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1. Introduction

[5] described construction of an operator field 4 by the one-sided Laplace
transform and the completion principle. This operational calculusis, however,
not only a one-sided operational calculus, but in a certain meaning it is a
two-sided one, too. In order to make clear this fact the operator field A, will
be developed in a slightly different way by means of the two-sided Laplace
transform (see Section 2). Another two-sided operator algebra A, based on
the two-sided Laplace transform has been suggested in [2]. Since our problem
is related to these investigations. a short introduction in Section 3 will be pre-
sented.

The differential operator s and the shift operators ¢ (% real) are known
to belong to the intersection 4, N 4, N M. where M is the Mikusinski operator
field [4]. On the other hand, the shift operators e*° for complex «’s are in
A; N A, batin this case ¢* § M [4].

In [7] the operators e*° are explained to be complex shift operators for
certain holomorphic functions embedded in A,. But that has been done in the
image space rather than in the original t-domain. In [2] the therm of a complex
shifting has beeen introduced in the t-domain.

The question in which case the complex shifting of a certain classical
function in the ¢t-domain can be claimed to be again a classical one will be in-
vestigated here. Since the functions treated in [7] are irrelevant, to find an
answer to the previous question is the aim of the present paper.
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2. An equivalent construction of the operator field A4,

L, , stands for the set of all complex-valued functions f(t), —oo <t -7
< 4o, having the folloving properties:

f(t)is locally integrable in the Lebesgue sense; (2.1)

fo = ] e fupde.

—
8]
[\™]

~—

the two-sided Laplace integral converges absolutely in the strip » <7 Re(z) <7 -
The equality in Lu,,, is defined in the Lebesgue sense hence the Laplace
transform is a bijection between the set L, ,. and the corresponding image set
E,,,g of L, .. (See [3].)
Let L= |y L,, That is, for any f(t) € L there exists a right half-

plane A4 = {z: Re(z) > 2} {(where » depends on f) such that the Laplace integral
(2.2) absolutely converges in 4. In L the addition is defined as usual. and mul-
tiplication as convolution for

@

(f*g)e) = [ fit — u) g(u)du. (2.3)

0

which is always a function in L by assumptions (2.1) and (2.2). (See [3] p. 121.)
Let M, be the field of all functions f{(z) meromorphic in some right half-
planes 4, of the complex z-plane (4; may depend on f), where two functions
in M are equal if they coincide in some right half-plane 4, and the operations
are defined pointwise. I denotes the subalgebra of all functions h(z) € My
holomorphic in some right half-planes /. By the assumptions (2.2) and (2.3)
the convolution theorem holds ([3] p. 121), it follows for L that the map (2.2)
is an algebraic isomorphism of L onto L < H, hence L is an integral domain.
Remark. The linear space C(—co, o=) under the convolution multiplication (2.3)
has zero divisors therefore no operator field analogous to M can be defined.
Now let Q(L) be the quotient field of L. The elements of Q(L) are of the

form -—-f , where f'and g == 0 (g is non-zero in the Lebesgue sense) belong to L and
o
o

iis called convolution quotient with respect to (2.3). The equality and the

operations in (L) are defined as usual.

In H the following convergence will be introduced: suppose that (h,(z))
is a sequence in H and h(z) € H. By definition, lim h {z) = l(z), if there exists
a right half-plane 4 where h,(z) and k(z) (n = 1, 2, .. .) are holomorphic, and
the sequence (k,(z)) converges to k(z) uniformly on every compact subdomain
of 4. This convergence is compatible with the algebraic structure of H. In
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h(z) and g{(z) in H such that lim f (z) = h(z) and lim g,(z) = g(z). Obviously

the function
< > (2.4)
gll

belongs to M. Two fundamental sequences (f,/g,) and (v /w,) are equivalent
if L¢f, /g, = L(v,w,, in the sense of M. It is easy to prove that the above
relationship is an equivalence relationship. The equivalence classes are called

analogy to [5] asequence ) < Q(L) iscalled fundamental if there are functions

operators, and set of all operators will be denoted by 4;. An operator a € A4,
represented by a fundamental sequence (f/g,) will be written in the form
a = (f,/g,>. Two operators are equal if their representatives are equivalent.
The algebraic operations in 4, will be defined as follows:

a+b = <(f‘n%:<‘u’.n + vll*gn)/(wn%gn)>
akb = <(fn%<‘l (g% w,)) (2.5)

where a = (f,/g,> and b = (v, jw,

Theorem 1. The map Lla] = L(fjg,>, a = {f,/g,>- defines an algebraic
isomorphism of 4, onto M,

The proof can be handled similarly as in [5].

