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1. Let G be a compact Abelian group and let {(t, Yn)}, n = 0, ± 1, 
, 2, ... , be the set of characters on G. On the lines of Deleeuw [2], we say 

that T is an operator on G, provided 

where R t is the translation operator on G defined by 

(Rd)(s) = f(s - t); s, t E G . 

Let B be a translation invariant dense linear subspace of Ll(G). We sup­
pose that B is a Banach space under a norm II . liB satisfying the conditions 

f '! (G) ,I ! f 11 
Ill, -- I1 I,B' 

Rdl!B= !lfl!B,fEB and tEG; 

lim il Rd f it B = 0 , 
t-O 

and B is closed under multiplication by {(t, Yn)}' i.e., if f E B, then the func­
tion Mnf given by 

belongs to B. 
Let £ be the Banach algebra of bounded linear operators on B with re­

spect to the norm i i • Ilf' An operator T in P. is called almost invariant, if 

lim il TRt - RtT !if = O. 
1-0 

We denote the set of almost invariant operators in £ by P.",. 

* Based on a research made at the Department of Mathematics of the Faculty of 
Electrical Engineering. 
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In fact,f* is a closed sub algebra of S':.. For, let T 1, T2 E f* and I., fJ, be 
any constants, then we have 

Hence f* is linear. 
Also, for any Tn E f*, we have 

which tends to zero for Tn -+ T. 
This implies that T is continuous in f*. 
2. Let C be the class of functions such that 

where ak > 0, ak -+0 as k -+ : = and L12 rt." O. 
We observe that the series 1:7.,,(t, I'k) is uniformly convergent. Hence 

every function in C is continuous. 
We define the Fourier series associated with an almost invariant operator 

Tby 

S(T) = ~ an(T) . (t, i'n) , 

where 

an(T) = \ (t, y,J R_ t TRt dt . 
G 

In a recent paper Deleeuw [2] has proved that the Fourier series of an 
almost invariant operator on a circle group is (C, I) summable to T in the opera­
tor norm. 

The object of the present paper is to study the convolution structure for 
an almost invariant operator. We shall proye the undermentioned: 

Theorem. The following statements about an operator T are equivalent: 

i) T E S':.*. 
ii) S(T) is summable (C, I) to T in the operator norm. 
iii)T=P*Q; PEf* andQ EC. 
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3. 'We shall use the follo'wing lemma in the proof of our theorem: 
Lemma. If a series .Eun is summable (C, I) to fin a Banach space B, rp is 

a positive increasing function satisfying the conditions 

= 1 
\,--dt<=. 

o' rp(t) 

fln = rp-le! un - f;l-1), 

Un being the (C, I) mean of .Eun ; then there exists a sequencepn}' 0 < i'n :S: Itn' 

,12 i.n:S: 0, }.n t =; such that the series .E)'n un is summable (C, I) in B. 
For the proof see [I]. 
4. Proof of the theorem. First if will be shown that 

i) .::> ii). 

The n-th (C, I) mean Un (T) of the Fourier series of T is given by 

G 

= J K" (x. t) R_ t TRt dt, 

G 

where Kn(x, t) is the n-th Fejer kernel. 
Therefore, 'we get 

un(T) - T = \' Kn(x, t) {R_tTRt 
G 

since Kn(x, t) is an approximate identity. 
Next, 'we shall show that (ii) => (iii). 
Let us consider, e.g. the series 

T} dt 

(4.1 ) 

(4.2) 

By the lemma in section 3, the series (4.2) is summable (C, I) in S':.* to, e.g. the 
value P. 
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Thus, we have 
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/In(P) = J (t, In) R_ t PR dt = 
G 

= S [R_ t PRt - Uk (P)] (t, Yn) dt + 
G 

\ uk(P) (t, In) dt = 11 + 12 . 
G 

We now observe that 11 -+ 0 in the operator norm. 
Also, for k n, we have 

by the orthonormality of the set {t, In}; n 

Hence, 
0, : 1, ... 

i.e., 

/In(P) = i'n . an(T) 

an(T) = i.;;-l . lln(P)' 

Choosing IJ.n = i.;;-l in item 2: 

.::12 
IJ.n = {i.n+l(i.n+2 + i.,J - 2 }'n i.n+2} / (J'n i'n+1 i.n+2) ;> 

1 (i.n - }'n+2)2 
;>-

2 i'n i'n+l i'n+2 

;> O. 

(4.3) 

Thus, we infer that every term in the series S(T) is a convolution of the 
terms in the series 

~ llll(P) . (t, f'n) 

and 

Hence: 

Finally, we have to prove that (iii) = (i). The convolution of an operator 
P in f", and a function Q E C are defined by the vector valued integral 

P*Q = S RtPR_ t Q dt. 
G 
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In fact, the above integral is defined as the limit of the sum 

n 

~ R_t;PR!jQ(tJ .dti 
i=l 
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Since f* is a norm closed linear subspace of f and RI PR_/ E f*, therefore 
P*Q = T is an almost invariant operator. 

Thus: T E f*. 
This completes the proof of the theorem. 

Summary 

A theorem is presented about the construction of almost invariant operators, intro­
dnced by Deleeuw [2], for translation-invariant operators and mnltiplication operators. 

References 

1. BRYANT, J.; On convolntion and Fourier series, Duke Mathematical Journal, Vo!. 34 
(1967), 117 -122. 

2. DELEEuw, K.; A harmonic analysis for operators. Illinois Mathematical Journal, Vo!. 19 
(1975), 593-606. 

G. S. PA~DEY Vikram University Ujjain, India. 


