
ON DEADLOCK IN OPERATING SYSTEMS
By

Z. GIDOFALVI

Department of :Mathematics of the Faculty of Electrical Engineering
Technical University, Budapest

Received June 20, 1978

Presented by Prof. Dr. O. AIS

Introduction

The operating systems of computers haye a double task. These have
partly to guarantee the optimum use of hardware resources, and partly to
control and supervise user's processes.

The operating systems consist of modules. Each module is responsihle for
a well-defined and rather restricted work. This structure makes the systematic
and manageahle design of system possihle. Starting from the user's require
ments and from the hardware a\-ailable, the subtasks and the implementing
system modules can be constructed. The modules can be classified according
to their work: there are intenupt handler routines receiying the hardware
interrupts and invoking thc selected routine associated with the interrupt type;
process management routines performing the creation, control and termination
of processes; resource management routines dealing with the allocation and
administration of system resources; file system routines handling the programs
and data on the secondary storage and making the access to files possihle, i.e.
organizing the information transfer hetween the main and auxiliary storage;
and a part of service programs. -which perform the fundamental serVIces.
Translators and program products are not considered to helong to the pre
cedings, hecause their ·work is rather in the user line.

Recently the modules of operating systems are written in re-entrant codes
to perform their simultaneous use hy more than one system or user processes.

Servicing the user processes raises many requirements which far exceed

the work of a module, demanding the co-operation between sen~ral routines.
This co-operation is realized in non-deterministic manner, hecause the system
simultaneously seryices seyeral user processes. So it is easy to realize, that
some processes come to a deadlock situation because of the requests issued to
the others, hence this state cannot he modified without external interference.
A deadlock situation especially with system modules is not desirahle, so preven
tion of this prohlem must already thought in design.

150 Z. GlOOFALVI

The system hs ato be examined whether a deadlock state may ever arise
.10 not, with other words: can the system work servicing all imaginable user
processes?

The system model will be examined for methods of prevention and a
dynamic control method suggested.

The static system model

The complete system including the user processes becomes uniform with
synchronization signals. These signals may be hardware interrupts, reqnests for
various services or data and the corresponding answers. These have to be
considered as message-like, consumable resources. They are resources, because
they can cause the blocked state of processes and consumable, because the

synchronization signal, sent out say by process PI to activate P2' is consumed
by P~, so the signal is never more available. In the above cxample PI is the
producer, P2 is the consumer of the resource according to our terminology. PI
issues a request to P2 (releases a unit of the resource) with the instruction
RELEASE (resource type); likewise P2 consumes this unit with the instruction
REQUEST (resource type), if it is possible. Otherwise P2 gets blocked by the
instruction REQUEST (wait for the request from PI)' As the system programs
are in blocked state until used, they can be considered in our model starting
with an instruction REQUEST and waiting until the desired resource unit
will be created. The re-enterable modules can be simultaneously used hy several
processes, so they have to wait always at the instruction REQUEST for a new
request. This fact, ... , as it wil he seen later, ... , causes - though manageahle
difficulties.

Our model considers static states, where the numher of simultaneously
handled processes is constant. This model with some supplements - is also
suitahle for descrihing the dynamic hehaviours of the system, to be discussed
in the next chapter. Moreover, the producers and consumers of all resources
are supposed to he a priori known.

Let P = {PI' ... ,Ph' .. ,P,J the set of processes staying simultaneously
in the system in a static state and R = {rI' ... , rj' ... , Tm} the set of re
sources produced hy P. The connection hetween the system elements can be

represented hy the consumable resource graph. Its nodes consist of processes
and resources N = PUR, the (Pi' Tj)-type edges represent requests (process
Pi requests a unit of resource rj' marked with an arrow from Pi to Tj)' the
(rj' pJ-type ones represent producer relations (Pi is the producer of Tj' marked
with an arrow from Tj to Pi)' Moreover each TjER has a non-negative integer tj ,

which means the numher of availahle units. The state of the graph can he
changed hy the following three operations:

DEADLOCK IN OPERATING SYSTEMS 151

1. Request: if Pi is not blocked, it can request the elements of R* s;: R (R* is a
priori known), thus the graph is amplified by the associated request
edges.

2. Production: if Pi is not blocked, it can produce the elements of R+ S R (R+
is a priori known), according to this the graph is amplified by the proper
producer edges. If the producer relation has already been marked, the
last amplification is unnecessary, because the producer edges are never
removed from the graph. Furthermore all corresponding unit counters
are raised with the numher of produced units.

