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introduction

Due to their reliability and simple manufacturing technology. squirrel
cage induction motors are one of the most generally applied electrical machines.
Squirrel cage rotors for high performance are usually manufactured with
copper rotor bars and end rings, while machines of lower performance are
being manufactured by die-casting technologies. Examination of dic-cast
rotors have shown impurities, asvmmetries due to technological difficulties.

Presence of asymmetries in the squirrel cage rotor is however not
always of stochastical nature. but thev can be intentionally produced. In
case of a fracticonal hp. single-phase induction motor, for light-load starting
appzicaiions a motor can be used, where the stator has a single winding and
different tvpes of asymmetries exist in the bars or end-rings. In this case
the starting torque can be produced without using any auxiliarv phase
impedanee. Asymmetry in the rotor circuit is very detrimental to the per-
formance of the machine, so it is impovtant to study its effect.
echnical literature there are few papers on the problem of single-

i

T
phase and three-phase squirrel cage induction motors with rotor asymmetiies.
.
i

A main reason is that ali the papers deal with symmetrical types of asymmetries

where only one asymmetrical place is present. or the asymmetrical place
arve symmetrically spaced on the roter. But investigations showed that most
of the practically encountered asymmetiries due to technoclogical reasons

are not symmetrical types. For these cases steady state equivalent circuits
can be derived, which contain also controlled generators, and the only attempt
to introduce them in the theorv of asymmetrical electrical machines is due
to the author.

WEICHSEL [1] presented a theoretical analyzis of a three-phase induction
motor where the end rings had cuts 360 electrical degrees apart. and cuts
in the front ring were displaced by 180 electrical degrees against those in the
back ring. An approximate calculation of current distribution was made for
the steady state, but no equivalent circuit was derived. Also the current
distribution of a squirrel cage was determined by ScruIsKY [2] with a model
where the rotor was slotless and had thin currentsheet on its surface.
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By the application of transmission-line theory. squirrel cage induction
motors with asymmetrical rotor circuit were analyzed by JorDan and
SceMITT [3] for the case of a broken rotor bar. HILrLER [4] applied the same
theory as [3] without reference to the work of Jorpan and Scmmirr. His
model does not take the additive currents of rotor bars neighbouring the
broken one correctly into consideration. when stating that the absolute
values of these currents are equal. It can be shown that this holds only if
the machine is at standtill, as only in this case are the positive and negative
sequence symmetrical component impedances of the machine equal.

Special squirrel-cage asvmmetryv of single-phase induction motor has
been discussed by GROTSTOLLEN and SCHROEDER [5], where some of the rotor
slots are not filled with conducting material. The derived “general” equivalent
circuit is erronous as it omits the higher stator and rotor time harmonics. which
actually exist due to the two-side asymmetry. An intentionally caused rotor
assymmetry of single-phase induction motors has been discussed by SusBa
Rao, Trivepr and Desar [6. 7] applving the crossfield theory.

Pewez pE VERA and Pacano applied the symmetrical component
theory [8) for analyzing the behaviour of a three-phase squirre! cage induction
motor where some of the adjacent rotor bars were broken. In the derived
equivalent circuit, the coupling network which connects the positive and
negative sequence impedances of the machine holds only for symmetrical
type of asymmetries. Also higher symmetrical component impedances were
neglected. Vis [9] extended the foregoing theory for such cases where the
neighbouring rotor bars had different impedances, and T6kE and Vas [10]
derived all the symmetrical component impedances of the m-rotor phase
machine.

Operational characteristics of wye-connected slip-ring induction motors
with rotor asymmetries have been discussed vy J. Vas and P. Vas applying
symmetrical component and crossfield theories. Iron losses and impedance
of the supply network were also taken into consideration. A new equivalent
circuit for steady state and constant speed transient operation was derived,
equations of currents and powers were given in a ready-to-calculate form.
Also the d. q operator impedances of the machine were presented.

Transient and steady state operation of induction motors with general
stator, rotor and two-side asymmetries were discussed by J. Vas and P.
Vas [12, 13] and [14] deriving new general steady state equivalent circuits.
For the first time in electrical machine theory, the coupling impedances
also consisted controlled generators, to cope with the general type of asym-
metry. Differential equations of asymmetrical machine’ were given in state-
variable form. At present it will be shown how this can be applied for three-
phase and single-phase induction motors, for a squirrel cage machine with
general type of asymmetries. In this case the rotor asymmetries can be such,
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that the broken rotor bars are not adjacent. No noise and vibration analysis
of asymmetrical squirrel cage induction motors will be made but reference
is given to Haw~arr and Jorpaw [16] whose work is based on the Doctors
Theses by Haxarr [15].