An obvious consequence of the previous theorem is

Theorem 2. A, is a field under the operations (2.5).

To prepare the proof of Theorem 1 the following is needed: a sequence
(06,) C C7{—-oc, o) is called a J-sequence if for all n(n =1, 2, 3, .. n) the
following properties are fufilled:

1
supp 9, C [0? —] : ]

n
0,(2) == 0 for all 1; [ (2.6)
§ 6,0 dt = 1. |

Since in this case the integral (2.2) for 4, is a finite Laplace integral, §, is an
entire function for each n. In [5] it has been proved:
Lemma 1. lim §,(z) = 1.

1 1
We should remark that the assumptions supp 9, C[—, ——-J are also
n

n
sufficient for Lemma 1, and its proof involves no difficulties. For the proof of
Lemma 3 we need.

3%
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Lemma 2. ([1] p. 258.) For any function h(z) € H polynomial sequences
(p.(2)) can be found with the property lim p,(z) = k().

Now let us prove:

Lemma 3. Let h(z) = 0 be any function of H. Then there are sequences
(f) © CZ(—oe, ) < L where f,, 2 0 for each n, such that lim f,(z) = h(z).
(For h{z) = 0, f,, = 0 for any n can be chosen.)

Proof: There is a sequence of polynomial funections p,(z) such that
lim p,(z) = h(z) by Lemma 2. If (6,)is a 6-sequence then, according to Lemmal,
lim §,(s) p,(z) = h(z). since the convergence in H is compatible with the al-
gebraic structure of H. The function f,(z) = §,(z) p,(z) is the image of a function
fn €CZ(—oo. o) because of the derivation rule of the Laplace transform.
Since f,(z) 2 0 we have f,, = 0. This completes the proof.

The proof of Theorem 1. I will be proved to be a bijection of 4, onto M. If
a = {f,/g,> is any operator in 4, thenobviously L]a]= <f, g,> € My is unique.
Let f(z) € My be any function, then functions A(z) and g(z) == 0 of H can be
found by the theorems of Mittag— Leffler and Weierstrass [1] such that

f(:)z-{:% . According to Lemma 3. sequences (f,) and (g,) in L (g, == 0)
8(=

exist, satisfying lim f, (z) = h(z) and lim g,(z) = g(z). Therefore (f,/g,) € Q(L)
is a fundamental sequence which defines an operator a = /f, /g, >. If another
representation of f(z) is used as a quotient of two holomorphic functions or
other sequences according to Lemma 3. then always equivalent fundamental
sequences are obtained; therefore the operator a € A, has been determined
uniquely.

Finally it is easy to show that the properties of an isomorphism are ful-
filled by applying the compatibility of the convergence in H with respect to
the algebraic structure. Hence Theorem 1 holds.

The convolution quotient field Q(L) can be embedded in A, since the map

fig — (fi>- (fe€ QL)) (2.7)

is an algebraic isomorphism of Q(L) onto a subfield of 4,. On the other hand.
the map f — (f*g)/g (g & 0. g € L) provides an embedding of L in (L) such
that

J—f*g)g (2.8)

defines an embedding of L in 4,. Hence in 4, we write f too. It is easy to see
that L[f] = f(). Similarly. the function L[a]. where a € 4, is any operator,
is said to be the Laplace transform of the operator a.

Now let L, be the subalgebra of L consisting of all functions f € L
having the property supp f < [0, o). Obviously for any g € L the function
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. 2(t) fort > 0,
3710 fort <0

belongs to L. . The operator

s= (f (L £

has the properties L[s] = z and s % f = f" if for f the theorem of differentation
holds (see [3]). Therefore s is the differential operator in 4;. If @ € A, has the
Laplace transform L[a] = f(z) € My then using Theorem 1 one can write for-
mally a = f(s).

Since L. is an integral domain. the quotient field Q(L.) of L. can be
considered. It is known that Q(L;) © 4; N M (see [5]). Other examples for
operators from A, are found in {5] and [6].

