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1. Introduction

This paper is devoted to the study of interpolation by cubic spline fune-
tious, i.e.., piecewise cubic polynomials. It will be shown that, given a suitable
partition 4 of I = [0,1] and the derivative values of a given function f(x),
at the knots of .. together with the function values at the end points there
exists a unique cubic spline on I, of class C*(I), which is the interpolent of f.
The same can be said if the derivative and function values are given consecu-
tively rather than the derivative values at the end points of 2. Moreover, given
the function values at the even knots and the derivative values at the odd
ones, or given the function and derivative values at the odd knots together
with the function values at the end points of 4, there exists a unique spline
s(x) € CY(I) which is a piecewise polynomial on each double subinterval. To
this end the following notations, definitions and results will be needed (see
[1], [2]. and [3]) throughout this work.

Let I=[01]and 4: 0 = x) <<x; T ... Txyyp=1

be a partition of I, f; either a real number given at the point x; or the value
of a given funetion f(x) at this point, i.e., f; = f(x;) and Df(x;) = f; . For each
non-negative integer m and for each p, 1 < p < co. let PC™?(a. b) denote the
collection of all real valued functions ¢(x) such that: g(x) € C™ [a, b]. and
such that D¢ € C(x;. x;11): (x;. x;+,) is an open subinterval and D¢ ¢ LP[a, b]
where

Xity

(NP ‘up
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Definition 1.1

Given 4, let the space of cubic splines with respect to 4. S(4), be the
vector space of all twice continuously differentiable, piecewise cubic polyno-
mials on I with respect to /. i.e.,

S(4) = {p(x) € C*(I) | p(x) is a cubic polynomial on each subinterval
[% %41], 0 < © << N, defined by 4}.

Definition 1.2

Given f = {fo. .. ..fys1fo-fi+1) let B.f. the S(4) — interpolate of f,
be the unique spline, s(x), in S(4) such that s(x;) = f;. 0o <i <L N+ 1, and
Ds(x)=fl.i=10 N+ 1.

It is a known result [2], that this procedureis well defined according to
the following

Theorem 1.1

Given numbers f;, 0 <t < N + 1, and fl.l: i==o0, N - 1, there exists a
unique spline s(x) such that

s(x) =fr oZ<iLN+1,

and

Ds(xi) :f% i=o. N - 1.

2. Approximation theorems
2.1 Single step interpolation

Here. we are going to solve the following problem: given f= {fy. fi.
oo e for f+1)- let #0, f, the S(J) — interpolate of f, be the unique spline,
s{x), in S() such that
Ds(x;) = ff. o <i <N -1,
and

s(x;) == f. i =0, N+ 1.
We have to prove that this procedure is well defined.

Theorem 2.1

Assume that b,y > h; for alli, or let N be even and the partition be uniform.
Given numbers j}lv 0Li< N+ 1, and f, i = 0. N - 1, there exists a unique
spline s(x) such that Ds(x;) = fl,0 <i < N+ l,and s(x) = f;, i =0, N + 1,
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Proof

In the subinterval [x;, x;. (], choose s(x) to agree with the cubic polyno-
mial p(x) such that

p(x;) = s;. p(x41) = S;41.
Dp(x;) = fi Dp(%;+,) = §+1:

such a polynomial exists by the theory of Hermite interpolation (see [2]),
therefore
6 6 4 2
D?s(x) = — $i+ — 8 — —f — —fla.
( l) h% h? +1 hi fz hi f; +1

A similar expression for D2s(x;) in [x,_,, ;] is given by
1 i i~1 i b= J

6 6 4 2
D?s(z;) = ——5;_; — 5; — T+ Ay,
(=:) T h,-_lf hf-lﬂ 1

Hence, for D2s(x) to be continuous at x;, we obtain (with the notation h; =
= %41 — %)

—3h hys;oq 3 (i hy — R R ) s, = 3R Ry sy =

2.1
= hifil—l + 2(h; + llz‘—l)f} - hi—lfil+1 @4

Forl <t < N, (2.1)is a system of IV linear equations in the unknowns
spp =1, 2, ..., N. It can be written in the matrix form As = d, wheze