In the followings an induction motor with general type of rotor asym-
metry will be discussed where arrangement of the broken rotor bars can be
arbitrary. Asymmetries with rotor bars not broken but having different
impedances — due to die-casting — and asymmetrically displaced will be
discussed in a subsequent paper. As the general type of assymetry involves
a simultaneous fault in the rotor circuit, fault location method — using sym-
metrical components — could lead to very complicated equivalent ecircuits,
therefore it is not used. This method can however be effectively used in case
of a small degree of rotor asymmetry [10].

Assumptions will be the same as in general electrical machinery theory
[21], interbar currents are also neglected. A two-pole machine with m-phase
rotor with symmetrical and identical end rings is assumed. In this case the
rotor is equal with a wye-connected m-phase svstem. Relationships hetween
the symmetrical component rotor quantities permit the derivation of the
coupling impedance network due to asymmetry. The symmetrical component
equation of rotor currents is

IL=Y. U ()
where 1/ is the column vector of symmetrical component rotor currents,
Y; is the symmetrical component admittance matrix, and U is the symmmetric
component rotor voltage column vector:

2 Tr 7t ! 7t 2
0 D(J YO Ym—l 1 m—2**-*1
14 Tr 7! ' ! v
, 1 7 U 1 Y Y, Y, ... Y. :
Ir—_—_ .1 U; — ‘1 Y — '1 0 m—1 . 2 (2)
’ Tr g r ;1 7
m—1 . - Um——l Ym—l Ym—'l Ym—:l' e Y()

It should be emphasized that in (2) the symmetrical component admittances
Y[ are not the inverses of the symmetrical component impedances of the
machine. but the symmetrical component admittances of the m-phase rotor
circuit, Equation (1) was intentionally written in the given form, using the
symmetrical component admittance matrix, as the elements of this matrix
(Y/i=10.1...m—1) are easy to realize in case of general tvpe of rotor
asymmetries. The symmetrical components are obtained from the phase-
co-ordinates by applying the m-phase symmetrical component transformation:

m—1
el

i1 |1 e, (3)

1 Egr]n——l) eﬁ,,’,”"” (m—1)



188 P. VAS

where ¢, = exp [j2z/m]. The inverse transformation(matrix) of Eq. (3) is
a modal matrix of an m-phase impedance matrix showing cyclic symmetry.
The columns of the modal matrix are eigenvectors in a reference frame of
eigendirections of the cyclic symmetrical matrix. Therefore the co-ordinates
in the eigendirections (symmetrical components) expressed in terms of the
real phase co-ordinates are:

Y=L SY,eb—1i i=01...... m— 1 (4)

m p=1

For a stator winding not sinusoidally distributed, application of Eq. (1) and
of the 0,1,... m—1 sequence symmetrical component impedances of the
induction motor [10] permits to calculate the performance of the machine
but only a very complicated equivalent circuit is derived. If the stator is
sinusoidally distributed. since no zero zero sequence currents flow in the
wye-connected rotor, from Eq. (1):

2 ’ st 7’
0 Y0 m—1 Yl 0 -
L =Y, Y YU (5)
’ 7t %4 1 T
Im—l m-—1 m=-2 Y() Dm~—1

Solution of (5) for the symmetrical component voltages separating the zero
sequence equation leads to

i P ©
70 I /A 7 | A

Here the symmetrical component impedances—elements of the coupling net-
work connecting the positive and negative sequence impedances of the
machine-are:

RS v Y‘,i - 5—, }fr,n—
Zy= Ry + jX; = 0 l, : -
det Y (7
Z‘; — R_;' + ]‘Xé i Y‘.’Z 1(-1;1-—1 - Y(l) Y‘]t
det Y’

and Z,,_, differing from Z; in case of general asymmetry
;'/‘2 7t !
ZI . R/ | ‘XI . m—1 Yl')YITI—Q
m—-17 1 T JAm—1 = p
det Y

The determinant of the symmetrical component admittance matrix of (3) is:
det Y/ = Yp — Y3 V3¥p o= VoY Vhy + YRV ot Y3, Yi— VYY)

The admittances Y, can be obtained from Eq. (4).



