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Introduction 

Operational calculus will he referred to as the Heaviside calculus for soh-
ing linear differential equations or system of equations. The original form 
of this calculus is known not to he a satisfactory mathematical model. The usual 
form of this operational calculus is hased on Laplace-transform, however, 
attemptions have heen made to an algehraic foundation in which Laplace
transform provides only a computational or realization device. 

A well-known algehraic foundation of the operational calculus is due to 
J. lWikusinski [1]. The purpose of this paper is to fit the Mikusinski's calculus 
into the usual frame of functional analysis. 

Two different representations of translation invariant operators in the 
discrete case will he descrihed to motivate our investigations. 

1. The discrete case 

Let S+ he the linear space of finite sequences of real numhers. If 
{an} E S+. then 

i.e. for every {an} E S+ there is a !V, such that ak = ° for k> N. Let U he 
the translation operator 

i.e. the zeroth element of U{ an} is 0, and the 1.--th element is ak- 1 if k = 1, 2, ... 

The linear operator T is called translation-invariant if UT = TU. In the 
follo>v-ing the traslation-invariant operators in S + will he characterized. 
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If T is translation-invariant, eo is the unit sequence 1, 0, 0, ... and 

then 

where em is the sequence with one in the moth place and zeros in other places. 
Consequently, on the basis of e,,; k = 1, 2. .,. the matrix T 

T= aN 

l ~ 
o 
o 

a,\--l aN - 2 

aN a N - l 

o aN 

i.e. if tile is the ik-th element of T, then 

. .. 1 

... 

_ {ai-I; 
tif: - 0 

if k<i:S;:lV+k 
otherwise. 

Particularly, for the translation operator, Ue o = el and hence 

000 
100 

U 0 1 0 
001 

The translation-invariant operators form a cornmutatin' algebra and if 

n 

then the n-th element of Ty is .:E a,,_ i Yi' T.Y is called the (discrete) convolution 
;=0 

of a and y and denoted by a"* y. Since 

11 11 

.:E an _ i )'i == ~ ~"n-i ai~ 
;=0 ;=0 

the convolution is commutative, i.e. a"*.y y~a. 
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It is worth to mention that the operator T and his infinite matrix T is 
determined by the finite sequence 

Because of the representation Ty = y * a, the operator T is called the 
convolution operator a. The connection between convolution and translation 

operator is 

Ty=y*a 

'where the sum eventually consists of finite members depending on a. 
It follows from this connection, that if (F is a multiplicative linear func

tional of the commutative algebra of translation-invariant operators (or, what 
is the same, convolution operators), then 

peT) = pea) = :i a"rr( U)':. 
"=0 

IV 

Hence, if p( U) = z, then p(T) is a certain value of the polynomial ~ a,/' and 
"=0 

thus, because of the totality of multiplicative linear functionals, the algebra 
of convolution ope;:atDl"S is transformed into the algebra of (complex) polyno
mials called the Z-trunsform of u. 

2. The maximal extension of translation-invariant operators 

Let e+ be the class of continuous functions of the real line which are 
zero for t < 0 . e+ is a linear space over the field of complex numbers with 
tha usual linear operations. 

The sequencefn is convergent in e+ if there is anf E e+ such thatfn -. f 
uniformly on every finite closed [0, to]' 

Remark. The reason why e+ has heen chosen for the domain of transla
tion-invariant operators is to diminish the problems connected with the clas
sical, so-called hard analysis. Starting from a more general class of functions 
and many different convergences leads to the same structure. 

The operators 

Ur : [UJ](t)=f(t-r): 

are called translation operators. 



HO L. JL4TE 

The linear operator T is translation-invariant if 

f E D(T) => UJ E D(T) and U.,T = TU,,; -z: 2: 0 

where D(T) is the domain of T. 
Remark. It is essential that T is not everywhere defined on C+ in contrast 

to the discrete case. Overcoming the difficulties yields T defined on but a small 
part of C+ and that different operators are defined, in general, on different 
parts of C+ is the main subject of our investigations. 

We shall deal with closed operators. The operator T is closed if 

fn E D(T); n = 1, 2, ... , fn -+ f and Tfn -> g 

it follows, that f E D(T) and Tf = g. 
A continuous operator T with closed domain is a closed one. Particularly, 

a continuous operator defined everywhere is a closed one. On the other hand, 
a closed operator is not necessarily continuous. The simple example for this is 

d 
the differential operator T = - in C .... 

dt . 

The convolution of the functions f, g E C + is defined as 

in fact: 
t 

f*g = J f(t - T)g(T) dT 
o 

since g(r) = 0 if T < 0 andf(t - r) = [UJJ(t) = 0 if r > t. 