3. Consumption: if Pi has outstanding requests and the wanted resources are
simultaneously available, Pi can consume them. The desired uuits are

available, if tj ~ ,(Pi' rj)i for all rj ER*(I(Pi' rj)i means the number of
request edges frompi to rj). Thereby the corresponding edges are removed
from the graph, and the t/s are decreased accordingly.

This model is useful for describing any state of the system. Our purpose
is to eliminate even the possibility of deadlock. Therefore first it has to be
examined whether or not a given state is deadlocked. A state is deadlocked if
there are certain processes deadlocked in this state, i.e. there is no way to activate
them. Let T be a state of the system to be find out whether it is deadlocked or
not. Let us try to terminate the processes in all possible orders, considering the
fact that Pi can only be terminated if it is not blocked, that is, Pi has no out
standing requests. If there is at least one order in which all processes can be
terminated, T can be said not to be a deadlock state. In that case the processes
are terminated by uniprograming, but this operation cannot lead to false re
sults, because the terminating order is a possible set of state changing. The
transitions can also be demonstrated on the graph. This activity is called the
graph reduction. The graph corresponding to the T system state can be reduced
by pi, if Pi is not blocked, that is, first the requests of Pi are satisfied then re
leased units are enough to satisfy all outstanding requests to the resources
produced by Pi' Meanwhile the edges connected with Pi are removed from the
graph. On the basis of the above it can be stated: if the graph representing
the state T can be completely reduced, i.e. there exist at least one order, T is
not deadlocked.

If only safe states are wanted in our system, the so-called claim-limited
state and the corresponding graph have to be examined. This state has the
follo-wing properties:

1. all resources have zero available units,
2. there is only one edge directed from Pi to all rj E R* ,
3. there is only one edge directed to Pi from all rj E R+.

152 Z. GlD6FALVI

The next statement is easy to prove:
All states in a consumable resource system in which producers and consumers
are kno"wn are safe if and only if the claim-limited consumable resource graph
is completely reducible.

Proof: First assume that all states are safe, so the claim-limited state is safe,
too, and the claim-limited graph is completely reducible. On the other
hand, assume that the claim-limited graph is completely reducible with

an order Pqi' ... Pqrz. If the claim-limited graph can be reduced by Pqi'

then any other state can be, too, because Pqi cannot have requests other
'wise the claim-limited graph cannot be reduced by Pol' Likewise if the
claim-limited graph can he reduced hy Pq~' then any o'ther state can be,
too, because Pq2 can only request the units of Pol' Continuing in this man
ner it can be shown that all states are safe. b'ecause all of them can be

reduced hy Pqi' ... , Pqrz' in order.

In connection with the reducibility a question arises: in which order have
the reductions to be made? It is easy to see that the reduction of a general
state is too difficult, because the only sure fact is: if there exists at least one
order, in which the reduction is possible, then the original state was not dead
locked. But trying all possible orders is a ycry time-consuming work. The next
simple example illustrates the difficulties in the reduction. The same graph is
reducihle in the figure a) and irreducible in the figure b) hecause the resource
demands of Pi cannot be satisfied (cv represents the numher of resource units
left).

P: (') (----\ /"", (" (----\
U I '

h\ V .'-..../ . /
r~

~\
,,,"

er
~i

~ ~
,--;

t'j Y
QI i

P: 9 0 0 9/ ,~/
Vi

i / I

~
i

W " t2 =

W
q GJ ~ n 8 0
!liI

~ \ f (r; 0 0 ~ '-.../ ,J
C:.: h u;

i-:?CU:::00 c,.
.;- ,;...:- r>'?·:JL:C::Oii ~ ,

In this respect the claim-limited state and the coresponding graph are
characteristic ones, beeause the order of reduction leads to the same state.
It is easy to see, because at the heginning of the reduction eyery resource has

DEADLOCK DY OPERATLYG Sl-STEjIS 153

zero available units and any of the reductions deletes the same edges from the
graph.

After these it is expedient to examine two questions. The first relates to
the claim-limited graph. From the proof of reduction theorem the necessity
of at least one process - having no request, only producer edges in the graph -
is seen. Generally it is realized, because the operator is always a resource pro
ducer. The other question is to fit the hard-ware interrupts into our model. It is
useful to treat the interrupt handlers as the producer of hardware interrupts,

so these signals also arise from processes. These processes guarantee also the
necessary condition of deadlock prevention, because they have no requests.

Summarizing the precedings it can be stated that the complete reduci
bility of the claim-limited resource graph guarantees the safe states in the
system, when producers and consumer" of resources are known a priori.

