X) to he continuous at odd knots we have: 

h-I 1 I 3(/-2 1-2 ) I h-I 1 _ i-I 5i-l , li - li-1 Si, i 5i+1-

3 h-2 f, 9 (h- 1 I h-1 ) f,1 I 31 -2 .£' i-I i-I - ~ i Ti-l i' li )1+1' 

(2.5) 

Equations (2.4), (2.5) form a system of lV linear equations in the unknowns 

SI' 53' •.• , sN-1 and s~, 5!, .•. , S}", for 1V even. The system (2.4), (2.5) can be 
written in the matrix form 

Bs = k. (2.6) 
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In the special case of a uniform partition hi = hi- 1 = h, 1 
the system (2.4), (2.5) becomes 

i < IV, 

3Si - 1 + 4hsi - 3S i + 1 = - hfl-l - hfl +1' i even, (2.7) 

hS7-1 + hS7+1 = - 3j;-1 - 4hj;1 + 3j;+1' i odd, (2.8) 

and the matrix B will be 

B= 

which is non-singular in the case N is even and otherwise the matrix is singular. 
Indeed, using the technique of symmetrization, denoting DN = det (DBD -1), 
we have the recurrence formula 

'with Do = 1, D1 = 0, where a2k = 4h, a21,+1 = 0 and bk - 1 .' 0. It follows that 
D2k .. ° and D 21,+ 1 = 0, for all k. The vector k is 

r - 3fo + 3f2 4hfi - hf~, i = 1 

k = hj;l -1 - tiff -1' i = 2j. I j 
I 

(lV - 2), N> :2 
2 

I 
1, I j :'C., :2 (N 

and we denote by&sftlze unique spline defined by (i), (ii), (iii). 

2), N> 2 

Unfortunately, we have not yet found a general sufficient condition on 
the step sizes hi to assure the non-singularity of matrix B. However, it is easy 
to see that for each partition there exists a position of the knot XN such that if the 
matrix is singular, then its shifting to the right or left will mean non-singularity 
of the matrix. 

2.2 Double step intelpolation 

Let us examine how to develop an interpolation procedure , ... -hich uses 

only the values f = {fo, ft,,h, ... , fNJN+ I}' N odd, when given Ll and such 
that the interpolent function s(x) is a piecewise cuhic polynomial on each 
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subinterval [X2i' X2i+Z]' 0 i < (lV - 1)/2 and is continuously differentiable, 
i.e., s(x) E 0(1). 

Let s(x) be the unique spline such that 

! s(xZi) = f2.i' 0 i :$; (lV + 1)/2, 
s(xN) = flY" 
Ds(x2i +1) =fL+1' 0 <i (lV - 1);2. 

We shall see that this procedure is well defined. 

Theorem 2.3 

(2.8) 

Given numbers f~;,fii+ l' 0 ::s;; i (N - 1)/2 and h' i = lV, lV i, N odd, 
there exists a unique spline s(x) E C(1) which satisfies (2.8), provided h2i - 1 ~-~ 

2h2i - 2• 

Proof 

In the interval [x2;, X 2i + 2], choose s(x) to agree with the cubic polynomial 
p(x) such that 

p(XZi ) = hi' p(XZi + 1) = S2i+ l' 

P(X2;+2) = hi+Z' Dp(xzi + 1) = f~i+ l' 

where S2;+ 1 remain to be determined, thus s(x) can be written as 

Hence 

where 

(h~; + hZi+1) 

hZi+l 
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A similar expression for DS(X2i) in the interval [xU-2' x2i] is given by 

Then Ds(x) is continuous at X 2i iff 

(2h2i- 2 - h2i-I)(h2i-2 + hzi- I) 

hZi - 1 h~i-2 

i = L ... , (N 1)/2 . 

The system (2.9) can he writtcn in the matrix form 

and 

ru; 

M=I 
I 

l 

Ms = e. 

(h2i - 2h2i+1) (h2i + h2i+1) 

h~i+1 h2i 

l· = 1, ... , (N - 1)'2, 

i = 1, ... , (N - 3)/2. 