The foUo'wing axioms of multiplication are satisfied hy the convolution: 

I. f*g = g*f f,g E C+ 
n. f*(g*h) = (f*g)* h f,g,h EC+ 

HI. (f+ g)*h =f*h + g*h f,g,hE C+ 
IV. f* g = fJ if and only if f =O, or g = fJ 

where 0 is a function of a zero value everywhere. 
There is a closed connection bet"reen translation and convolution. 
Letf, g E C+ and for a fixed t: 

• k 
I·k = - t, k = 0, 1, 2, ... , n; 

n 
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then the sums 

n 

hn(t) = ~ (}.k - }'/,-1) f(}.k) UA/, g(t) 
k=1 

are the rectangle approximation of the integral f * g for a fixed t and 

The operator T: Tg = f * g, 'where fE C+, is called a convolution operator. 
The operator T is called multiplier if g E D(T) => f * g E D(T) for every 

g E C+ and 

It follows from the axioms I and II satisfied by the convolution, that 
every convolution operator is a multiplier. Moreover, T is a multiplier if 

Tf * = f * T for every convolution operator f. 
Theorem 1. Every closed translation-invariant operator is a multiplier. 
Proof. If T is translation-invariant and g E D(T), then 

n 

Thn = ~ (}." - }·k-l)fU./J UAk Tg 
1;=1 

hence, from the connection between translation and convolution: 

Th" -f*Tg. 

On the other hand,f* g E D(T) and T(f*g) = f*Tg since T is closed. 
If T is a multiplier, then for every f, hE D(T) 

h*Tf= (Th)*f 

i.e. a multiplier can be transferred from one side of the convolution to the other; 
indeed, if T is a multiplier, then 

and 

T(lz *f) T(f*lz) =f*Th = (Th)*f· 

Remark. It is a natural question whether every operator satisfying (*) 
is a multiplier or not. If T is every-where defined, then the answer is yes; but 
in general, an operator satisfying ( *) is only a restriction of a multiplier. 
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The way how (*) as a multiplier can he transferred is very slmllar to 
the definition of derivation and many other operators in distrihution theory. 
Indeed, hy the property ( *), a closed connection hetween translation-invariant 
operators and distrihutions can he demonstrated. 

Theorem 2. For a given pair fo, go E C+, (fo ~-:. 0), he defined 

D - (f· - I . there exists g such that f*go = g*fo} 

then there exists a unique operator T satisfying ( *) such that D = D(T) and 

Tf=g· 
Proof. It is ohvious that the operator T satisfies (*). If for a certain 

fED, two different functions g and g' exist such that 

and 

then 

what means that (g - g') *fo 0. Since fo . -0, it follows from axiom IV of 
the convolution that g g' = fJ and hence the uniqueness of T is proved. 

The operator defined as in the previous theorem is called maximal operator 
determined hy (fo' go)· 

Theorem 3. Every maximal operator T is a closed translation-invariant 
operator. 

Proof· If j" -. f and gn' g, then fo*gn'~ fo*g and go*fn -+ go*f. 
Consequently, if for every pair (f", g,,) n I, 2, ... 

then fo * g = go * f. It follow's, that Tf g for the maximal operator T deter
mined hy (fo' go) and hence T is closed. 

It is ohvious that every translation UT r > 0 is a continuous operator 
defined everywhere and hence it is closed; moreover each UT r ;> 0 is transla
tion-invariant. Consequently, it follows from theorem I that every U, r > 0 
is a multiplier and hence if 

then 

It follows that the maximal operatOI' T determined hy (fo' go) is translation
invariant. 
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If T is a maximal operator, then it is a maximal translation-invariant op
erator in the sense that there is no translation-inyariant extension for T. 

As a partial result of the theorems proved in this item, it has to be pointed 
out that translation-invariant operators and multipliers are almost the same 
things; every closed translation-invariant operator is a multiplier and every 
multiplier can be extended to a closed translation-invariant operator. 

The connection between the different types of operators investigated in 
this item is illustrated by the diagram in Fig. 1. 

Translation 
invariant 

closed operators 

Fig. 1 

3. Maximal translation-inyariant operators and convolution-quotients 

It follows from the Nlikusinski's definition of conyolution quotients and 
theorem 2 that the map 

is an 1-1 mapping from the algebra of maximal operators to the eonyolution 
quotients. Moreover, it also follo·ws from theorem 2 that this mapping is onto. 

In fact, the mapping ( ~ ) is an algebraic isomorphism: 

Theorem 4. If T1 "0 (Trf1Jl) and T~ ~ (T~f'!.,f2) 

then T1T~~. (TJ1*"TJ2,f1*fl) and T1 T 2 ....... 

-- (f1 ~ T~ f~ ;- f~ 7;- Tlf1,f1 *" f2)' 

Remark. 

is kno·wn to he the product. and 
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T 1T2(fl *f2) = T lT2(f2*fl) = 

T2(h*Tdl) = T2(Tdl *f2) = Tdl * Td2' 

4. The convergence of maximal operators 

Let {Tn} be a sequence of maximal operators, f E D(Tn) n = 1,2, ... 
and the sequence {TIlf} be con yergent in C +. Then {T n} is called convergent in 
one point. In this case T = lim T" is defined as the maximal operator given as 
in Theorem 2 by the pair (f, g) where g = lim Tnf. 