R VI
Ay ] A C‘ i
0 a1 Az ;
A — | el | (2.2
\\\ NN :
! ~ o, |
f o Mz 1 \\7
! O Ay T
and
. h} _
hp == d - 1=0,...,N—2,
ki — R
o) .
Uy = — . =1,...,N—1
e
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For the existence and uniqueness of the solution, the matrix A has to be non-
singular, i.e., det (4) == 0, but this fact can be proved by Gauss elimination if

hisy > by
In the case of a uniform partition, ie., h; = h,_; =h, 1 <i < N, (2.1)
takes the form

38y 3841 = Rfl, - 4RI+ hflL L1 <i< N, (2.3)

and hence the matrix A will be:

o
o W
o

O

G
o W

In the case where IV is even, obviously the matrix will be non-singular
and it will be singular if N is odd.
Remark

Equation (2.3) is exactly the Simpson’s Rule applied to s’ (x), which is
a polynomial of degree two, in the interval [x;_,, x;.4]. i.e.,

Xi+a

, k ‘
fs(x) dx = ?[S}_l - 43,% + 311'+1] :

Xgez

where s; = f; where IV is required to be an even integer.
Now, combining the two cases prescribed by the previous theorems we
obtain:

Theorem 2.2

Let IN be even and the partition be uniform. There exists unique spline
s € S(4) such that

1
(@) s(xzj) :f:‘zje 05 ="7_N s(xy+1) = fy+10

.. 1
(i) Ds(x2j+1) :féj-i-l: 0<; < ‘2—(1\’ —2),

(iii) Ds(x)) = f,i=0, N + 1.
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Proof

In the subinterval [x, x;4 ],  even, we choose s(x) to agree with the cubic

polynomial p(x) such that

plx) = fi P(%i+1) = Six1s
Dp(x;) = 3}7 Dp(x;+ 1) :f}-'rl?

where s} and s;. ; remain to be determined.

) =1, [ (x —hji+1)2 P x»(;;- x-J] +

{

w)(® = wia)®
i

Siva [(x — %)’ D) (& — xa)(x — xi)z} Ll (=

k3 B k2
x— %) (x — x50
+ fla ( ) }(z% i), :
Hence
6 6 4 2
D2 s(x;) =— i —— sy —— st — — L.
( ) h,gf ’lll +H1 hl- hif,1

A similar expression for D3s(x;) in the subinterval [x;_, x;] is given by

6 6 4 2
D?s(x) =— —— sy — —fi + ——s} + ——f1;.
( ) h%_l -1 hll f hi_l 1 hi__l 1

So. for D2%s(x) to be continuous at the even knots, we obtain

BhiZ sy + 2 (k' 4 hih) st — 3hi? sy — = (2.4)

= —3(h7* — h7?) ji — hil fi, — AT R

In the case where i is odd, for D3s(x) to be continuous at odd knots we have:

st - 3(h — h) s+ hitshy = (2.5)

F

= — 3h2 fioa — 2(hit 4 BL) 1+ 3R fin

Equations (2.4), (2.5) form a system of N linear equations in the unknowns
S35 S35« « 5 Sy—q and 83, S5, . .., Sy for N even. The system (2.4), (2.5) can be
written in the matrix form

Bs = k. (2.6)
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In the special case of a uniform partition h; =h; ;=h, 1 <<i <N,

the system (2.4), (2.5) becomes
3s;_1 + 4hs; — 38,4, = — hf}_, — hf},, ieven, (2.7)
hsi_y 4+ hsjo, = — 3fio1 — 4hf} + 3fir1.  iodd, (2.8)

and the matrix B will be

0 h 0

3 4 3 O \{
N A \\

B = \\\ \\\ \\ ‘
i N > N
[N h 0 h I
[ i
L 3 4h

which is non-singular in the case [V is even and otherwise the matrix is singular.
Indeed, using the technique of symmetrization, denoting Dy = det (DBD 1),
we have the recurrence formula

2
Dy = aDyy — b 1Dy

with Dy = 1, D, = 0. where a,, = 4k, a,,+, = 0 and b,_; = 0. It follows that
D, == 0 and D,;., = 0. for all k. The vector k is

- 3f - 3f, — dhf — hfli=1 i
1
k= mhj}l—l—hﬂl*l’i:2j*1i;j;_~:_?(_/"\"m_2):_,7>2
i 1
_3ﬁ—1—411ﬁ1—f3ﬁ+1-i:2j~71, 1::].;7(5\7—2),_:\”>2
_—-Ilf_rl\7~1 — hﬁ{,+1 - 3fN+1: PN |

and we denote by §_f the unique spline defined by (i), (i1), (iif).