Hence the condition for the regularity of ~:[ is that 

(2.9) 
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In the special case of a uniform partition, i.e., h2i - 2 = h2i - 1 = ~i+l = h, 
(2.9) will take the form 

(N - 1)/2. 

Similarly it is easy to show that the following theorem is also true. 

Theorem 2.4 

Given numbers /;' 0 i ~ N + 1 and f~. N odd. there exists a unique 
cubic spline sex) E Cl(I) such that 

S(Xi) = fi' 0 

Ds(xN) = flv. 
i < N + 1, 

It can he shown that no restriction on the partition is required. 

Finally, givenf {foJlJi, ... JNJ!v,f N+l}' N odd, such that 

S(X2i + 1) = f2i+l' DS(x2i +1) = fL+l' 0 < i (IV - 1)/2, 

s(xa = fi' i = 0, N 1. 

(2.11) 

We shall show that there exists a unique cubic spline sex) E Cl(I) which is 
piecewise continuous on each suhinterval [X2i' X Zi +2]' 0 i < (N - 1)/2. 

Theorem 2.5 

Given numbersf2i+lJ~i+1' 0 (N - 1)/2 and/;, i = 0, N 1, 
N odd, there exists a unique cubic spline sex) E 0(1) which satisfies (2.11), 
under some conditions described in the proof. 

Proof: The proof can he handled as in Theorem 2.3. 

The matrix form of it can he written as 

As = k, (2.12) 

3 Periodica Polytcchnica El. '22/ :2-3. 
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where A = [}'ij] is 

i.e., A is a diagonally dominant tridiagonal matrix if 

consequently, 

Vs lz2i' i = 1, ... , (N - 3)/2 , 

and 

where 

and 

In the case of a uniform partition, (2.12) will be (2.13) 

O ---- . < L 

with nonsingular coefficient matrix. 

(1V - 1)i2, 

3. Error analysis 

Here, we shall give a priori error bounds for the interpolation procedure 
introduced in item 2.1 in the L2-norm. The spline interpolating function as 
defined in item 1 is known [2] to be characterized as the solution of a varia­
tional problem. 
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The question now arises, whether the same theorem is valid or not in 
the case of spline function defined by (i), (ii), (iii). 

Theorem 3.1 

Given .J and f= {foJi,··· IN+l' f~,fiv+1}' N even. Let 

v = {w E PC2,2(I) , w(x2j ) = f2j' ° <j < ~ N; W(XN+1) = fN+1' and 

DW(X2j + 1) = fi j + l' ° <j< ~ (N - 2) and Dw(x;) =fl, i = 0, N l}. 

Then the variational problem of finding the functions p E V which minimize 
I: D2 w ;[2,for all w E V, has the unique solution BsI, whenever it exists. 

Proof 

As in the proof of Theorem 3.1 [2], p E V is a solution of the variational 
problem iff 

for all 0 E Vo {W E PC2,2(I)i w(x2j ) = 0, ° s_j 

1 
Dw(x2j-+ 1) = 0, ° < j ::-:::: (N - 2) and Dw(x;) = 0, i = 0, N 

2 

(3.1) 

~Ioreover, the variational prohlem has a unique solution. Now it remains 
to show that lisfis a solution of (3.1) i.e., 

(3.2) 
Since 

(D 2 lisf, D 2b)2 J D2 1Js f(x) D o(x) dx = 

o 

X Zj"':"'l • X-:;j...:...:; 

!,; J' D2lis f(x) D 20(x) dx + i (~2) J' D lis f(x) D2 o(x) dx . 
~o )=0 

Xzj XZj~l 

Integrating by parts it is easy to see that (3.2) is satisfied, hecause lisfis a cuhic 
polynomial on each suhinterval. 

3* 
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Corollary 3.1 

If f E PC2,2(I), then 

Lemma 3.1 (see [2]) 

If f E PC~,2(a, b), then 

b b 

f f2(x) dx::; (b -:r2a
)2 S (Df(x»)2dx, where 

a a 

PC~,2(a, b) = {<p E PCl,2 I, <p(a) = <p(b) = o}. 