T = lim Tn is independent of the choice of fE D(Tn) n = 1,2, .... In
deed, if fo ~ ~ f and fo E D(Tn) n = L 2, ... then 

morcover if Tnf ~ g and T,Jo -. go' then 

and hence (fo' go) defines the same maximal operator T as the pair (f, g). 
It is easy to show that the convergence in one point is equivalent to the 

Mikusinski's convergence. 
Now let TU.) be an operator function i.e. a fuuction from a subset of real 

numbers into the algebra of maximal operators. T(i.) is continuous over an 
interval (!X, (3) if there is f E C+ such that TU.) f E C+ for every I. E (!X, (3) and 
T(I.) f is a continuous function on (7., (3) >< R, where R is the real line. T(}.) is 
derivable on (7.., (3) if T(i.)fis deL'ivable on (7.., (3) xR. In this case 

T'(}.): 
<5 

T'(i·)f= -. TV)f· 
M. 

It can be shown, that continuity and derivative are consistent ·with the con
vergence defined in the beginning of this item and hence, continuity and de
rivative are equivalent to the Mikusinski's ones. 
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Example. For the translation operator U(i.) i. > 0: 

d 
U(I.)'f = -f(t - i.) = - 1'(t - i.) 

d}. 

115 

particularly, if D is the differential operator d/dt, then the value of U'(I.) at 
i. = 0 is 

- Df= -f'. 

Consequently, the translation operator U(I.) satisfies the differential equation 

d _ 
-do V(i.) = - DU(i.); U(O) = E 

I. 

for i. 0 and the identity operator E. 

For the closed finite interval [0;, {1] and 

considered the formal sum 
n 

If there exists f E C + such that T().) f E C + for eYery ). E [0;, {1], then 

n 

~ (l.k - )·1;-1) T(l.k) f E C + 
k=l 

is the rectangle approximation of the (parametric) integral 

f! 
J T(i.) fd? E C+ . 

If the above integral exists, e.g. if T(/.) is a continuous function of two vari
ables, then 

f! [ f! ] f! J T().) dl.: J' T(I.) d). f = J T (I.) fd). 

is called the integral on [0;, {1] of the operator function TV). 

Example. The convolution operator 

4 Periodic a Polytechnica El. 22/ 2-:}. 
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is a continuous translation-invariant operator defined everywhere and hence 
it is maximal. It follo"ws from the connection between translation and convolu
tion shown in item 2, that 

(*" ",,-) 
,~ -'.'" f = \. f(l.) UU·) di. 

where UU.) are the translations again. 
It is emphasized that the integral ( * * ) is eventually an integral on the 

finite interval [0, t]. 

5. Laplace-transform and multiplicative functionals 

The previous items demonstrated the connections between the concepts 
of "translation-invariance", "multiplier" and "convolution quotients". Next 
a natural e,..'(planation will be given of the question: why the Laplace-transform 
is the mathematical device of constant systems? 

Let cp be a continuous multiplicative linear functional (shortly, multipli
cati've functional) in the algebra of maximal operators. i.e. 

I. cpU'ITI + i.2T 2) = i.ICP(T1) + i'2CP(T2); (linear) 

H. if Tn -> T, then cp(Tn) ~ cp(T); (continuous) 

HI. CP(Tl . T2) = cp(TI) cp(Tz); (multiplicative) 

Then, from Eq. ( *) of the previous item 4, it follows that the function cp( U(}.)) 
satisfies the equation 

q;f(U(i.)) = - scp(UU.) 

cp(U(O)) = 1 

where s = cp(D). Hence cp(U(i.)) = e-si. and it follows from the representation 

( * *) in 4 that 

cp(f) = cp [f f(l.) UU·) di. J = or f(i.) e-
si

. di. . 

Thus we have obtained 

Theorem 5. The multiplicative functional cp is defined for the convolution 
operator f if and only if the Laplace transform of f E C+ exists in the point 
s = cp(D). In this case,cp(f) is the Laplace transform offin the point s = cp(D). 
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Now the more general case will be considered where the maximal operator 
T is not a convolution operator. If f E D(T) and there exists a Laplace trans
form of f and Tf, then 

cp(Tf) = r(T) rp(f) 

since rp is multiplicative. Hence, for cp(f) == 0 we have 

r(T) = cp(Tf) . 
cp(f) 

The nlue cp(T) is independent of the choice of f E D(T). Indeed, if fo E D(T) 
is different fromf, rp(fo).· 0 and the Laplace-transform offo and Tfo exists, then 

and 

hence 

it follows: 

(((fo * Tf) = rp(fo) cp(Tf); 

rp(Tfo) = rp(Tf) 

rp(fo) rp(f) 

Summary 

Description is given of translation-invariant operators in certain linear spaces of im
portance in the operational calculus. The connections between these classes of operators and 
Laplace-Transform technique and :'r1ikusinski's calculus are investigated. 
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