Unfortunately, we have not vet found a general sufficient condition on
the step sizes h; to assure the non-singularity of matrix B. However, it is easy
to see that for each partition there exists a position of the knot xy such that if the
matrix s singular, then its shifting to the right or left will mean non-singularity
of the matrix.

2.2 Double step interpolation

Let us examine how to develop an interpolation procedure which uses
only the values f = {f,, fisfor oo s fae fau+1)s N odd, when given A and such

that the interpolent function s(x) is a piecewise cubic polynomial on each
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subinterval [x,;, %5;4,], 0 << < (N — 1)/2 and is continuously differentiable,

ie., s(x} € GY(I).
Let s(x) be the unique spline such that
s(xg) = for, 0 ST (N 4 1)/2,
(2.8)

s(xy) = £y
DS(‘*Z: 1) —“f-.t-rl O—i.zz

We shall see that this procedure is well defined.

Theorem 2.3

< (N—1)2and f.i= N, N+ i, N odd,

Given numbers fu;, fr;51. 0 < i ¢
there exists a unique spline s(x) € C(I) which satisfies (2.8), provided hy, | =

== 2ft); .
Proof
In the interval [x,;. 45;45]. choose s(x) to agree with the cubic polynomial
p(x) such that
P(xa) = for, P(%g;1) = Spi+1
P(aie0) = foren DP(iyis1) = frrs1-
where s,;., remain to be determined. thus s(x) can be written as

(% — 29} (x — 2511)°

(ﬁ' “‘71—-0)(1_ ""'1--1) f’x—-

() = —fur :
l hvz(hn =+ hyiiq) h3iss(ha; + Ryis)
(2 — 2 )(x — 201 )(%¥ — Xjra)
- f’x——l
hoihsiia
(h"i — h"i;l) . 1
— Sapaq(® — Ao )X — Xgi10) g (X — Xoie = == L .
ol ! l >{( ) h3ih3; hoihoiy
Hence
3h-7‘ ~}- . f) 5 h%
Ds(y) = — ek 2hoees) gy Mg
hoi(ha = o) B3y (hoi + hairq)
_ (h': - hy Q_ 1 (2hoisy — hog)(hoisn + Do) Soiay e
haiis o hoihi; .y T
where

hop = Kppeq — X hojey = Xypg — Xppg
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A similar expression for Ds(x,;) in the interval [x,,_,, x,/] is given by

h%i_—}ng o fima (Bhoi—y + 2Ry o) for —
B _o(hai—n + hoiy) o hai_oha; o + hyi_y) N

- (hyi—o -+ hizinl)f;‘ _ __(E]f?i:_‘l_ T,]f%é:lzgﬁiﬂj_h?ﬂ_ S
hai o o hoi_ih3;_,

Dy )= —

2i~1+

Then Ds(x) is continuous at x,; iff

(2hgis — hoi_y)(hai_o £ haiy) o (Zhyq — hﬂi)({lf.zijl 'V"Ili‘rh'liw)__ s
hoiy 31 - ho; Bisa
— h3i_y Fria— (Zhais + hoi

h3i_o(hoi—s 4 hai_y) hai—s

- [_(?'_]_l_gi+ ,:(12?—2) - (3}1?"__—;‘?]121"’“1) ]fzi -

2041 =

S

hoiy(hoig + haiy)  hai(har = hoiey)

}.)i + RIES ) gi
(Al:m— ‘—hﬁv‘—ll fi — ”h' Joren

Rl Jaigy — e :
Roieq B3y (hay = hoiyq)
i=1...,(N—1)2. (2.9)

The system (2.9) can he written in the matrix form

Ms = e.

where M = [m,] is

and

(2haig — h'li:l_)jh‘li—Q + haiy) P
LETEY
(hai — 2hy;4q) (hos + hoyy)

Aofmy = i=1

h3iiq ho ' '

Haiy =

(N — 1)12,

(N — 3)12.

Hence the condition for the regularity of M is that



INTERPOLATION BY CUBIC SPLINES 99

In the special case of a uniform partition, i.e., hy;_p = hy;_ | = hy;uy = h,
(2.9) will take the form

iy — Sa: :*—-1— .. — hfY —L—i . L hfl _i 2.10
Spj~1 7 Saj+ g J2ie ifary 5 Jor + fzieq g Javee (2.10)

Similarly it is easy to show that the following theorem is also true.