Theorem 3.2 

If f E PC'!.,2( I), then 

11 D2(fr. - lis!) 112 

11 DU - lis!) 112 

and 

o <i lV. 

Proof 

(3.3) 

(3.4) 

(3.5) 

Inequality (3.3) follows immediately from Corollary 3.1. To prove (3.4), 
1 

let e(x) = f(x) - lfsf(x). Since e(x2j) = 0, ° j <"2 lV, and e(xN+l) = 0, lV 

even, then by RoUe's Theorem 

1 _ 
2 (N - 2), x2j < ~j < x 2j +2' 

and 
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Then using Lemma 3.1, we have 

';1+1 ~j+1 

J (4h)2 J' 1 [De (x)J2 dx < ---;;;- [D2e(x)] 2 dx, 0 :::;: j < 2 (N - 2), (3.6) 

~. $. 

f (2h)2 f [De(x»)2 dx < ---;;;- [D2 e(x)J2 dx , (3.7) 

o 
and 

1 

f h2 J [De(x)]2 dx <-
n 2 

(3.8) 

Hence 

i.e., 
4h 

11 De(x) 112 < - I1 D2 e(x) 112' 
n 

(3.9) 

by using (3.3), we have 

In a similar manner, it is easy to prove (3.5) using (3.9). D 
* We now turn to the a priori error bounds for the interpolation error, 

f - ffsf, and its derivatives. 

Theorem 3.3 

Let Ll andf= {f~,fi, ... ,fiv+l' fo,fN+1} be given, V= {w EPC2•Z (I)j 
I DW(Xi) = fl, 0 :s:: i N + 1 and W(Xi) = fi' i = 0, N + 1}. Then the varia­
tional problem of finding the functions p E V which minimize 11 D 2w II~, for all 

* W E V, has the unique solution ffsf, whenever it exists. 

Proof 

The proof is similar to that of Theorem 3.2 but for completeness it will 
be outlined here. 
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As in the proof of Theorem 3.1 [2], P E V is a solution of the variational 
problem iff 

(3.10) 

for all 0 E Vo = {wPC2.2(I) I Dw(xJ = 0, 0 i IV + 1 and w(xJ = 0, 
i = 0, N + I}, i.e., the variational problem has a unique solution. Now, we 

* shall show thatfjsfis a solution of (3.10), i.e., 

* (D2 fjsf, D 2o)2 0, for all 0 E Vo . 
But 

Xs-,-, 

= j: f D2 fj*s f(x) D2 6(x) dx = ~ [DO(x) D2 ~s f(x) ]::+1 -
X; 

- ~ [b(X) D3&s f(x)]::+1 ~ T' b(x) DJ 1;5 f(x) dx = O. 

Xi 

Theorem 3.4 

If fE PC2.2(I), then 

* ;: D2(f - Osf) ! 2 < I; D2 f 112' 

* 
I! D(f -fjsf) 1:2 h/'n! D2f ' 2~ 

and 

Proof 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.12) is a consequence of Corollary 3.1. To prove (3.13) we note that 

* Df(Xi) - Dfjsf(xi) = 0, for all 0 < i lV 1. and by Lemma 3.1 it follows 
that 

Xi+l f [D f(x) - D #s f(x)]2 dx 

Xi 

for all 0 s;: i < N. 
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Summing both sides of (3.15), (3.13) follows by taking the square root 
of hoth sides of the resulting inequality. * 

(3.14) is proved by using the fact thatf(xi) - &sf(Xi) = 0, i = 0, lV I, 
and using Lemma 3.1 and (3.13), i.e., 

I 

f [J(x) 
* 
Bs!(x)F dx I f * 7[2 [D f(x) - D Bs!(x)]2 dx 

* 
D(f -BS!)II~· u 

Snmmary 

It has been shown that. given a suitable partition of 1= [0.1] and the derivative values 
of a given functionj(x), at the knots of LL together with the function values at the end points. 
there exists a unique cubic spline on I which is the interpolant of f. The same can be said if 
the derivative and function values are pairwise alternating. Similar questions have been in­
vestigated for double· step interpolation. A priori error bounds are also presented for single­
step interpolation. 
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