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1. Introduction 

System identification is one of the most important problem not only 
in control engineering hut also in information cngineering. For example, 
let us consider a pattern recognition systcm such as man. We may kno·w 
the inputs and the corresponding outputs of the system, hut we cannot 
know how to recognize the ·visual :system. 

An input-output systcm can he rcpresented by an opcrator from an 
input space into an output space. Let X, Y and A he input space, output 

xe:x 

·1 
System 

y= Ax 

A 
~ 

input output 

Fig. 

space and operator from X into Y, respectivcly. Then the output y of the 
system A input x is denoted by)' = Ax (Fig. 1). If the given system is a 
communication system. then system A is callcd a "channel". 

The fundamental problem of communication theory is to determine 
reliahly the input x from the information ahout the channel A and its output 
y = .Ax. On the contrary, the fundamental problem of system identification 
is to determine reliably the system from the information about some inputs 

Xl" •• x" and the corresponding outputS.h Axl , • •• , y" Ax". In the 
next section it will he seen that the system identification prohlem can he 
reduced to a communication problem. 

* Submitted at the Joint Symposium Technical University, Budapest -Tokai Univer­
sity. 23-24 "'ovember, 1977. 

2 



200 S. KO:XDO 

2. Finite-shot channel 

Here, we assume output space Y to be a Yectol' space. Then the set 
m(X, Y) of all operators from X into Y 'will be a Yector space "ith the fol­

lo'''ing addition and multiplication by scalar: 

(A + B)(x) = A(x) + B(x) 

(i.A) (x) = i.A(x), A, BE m(X, Y), xEX, 

i.: scalar 

(1) 

(2) 

Let x be a fixed element of X. Define an operator Wx from m(X, Y) 
into Y as: 

Wx(A) = A(x), AEm(X, Y) (3) 

Regarding this operator as a communication channel, then m(X, Y) 
will be an input space for the channel WX' and an element of m(X, Y), that 
is, a system will he an input signal. In other 'words, an input for an unknown 
system A is a channel to obtain the information about the system. Therefore, 
the problem of system identification is to determine reliably the input system 

AE:m(X.Y) y ~ ctJx (A)= A(x) 

input system output 

Fig. 2 

from the information about the channel Wx and its output WAA.) A(x) 
(Fig. 2). 

Let us call this channel Wx a "one-shot channel". Similarly, for some 

inputs Xl"'" XX' we can define "lV-shot channel" an operator WX, •.. "X.v 

from m(X, Y) into yN as: 

(4) 

If N is finite, lV-shot channel is called a finite-shot channel. Though each 
element of m(X, Y) is not always a linear operator on X (here, we must assume 
X to he a vector space), a one-shot channel is always linear on m(X, Y), since, 

(A + B) (x) = (A(x) + B(x) = Wx(A) + WAB) (5) 

(6) 
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Similarly, a finite-shot channel is also linear on m(X, Y): 

ifJx" ... ,x.v((A + B) = (ifJx1(A + B), ... , ifJxNVl + B») 

= (ifJxl(A) +- ifJxl(B) , ... , ifJxN(A) + ifJxN(B) (7) 

= ifJx1,···, xN(A) + ifJXl"'" xN(B) 

ifJx1,···, xN(;·A) (}.ifJxl(A), ... , ;.ifJxs(A) = ;.ifJx1, ... , xN(A). (8) 

Therefore, the system identification theory is always a linear channel theory. 

3. System space 

Assume input space X to he a metric space and output space Y to 
he a complete normed space, that is, a Banach space. 

An operator A in m(X, Y) is called continuous if for any x EX, giyen 

c > 0, there is <5 > 0 such that if q(x,x') < 0, 11 A(x) - A(x') 11 < c. Let 
c= (X, Y) he subset of all continuous operators in m(X, Y). 

An operator A in m(X, Y) is called hounded if there is a numher lVI > 0 
such that for any input x, ! 1 Ax I! ;:;:: -,vI. Let b(X, Y) he a suhset of all hounded 
operators in m(X, Y), then b(X, Y) is a Banach space with the norm: 

11 A 11 = sup I! Ax 11 
XEX 

(9) 

Let c(X, Y) = b(X, Y) n c=(X, Y). Then c(X, Y) is a closed suhspace of b(X, Y) 
and therefore it is also a Banach space. If X is compact, then c(X, Y) = 

c=(X,Y). 
Since boundedness of the system means stahility of the system, it is 

natural to assume the system to be bounded. Similarly, it is natural that 
the system is continuous. 