Theorem 2.4

Given numbers f;, 0 <{i <L N + 1 and fy. N odd, there exists a unique

cubic spline s(x) € CY(I) such that

s(x)=fr, 0 <t <N+ 1,
1
Ds(xy) = fr
It can be shown that no restriction on the partition is required.

Finally, given f {fy. fi. fi-+ « + - fx-Sn-fn+1)- N odd, such that

$(®pi+1) = forr 1 D(Fariy) = fr141. 0 S i < (N — 1)12, (2.11)
Sk = fr i = 0, N+ 1.

We shall show that there exists a unique cubic spline s(x) € C(I) which is
piecewise continuous on each subinterval [x,;, %y;:,]. 0 < 7 < (N — 1)/2.

Theorem 2.5

Given numbers fy; 21, f2;+1.0 Zi << (N — 1)2and f,,i=0,N — 1,
N odd, there exists a unique cubic spline s(x) € CYI) which satisfies (2.11),
under some conditions described in the proof.

Proof: The proof can be handled as in Theorem 2.3.
The matrix form of it can be written as
As =k, (2.12)

3 Periodica Polytechnica EL 22/ 2--3.
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where A = [2;] is

2 2
3’i2i—g{5i_:__ai -+ E!L “/,———ﬂx} s 1=7
22 3 2 :
= - 61‘9 J: i— 1,

— ., j=i4+1,

it

0, otherwise,

i.e., A is a diagonally dominant tridiagonal matrix if

sy Sy
h}.’;i—l h%i
consequently,
1 o=
ﬁhzi Dhyey DB by =1 (N = 3)2,
and
L V3 ke hyoy B hy
where
2y — el
hoi s (hais + o 1) haisa(Roi =+ hois 1)
and
h-)i—-]
Yi= o 0p = —=— o+ ]
hn L1 —hed by

In the case of a uniform partition, (2.12) will be (2.13)

Spj—a — 108y ~+ $p109 = — ‘Ullei—l + 4‘hf~zli—:1 — dfoiy + Hoisn-
0 Zi (N~ 1)2,

with nonsingular coefficient matrix.

3. Error analysis

Here. we shall give a priori error bounds for the interpolation procedure
introduced in item 2.1 in the L%-norm. The spline interpolating function as
defined in item 1 is known [2] to be characterized as the solution of a varia-
tional problem.
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The question now arises, whether the same theorem is valid or not in

the case of spline function defined by (i), (ii), (iii).

Theorem 3.1

Given 4 and f= {fo.f1. ... frner fofne1). N even. Let

1
v {"EPC I) twlay) = fo 0 <j < Niwlxyeq) = fiy+1: and

1
Dw(x':j+1):f-2]j+1 <7Jj g'_;‘(N—— 2) and Dw(x)=f;,i=0, N4 1}.

Then the variational problem of finding the functions p € V which minimize
ti D2w!|2, for all w € V, has the unique solution §, f, whenever it exists.

Proof
As in the proof of Theorem 3.1 [2], p € V is a solution of the variational

problem iff
(Dp, D), — 0. (3.1)

1
> N; w(xy+,) =0 and

I

for all 6€ Vo= ju € PC>X(I)] w(x,l) =0, 0<j

IA

1
Dw(:\czj+ =007 —q—(N —2) and Dw(x;) =0.1=0,N =~ 1}.

Moreover, the variational problem has a unique solution. Now it remains

to show that J_fis a solution of (3.1) i.c.,

(D3, f D26), =0, 6 ¢V, (3.2)
Since
(D23, f, D25), — J D2 3, f(x) D (x) dx =
[

Y J D J, f(x) D2 6(x) dx .

Xojra

1 (N—

= :\' J D2 §, f(x) D2o(x) dx — g‘h

Integrating by parts it is easy to see that (3.2) is satisfied, because J,fis a cubic

polynomial on each subinterval.

3%
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Corollary 3.1
If f € PC*%(I), then

DA FIE 4 D% 3, — D3| = D |
Lemma 3.1 (see [2])
If f ¢ PCy*(a, b). then

b b
j f2x) dv < L:LJ (Df(x))2 dx, where
PCy*(a, b) = {p € PC?| g(a) = ¢(b) = 0}.