ASYMMETRICAL INDUCTION MACHINES 189

I (Rz'R1)/5 + J(xz"x1)

B L |

B RoRy)s + j (Xg-X,)

Rs Xss  (Rg-R2)/s J(XO-Xz)? HXo-XA(Ro-Ro)/s| j(Xss-Xn) (Rs+Ry/(25-1)

—{ T Hww AW T—
> — P -
I ‘1 fm-1' Ism -1
Us1 JXm X
v |
1
-

9

Fig. 1. General steady state equivalent circuit of three-phase induction motor with symmetrical
squirrel cage (realization with impedance parameters)

Equation (6) may yield a general steady stateequ ivalent circuit of the
machine. The coupling network may coansist of one or two controlled gener-
ators, due to general type of asymmetry. the former case will be examined.
Forty different connections can be realized by symmetrical or asymmetrical
@ or T networks. Figure 1 shows the general steady state equivalent cireuit
of the asymmetrical machine, stator quantities and network parameters
have subscripts s and N, respectively. All rotor quantities are referred to
the stator, X,, is the magnetizing reactance, the generator is a current
controlled one.

The coupling network can be realized also by directly using the admit-
tance components, from (5), separating the zero sequence equation:

I _ Y, Y1 U, )
I rIn— 1 Yﬁr’n— 2 Y‘(,) L"r’n— 1

and a coupling equivalent circuit is shown in Fig. 2.

If the asymmetry is of the symmetrical type. and broken rotor bars
are neighbouring. the controlled generators will disappear and equivalent
circuits will be similar to that in [9]. If the rotor circuit consists of IV, rotor
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Fig. 2. Coupling network realized by symmetrical component admittances
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bars, and x adjacent bars are broken, for e.g. an odd number of broken
rotor bars:

i Y (N,—x—1)j2 (Nr—x—1)J2
Y, = —5[1 + N exp(ji2alm) + ¥ exp (——j2n,/m)]
m i=1 l":—dl
i Y, (N,—x—1)12 . (Ny—x—1)j2 .
Vi, = [1 + S exp (jigaim) + S exp (-m/nz)] (10)
m =1 21
, Ys
Y; = ~2(N, — x)
m

where Y is the admittance of one rotor bar (taking into account the end ring

segments).
For a small number of broken rotor bars:

Y[~ 0
r’n—l 7~ 0 (11)

2

and

Yg .
YOI e —£ *Nr
m

trivial in case of a three-phase rotor as then

vi=Yeu i1y -y,

i

Y{:Xg—%(1+a+a2).—_o (12)

Y= X2t atia)=0

(now Yy is the admittance of a rotor phase).
Considering Eq. (7) and applying Eq. (11)
, 1 m .
Z(,%—_—,—:—-»v; e (13)
Yo Ys(N,—1)
so the simplified equivalent circuit of the machine will be analogue to that
of a symmetrical machine (in agreement with [8]), however, now Z, is greater

m m
Z) = : 14
YN, —1) N, Y, 1)

to be placed in the rotor branch of the equivalent circuit. The foregoing
theory can also be applied in case of general type asymmetry and if the
machine is a double-cage induction motor.
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Rotor asymmeiry of double-cage machine

If the cage system has a single end-ring at both ends of the bars, then

Yg =Yg + Yg (15)
and in Eq. (4) Y, = (YBL, + Y Y, (16)
YBe+ YBI <a

where Y, and Y, are the admittances of the outer and inner rotor bars,
and Y, is the admittance due to the leakage flux coupling the outer and
inner rotor bars. For inner and outer rotor bars connected to different end
rings, a symmetrical component voltage equation has to be set up for both
the outer and inner cage system. After the necessary substitutions, following

thb mﬂt]l()d Of !8'
’: U’ - } \: I / | ] |: , - ] ( )
L 1,71 1 Zbl ZID",O 11”71 1

similar to Eq. (6) ~so a coupling network analogous to that in Fig. 1. can be
realized, only the symmetrical component impedances due to the double-cage
structure are:

1

Zb() = E“Z—D Z(,)C[Z(’)(‘ + Z(I)i - Z(I);)' - II(Z + ‘11)] L
- Z:;.c[zlli(z(’w_;z(')i)‘ (I)I(Z’ + 1:) crj
7! 1 ! ’ ’ ¥ ’ i 1
Zpy—y = TTTTTETT np[Zzi(Zuc‘;“ oi) —Zii(Zie—2Z. )] - (18)
det Zp
[ e Z(,)I‘TZ(,JT,“Z.;!(Z10+ZL)]}
' ]‘ ! r ' i ro ' 2 ! ’ |
Zpy =— ; Z(Je[ 11(Zuc'T‘Z i) —Zoil 1e“-_Zli) —+ Zle[Z()eZOi E
det ZD
-+ 2612 - 1r1( Zw ]
and Zp, gets modified as:
! 1 r ! ’ ) ! ! ’
Dp0 = det Z,, {Zoc[ 0elii+ 2ot — Zai( 1e+Zli)] -+

‘:" {e[Z.,zz(Zée+Z(l)1) - (/,,(Z;, i Z‘;s)] ]Xel}

in matrix (17) otherwise analogues to Eq. (6). Here det Zj is the determinant
of the impedance matrix (17) and X, is a reactance due to the mutual leakage
flux coupling the inner and outer rotm bars. Z,,, Zg;, Z3,. Zi;, and Z3,,
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Fig. 3. Coupling network for double-cage machine with asymmetrical rotor

are the zero, positive and negative sequence component impedances of the
outer and inner rotor bars. As Zp, == Zp, (. the coupling network cannot be
realized by a symmetrical T or z network containing controlled generators,
but only by asymmetrical T or z networks. A possible network is shown
in Fig. 3, helping to realize the total equivalent circuit of the asymmetrical
double-cage induction motor.

If the degree of asymmetry is low, a simplified equivalent circuit can
be derived, also analogous to the steady state equivalent circuit of the
symmetrical machine. All the foregoing equivalent circuits are easy to extend
for the case of constant speed operation by introducing the operator imped-
ances applying the method of [11]. The currents and hence the performance
of the machine can be calculated also for this casc from the derived equivalent
circuit.

Steady state operation of single-phase induction meoters with rotor
asymumetry in the squirrel cage

A new equivalent circuit was derived [14] for an induction motor with
general two-side asymmetry. by using the symmetrical components, including
all the higher time harmonics. In case of single-phase induction motors,
asymmetries are sometimes introduced intentionally, in these cases symmetrical
type of asymmetries exist. If the degree of asymmetry is low, the simplified
equivalent circuit [14] can be changed to involve the symmetrical component
rotor impedances, derived from Eq. (4). This new equivalent circuit is shown
in Fig. 4. It is analogous to the steady state equivalent circuit of a single-
phase induction motor with symmetrical rotor, only now in the rotor circuit
the zero sequence rotor parameters have to be used. This is analogous te
the fact that in case of three-phase slip-ring motors-if a small resistance
asymmetry exists in the rotor — an average resistance R = (R, + R, + R/)/3
can be used in the equivalent circuit of the symmetrical machine, R is seen
to be the zero sequence resistance.
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Fig. 4. Simplified steady state equivalent circuit of single-phase induction motor with
asymimetrieal squirrel cage if small degree of asymmetry exists

If the degree of asymmetry is not low. the general equivalent ecircuit
of [14] has o be used taking our Eq. (4).

Transient operation of induction motors with motors general two-side impedance

asymineiry

b

The general transient equations of the machine with general asymmetrical
stator and rotor circuit can be derived, by application of the state-variable
Park vector method first presented in [20]. In [14] the transient equations
of a machine with two-side asymmetry were derived, but only resistance
asymmetry existed in both sides. Now reactance asymmetry is also assumed,
the machine is wye-connected on the stator, and the rotor can be of the slip-
ring or squirrel cage type. Using the well-known assumptions [18, 21]. Park
vector equations of a three-phase svmmetrical ac machine, rotating in a
reference frame at an arbitrary varying o, speed:

_ R
Us = Rsl's e d/ts T JWe ¥

_ (19)
ﬁr = Rr lTr - _dl/'r + j((l)a - mr) ;ﬁr

dt

where i, i, i, i, and P, and p, ave the stator and rotor voltage and flux vectors.
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The fluxes are we == L., + L1, (20)