There is a convergence structure defined on 4, compatible with the field
structure. A sequence (a n) < A, converges to a A, if there exist quotients
L[a,] = h,(z)/g,(z) and L[a] = h( )g(z) in Mp h g €H, g,== 0, such
that lim k,(z) = h(z) and lim g,(z) = g(z).

ne & R

3. The operator algebra A4,

[2] starts with the linear space B of all functions ¢(r) having the proper-
ties:

¢(t) € Ly, for certain ¢ >> 0 (depending on ¢) , T (3.1

#(z) is holomorphic for 0 <7 iz] << o . (3.2)

With the convolution product (2.2) B is also an integral domain, isomorphic
to the image algebra B under the pointwise operations. Obviously L N B = 8.
But there are functions ¢ € L not contained in B; for example e’j}f whenever

0 for t>0

Re(z) > 0, and on the other hand ¢(r) :{ 0 where Re(x)>> 0 belongs

e for <
to B but not to L. In B the scalar produets

FE 5@) = - 707 e

are introduced, where §*(z) is the complex conjugate of $(z) and ¢ is a suffi-
ciently small positive number.

12G) [ = (7 #()):"

defines a norm for each ¢. These norms generate norms || ¢(t) | = ¢(z) |
in B too. Let 4, and 4, be the inductive limits of B, B respectively.
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Theorem 3. (See [2]) A, consists of all functions @(z) which are holomor-
phic for 0 < |z| <o with a certain number ¢ depending on @(z). The algebras
A, and A, are isomorphic.

4. On the operators exp (xs)

From the definitions of A4, and A, and from the previous results
A, N 4,6 follows (also wehawe 4, 4,0\ M == @). Obviously, if an opera-
tor f(s) € A; has a Laplace transform f{z) € My, which can be extended
holomorphically to a function in A4,, then f(s) can be identified with an opera-
tor from A,.

The differential operator s (with the image z) the operators ¢* (for any
complex number a; [[e*] = ¢*?) belong to 4, N A,; evidently the intersection
t L N Bis asubset of 4; N A,. For « = %, } is a real number, e” is the shift op-
erator, i.e. ¢ ¥@(t) = @(t + 2) follows from the shift theorem (see [3] p. 87).
If ¢ ¢ L N B and supp ¢ C [0. o) then for all real numbers = the shifting
formula also holds and ¢** € M for all real «. But when zis a complex (not
real) number, ¢ ¢ M. (See [4].)

The formal shifting in complex case for all generalized functions from
A, is defined in [2], but the suppositions where e* ¥ @(t) is a classical function
have not yet been investigated. In [7] the shift operators ¢ have been ex-
plained for certain functions different from the basic funtions ¢ € L. Our pur-
pose in this part is an investigation of the term e* % ¢(t) for functions of 4,
or A, where o is a complex number.

For a = 1 + it (7, 7 real),

e K p(t) = ek eM kp(t) = kot + 1)

holds where ¢(t) € L (or B). Since (¢ - 7) € L {or B) itis enough to investigate
the term e™ % ¢(t) for real r. We wish to get (as a natural generalization of the
“ordinary”’ shifting rule)

ehs%q)(t) —_ (P(t _1__ l‘L') (41)

Obviously it is necessary to have @(t + it) defined. From the next examples
this requirement will be clearly seen not to be sufficient.

Example 1. The function ¢(t) = exp (— ) € L (1 B can be extended to a
complex function ¢(&) = exp (— £2) (§ =t + it) such that exp [— (¢ +i7)%] is
meaningful for all real? and 7. One can show easily thatexp [— (¢ + i7)2] € LNB.
Since

U . . _ 1
Lie™%e-"] = €™ - |z - exp [zzﬁ)
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from a theorem of [3] (See [3]. p. 87, Satz 4)

A

E[exp {__ (t < ir)g}] — er:E [e_g[rt . e_ts] _ erz V;z‘ eé(z+2iz)= — eirz V" ¢ z:’

therefore the shift formula (4.1) holds.
Example 2. The function ¢(t) = e¢Z' € L N B can be extended

- e—* for Re(&) >0,
#s) —{ 0 for Re(§) < 0.
The shifting ¢ (¢t + it) = eZ!*™ is meaningful for all real 7. Moreover

¢{(t - i) € L N B since

g > , . 1
e Hp(t i) dt = | e H e UHIT) dp— o—iT )
ey ) J T
and the integral converges absolutely for — 1 < Re(z) <{oc. On the other
hand,
I:[e-hs% e‘,“'] — eir: ___}m__ e e»-ir 1 :
v 14z 14z

hence (4.1) does not hold in this case.
Now a class of functions will be defined for which (4.1) holds. Let L™
{0 <y < u) be the set of all functions p(t) € L with the properties:

@(t) can be extended to a complex funection ¢(§), & = ¢ - iz, which (4.2)
is continuous in the strip — v < v < y;

for all real 7, — y < v < u. the functions ¢(t = it) belong to L;  (4.3)
if —y < v < u and z belongs to some right half-plane 4 then the
equality

knd + oo A-iT

Vedtpydt = [ e q&) de (4.4)

e — it

holds.