Theorem 3.2

If fe PC%%(1), then

1D2(f, — 3. [ < || D2/ | (3.3
1D~ 5f) Ik <[ D £k (3.4
and

h2
LT X (35)

f=d fll=<

T2

where h = max (%;4, — %;).

<
A
IN
‘).

Proof

Inequality (3.3) follows immediately from Corollary 3.1. To prove (3.4),
let e(x) = f(x) — J5f(x). Since e(xy) =0, 0 j gé—N, and e(xy.y) =0, N
even, then by Rolle’s Theorem

R S
De(§;) = 0.0 <j < -9—-(-‘/\/ — 2). xy; < & < Hpjra-

and

De(éN/Z) = 03 Xy < EN/‘Z < EN+1 -
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Then using Lemma 3.1, we have

St XY
hy? [
J [De(x)]* dx g%)—— J [D2%(x)]2dx, 0 <j < —;—(N —2), (3.6)
! & X - 5
j [De(x)]2 dx < —(——2—)—' f [D?e(x)]?dx, (3.7)
T
and
1 h2 1
j [De(x)]? dx < pry J [D%e(x)]? dx . (3.9)
Hence i o
o ) e ] ; . (4R)? = = e | . o
D 2] fJ(Dew) dv < = lJ 3 [+ f](D ()" ds.
0 & Exp: 0 i £xls
i.e., "
|| De(x) ||, g;— [| D2e(x) ||, - (3.9)

by using (3.3), we have
N 4h
|| De(x) [, ﬁ"‘: | Df(2) [l, -
In a similar manner, it is easy to prove (3.5) using (3.9). [J

+We now turn to the a priori error bounds for the interpolation error,
f— 9. J. and its derivatives.

Theorem 3.3

| bDw('xi) =f1,0<i< N+ 1andw(x)=f.i=0, N+ 1}. Then the varia-

tional problem of finding the functions p € V which minimize || D2w |2, for all
*
w €V, has the unique solution 9f, whenever it exists.

Proof

The proof is similar to that of Theorem 3.2 but for completeness it will
be outlined here.
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As in the proof of Theorem 3.1 [2], p € V is a solution of the variational

problem iff
(D?p. D33), = 0, (3.10)

for all ¢ ¢ V= {wPC>XI) | Dw(x;)=0.0<i<<N-+1 and w(x) =0,
i= 0, N+ 1}, i.e., the variational problem has a unique solution. Now, we

*
shall show that ¥, fis a solution of (3.10), i.e..

*
(D* 8, f. D%3), = 0. forall o ¢ V. (3.11)
But
1
& *
(D24, f. D2 6), = fD‘“’ &, f(x) D2 é(x) dx =
0
Xty
N ® N Es Xity
= D2 f(x) D*o(x) dx = > [Dé(x) D2 3, f(x)] -
=1 x; =10 X;
N # X{s1 N x{":ﬂ B
— 2 [é(x) D39, f(x)} - 2 J o(x) DY 6, f(x)dx=0.
i=0 X i=0
Theorem 3.4
If fe PC**(1), then
5
IDAf— B f) | DA | (3.12)
ES
D= B,f) 1o < hin | DS, (3.13)
and
‘ * 1 .
Wf—af.< l., D fls. (3.14)
=2

Proof

(3.12) is a consequence of Corollary 3.1. To prove (3.13) we note that
Df(x;) — Do f(x;) = 0, for all 0 <<i <L N =+ 1, and by Lemma 3.1 it follows
that

Xi+1 Xity

~ £3 1 T
| A = Db, g dn < rea—a)? | D2() — D26, )2 s
7 (3.15)

x; Xi

forall 0 <1 < V.
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Summing both sides of (3.15), (3.13) follows by taking the square root
of both sides of the resulting inequality. N
(3.14) is proved by using the fact that f(x;) — ¢, f(x;) = 0,i =0, N 4+ 1,

and using Lemma 3.1 and (3.13). i.e.,

1 N 1 1 .
J @) = b fr ar = — [ 1Df0) — D b, ) dx <
D B f) S D~ )
= 2l sJhilz ="y — )i
Summary

It has been shown that, given a suitable partition of I = [0. 1] and the derivative values
of a given funection f(x). at the knots of 4. together with the function values at the end points,
there exists a unique cubic spline on I which is the interpolant of f. The same can be said if
the derivative and function values are pairwise alternating. Similar questions have been in-
vestigated for double-step interpolation. A priori error bounds are also presented for single-
step interpolation.
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