- K 1 v
P, = Lm Is 1~ Lr i

here L, and L, are the stator and rotor inductances, L, is the mutual inductance

between the stator and rotor. The torque is

m

3 s
m = p(y, i) (21)

where p is the number of pole pairs. Assuming asymmetrical stator and retor,
these equations can be resolved into d,q component equations. As the voltage
equations consist of the derivative of both stator and rotor currents. for
sake of simplicity the differential equations are solved for the fluxes. Thus
the state variable equation in a reference frame rotating at a speed o, is

x = Ax + Bu (22)

where x is the state vector of fluxes, A is the transition matrix and Bu the
forced voltages:

1/’34 1 0
X == ?)DSQ : B = 0 ]' H u = [ uSd ]
Yra 0 0 Ugg
Vrg 0 0. (23)
— 1T, Wy, kaiTsy 0
A= —ay. —1Tg 0 kT,
ksdl"! T/d 0 _lllT;d Wy — (D,
0 ksq,;Trlq — o, — ]JT;(]

where ), is the speed of the rotor. The following constants are for the first
time introduced in the theory of induction motors:
krd = Lm,’;Lni : qu = Lmz’Iqu (24')
ksd =L fL.sd E ksq - Lms’L

mi sq

and the time constants are

’ ro; . [ Y A

Tsd = Lsd'de s TSq - qu.‘ qu
A A . A b
ra = Lig/Ryy s Trq = quiqu (2‘))

where the stator and rotor transient, d., q inductances are
L;d = Lsd - L%v/er
L,=L,— L}L, (26)
L;d = L}"yszsd — er
L,,=L:L,=L

rq
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Fig. 5. Transient d.q stator and rotor inductances of induction motor

Figure 5 shows the physically realized equivalent circuits of the transient
inductances d,q denoting

Lsd = LS{rd — an

LS/ = Lan _ an (27)
er - Lro‘d =+ Lm
qu = Lr,«_rq + Ly,

If the equation of motion is also included in the state-variable differential
equation (20). and also load torque and friction torque are neglected (although
they were easy to consider), an other state-variable equation is derived:

= A'x" 4+ B'v (28)
where
x' = [x, W ’1],
(= is the rotor angle and t holds for the transpose)

B’ = [B= 021= O‘?.t]t

here O, means a zero matrix of second order, and

A_[a o
M A

0=1[0, 0.], : Alz[o O:l

The submatrices are:

and

M = {‘_151) 6—-lqu k‘rq z/)rq + wsq(L;d - L;q) 13P 6t krd Yra ;Zl 00 J
0 0 00
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The derived Eq. (22) and (28) can be directly solved by a digital com-
puter, using routine technics for solving differential equations. The components
of d and g axes are ready to obtain from the symmetrical components in
case of single-phase and three-phase induction motors with asymmetrical
rotor if the machine has three-phase or m-phase (squirrel cage) rotor. For
example, if the machine is of the slip-ring tvpe and general rotor asymmetry
exists- all the roter impedances will differ (hence R, == R, = R, and X, ==

= Xb = Xc):

Ry,=R,+ R ; Xy=X,+X,
R,=Ry— R, : X, =X,—X, (29)

here the symmetrical components are

R, = [R - R — R: — (R.R, — R.R, = R,R)|"®

and

X, = [X2 4 X3+ X2 — (X, + XX, + X,X,)]ws.

In: case of rotor asvmmetry of the squirrel cage, the symmetrical eom-

ponents can be caleuiated by the method diseussed in the first part of this

paper.
The derived equati iold for all pre\ of two-side asj 'nmeuie~ (;f

induction motors, if 3 e
single-phase machines too. hut saturation cheﬁ’u were Peglec ed. A fohm»m“

paper will show generalization of the equations for the case of saturation

of both the main and the 1 e flux paths. The state-variable differential
equations will be extended for salient pole svnchronous metors and for motors
with asymmetrical airga ; Also extension of the derived equations will be

de asymmetrical induction or asynchronous machines

oiven for saturated two-si
g
i

if thyristor connections ave in the stator or rotor or in both.

Summary

A general method is presented for calculating the steady state behaviour of three-
phase and single-phase induction motors with general type for rotor asymmetries. Rotor
asymmetry of single and double-cage machines is also discussed and new steady state
equivalent circuits are derived which also contain controlled generators.

A general state-variable differential equation has been derived for calculating the
transients of an induction motor with general two-side asymmetry. Application of the model
for a slip ring machine with general rotor impedance asymmetry, and in case of asymmetrical
squirrel cage is presented.
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