The set B"* can be defined by analogy.

Remarks. (e) From (4.4) it follows that the extension @(§) of @(t) de-
scribed in (4.2) is unique. In order to see this fact, p,(£) is supposed to be an
extension of ¢(t) different from @(£), then (4.4) holds for both functions. By
substitution § =t + it

e” (et +itydt = e [ eH o (s + it) i

e vl —oa
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holds because of (4.3) and the substitution rule (see [1] p. 78). Since ¢(t - i7)
and ¢4t + it) are continuous, @(t + it) = @,(t -~ it) follows for all v in
—y T <M

(b) The property (4.4) implies that the right-side integral in (4.4) con-
verges absolutely in the same half-plane as L[g(t + iz)].

Theorem 4. The shift formula (4.1) holds for all ¢(t) ¢ L' (or B™") if
—y <t <M

Proof : L{exp (its)*¢(t)] = €™¢(z), and the integral converges absolutely
in a half-plane 4. On the other hand by use of (4.4) and substituting § = ¢t 4 it
we obtain

+ oo -HiT

Llp(t + it)] = €= [ e p(£)dE = €™ G(z)
— 1T
such that Theorem 4 holds.
Let us consider special cases: L* stands for all functions ¢(t) which can
be extended to functions ¢(§) (§ = t -+ it) holomorphic in the strip — y <
< 7 < pu (0 <<y < ) and fulfilling the estimations

“W@HZ‘-/}KGBM fort >0,
(43)
]E‘P(S)iéKe"’ fort <0,

in the above strip where » << 0 <Z ¢ and K > 0 (», ¢, K depend on ¢).

Since L* < B"* (see {3] p. 403, Satz 1) Theorem 4 also holds in A4,.

In order to get a similar result for an analogous class in A, the functions
¢(t) € L fulfilling (4.5) will be used. and in this case it is enough to require
v<_ o (exp (— 1%) is such a function).

Theorem 5. Suppose that ¢(t) has a holomorphic extension to an entire
function ¢(£), § = t -+ tu, which satisfies the estimation

p(8)] = K exp [— 2 — u? + )]

for all £, where z, 2, K (7 > 0. K > 0) are real constants. Then for all real 7
the shiftings ¢(t - t1) belong to L and (4.1) holds.

Proof: Tt is shown first that L[@(t <+ i7)] converges absolutely in the
whole z-plane: (z = x 4+ iy)

o

ﬂ fe gt + it)l dr = s e ™ gt +it) dt =

i

0 o

-Ke eirg g’ em(x—f—i.::r)t . e«iz‘ﬁ dt.

—

A
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Since the last integral exists for all x (as the Laplace integral of exp (— 7t2))
we obtain ¢(t + i7) € L. Secondly the property (4.4) is proven for all real 7.
By use of the Cauchy theorem it is enough to show that for all z

R+it A »
3 e (&)l dé| —~ 0as R — +oo.
R
R+ir R v . B
[ e g(@)]| d&| = [ emCHIURT (R 4 ju)| du <
R b

T
< Ke *R* ™R s e¥d M g TR dy <
0

T
< Ke R g xR ghztRI S e e du .
]

Because of the last integral is bounded (for any ¥ and x):

e MR e RF=R 0 as R — - oo
This completes the proof.

Example. The functions exp (— f§t?), with Re(f) > 0, fulfil the proposi-
tions of Theorem 5. Indeed

e 7" | = exp [~ Re(f) (2 —u? -+ xut)]
where o = 2Im(p)/Re(p).

Problem. We have defined the complex shifting for certain subelass of L
(or B). But to decide whether a function of H can be complex shifted or not is
an open problem. By other words having an arbitrary function ¢ € H in what
case it can be stated that there is a function ¢ € L and that ¢ ¢(z) also cor-
responds to a function of L such that formula (4.1) holds?

Summary

In the present paper the operator field 4, will be developed by using two-sided Laplace
transform. This operator field is analogous to the operator field M of Mikusinski. These are not
the same (non isomorphic fields). However. there are common operators such as the operator of
differentiation and shift operators ¢’ for real . The shift operator ¢*5 for complex « is in 4,
but not in M. The question in which case one can claim the complex shifting of a certain classical
function on the t-domain is again classical one will be investigated here.
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