The dynamic system model

As mentioned in the preyious chapter, the dynamiC model does not es
sentially differ from its static equiyalent. The difference i::i only that the new
claim-limited graph has to be built in all cases where the number of simulta
neously seryiced processes has been changed, and the reduction has to he made
once more. To huild up the graph two problems haye to he examined in details:

l. should all created processcs appear in the claim-limited graph?
'1 how to handle the re-enterable system modules?

The first question arises in realizing, that there is one system module from the
created ones, not to be actiYated in a static state, i.e. none of the created proc
esses would produce thc desired resource. If this inactive process occurred on
the claim-limited graph. our model would not correctly reflect the reality,
hecause the presence (Jf this module is irreleyant in the system, but the claim
limited graph becomes irreducible by this one (its requests cannot be satisfied).
Accordingl:- the process p; must not he taken up on the claim -limited graph,
if there exist::: at least onc resource requested hy Pi without producers in the
system.

AUeution has heen called to the re-enterahle system modules in the pre
vious section. They always ought to have requests representing the fact that
they aT;; simultaneously usable by some processes. This would mean their per
manent blocked state, which is against reality. Therefore every process re
questing one of the re-enterable modules is assumed to get a new copy of this,
so a module appears in several independent copies on the claim-limited graph.

The two questions can he joined in the next one: ho'w many copies of
system modules are needed on the claim-limited graph? So many copies are

154 Z. GIDUFALrI

required, as many processes can activate the module, i.e. as many processes
produce resources to activate the module.

Let us survey the process of changes. First, the system moduls are
created, then the user ones. The created processes have to be administered, of
course. Therefore it is useful to handle a graph containing all created processes
and all resources produced hy them. Let us call attention to this graph, that
is not equivalent to the claim-limited graph, but it has to be constructed from
the administrator graph.

Creating a new process, first it is taken up on the administrator graph,
then the complete graph is revie'wed to find which modules and llO"W many
copies of them are requiTed. (Attention: the new process may produce resources
to activate such ones, which exist only on the administrator graph, so these
must be taken up Oil the claim-limited graph, too.) This is followed by the
attempt to reduce the new claim-limited graph. In case of success, the safe
states are guaTanteed until the next change. Otherwise there are two options.
Either the entry of the new process into the system is delayed (accordingly
the edges diTected to and from it are removed from the graphs), or the possi
bility of deadlock is risked. At the last choice a much more difficult task has
to be accomplished than in the former case, i.e. to try reducing the resource
graph (not the claim-limited graph!) after all requests and consumptions (both
can cause deadlock, see [1] 235-236). On the basis of the previous section it
is a very time-consuming task. If the resource graph is not completely reducible,
then the original state was a deadlock state, and this situation has to be re
covered. The only way to perform this is to terminate certain processes, which
can destroy the deadlock most economically.

At termination of processes all edges from and to them have to be re
moved from the administrator graph and enough resources left to accomplish
the further requests dITected to them. In such a case the claim-limited graph
needs not to be built and reduced again, because the process termination only
improves the situation.

It is expedient to entrust the administration of processes and the re
duction of the claim-limited graph to system modules. For this purpose the
data structure of the graphs has to be defined. The matrix representation is
suitable for the administrator graph, handling two matrices representing the

requests and the producer relations. The list structure is better for the claim
limited graph, where thTee sets of lists are handled:

the resources requested by Pi are linked to Pi
the resources produced by Pi are linked to Pi
the processes requesting Tj are linked to Tj'

Summarizing, the prevention of deadlock, the realization of safe states
are easy to do. In creating a new process it can be decided whether or not the
new process enters into the system.

DEADLOCK IS OPERATLVG SYSTEJfS 155

Summary

Deadlock situations in operating systems are dealt with, restricted to those caused by
message-like resources, On the basis of our modeL created for this problem, the methods of
system programing to prevent deadlock are examined. The requirement of prevention may
seem to be too rigorous. but otherwise the deadlock detection and recoverv would not be
economical. becau;e of the great time and space requirements of the realizing algorithm. Our
results can be composed into an algorithm excluding deadlock situations in any dynamically
varying systelu.

References

1. SEAW A. c.: The logical design of operating systems Prentice-Ball Inc. 1974.
2. BOLT. R. C.: On deadlock in computer systems Ph. D. thesis, Cornell Dniv., Ithaca, ;\". Y.

(J an. 1971).

Zoltan GIDOFALVI H-1521 Budapest