2* 

------------------, 

h: rp x, (A): A(x,) 
$x, j---.... 

Fig. 3 

I 



202 S. KOi\"DO 

2. ( 2 2) Y y1.···. yN.· .. 
A 

yN= (y~ •...• Y~ .... ) 

Fig. 4 

Next, here, let us consider the one-shot channel C/Jx on c(X, Y). Then, 
we have following inequality: 

11 C/JAA) li = II Ax 1I < I1 A (10) 

The inequality (10) implies that the one-shot channel C/Jx for any x is contin­
uous. Thus we obtain the first theorem: 

THEOREM 1 

One-shot-channel C/Jx on c(X, Y) if' a continuous linear operator for any 
x in X. 

4. c-Decodahle class of systems by finite-shot channel 

Let D be a suhset of the system in c(X, Y). If, for some x ill X, one-shot 
channel C/Jx is injective on D, that is, for allY pair A, B in D, Ax = Bx only 
when A B, then C/Jx is invertihle. Therefore, let y = C/Jx . A he output of 
the channel, then we mathematically obtain a system A = C/J;;~y. 

Definition 1. Let D he a subset in c( X, Y). D is decodable class of 

systems if there is some input x such that for any pail' A, B in D, Ax B;>,; 
only when A = B. 

If D is decodable, then the input system A can exactly he determined 
mathematically from the information y = C/J).A for some x in X. But 'we 
dont kno'w how to construct the inverse of C/Jx • 

In practice, the following definition is more useful: 
Definition 2. Subset D of systems in c(X, Y) is called an c-decodable 

class of systems by finite-shot channel, if for given c > 0, there is a finite­
shot channel such that approximate system .4 can he constructed with 

IIA - A ! I < c, from the output of the finite-shot channel. 
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5. Construction of an approximate system 

Definition 3. Subset D of systems in c(X, Y) is ealled relatively compact 
(or totally bounded), if for giyen 8 > 0, there are a finite number of systems 

AI" .. , AN in D sueh that for any system A in D, there is Aj with IIA -Aj! 1< 
< 8. In this ease, family of systems {AI"'" AN} is ealled c-net of D. 

Let D(x) he the image of D by one-shot ehannel <Px . From theorem I, 

·we find that D(x) = <PxD is relatively compact. In faet, if {AI" .. , A.d is 
c-net of D, then {A1x, ... , ANx} is c-net of D(x), since, 

Ax i A. (11) 

HOWeyel'. inequality (11) does not imply that if i Ax - Ajx [I < 8, then 

• A - Aj :1 < 8. 

But this fact implies the following theorem. 

THEORK1J 2. 

For eyery 8 > 0, there is x in X sueh that for any pair A, B in D with 

i! Ax Bx < 8, we haye I! A - B i i < c. Then subset D is an c-decodable 
class of systems by one-shot ehannel. PROOF: GiYen E > 0, let x be an input 

satisfying the condition in the theorem. Let {AI"'" AN} he c-net of D. 
Then {A 1x, ... , AN;"\;} is c-net of D (x). Now, we get the output y = <px(A) 
= A(x) of one-shot ehannel ct>x • There is Aj sueh that I! Y - Ajx 11 ; lAx -
- A jX ;: < c . Therefore, ·we ean determine for input system to be A j . Then, 
from the eondition of the theorem, ·we have 11 A - Aj i < 8. (q.e.d.) 

~ext, let us eonsider the eondition for subset D of systems to he 
relatively compact. 

D is called equicontimwus on X if for any x in X, given c > 0 , there 

is (j /0 such that if li x x'l < 0, then ·we hayc !i Ax - Ax' ! -< 8 for 
any A in D. The follo'wing lemma is called Ascoli's theorem: 
Lemma 1. We assume X to be eompaet. Then suhset D in c(X, Y) is relatively 
compaet if and only if D is equicolltinuous on X and for any x in X, D(x) 
is relatiyely compaet in Y. 

6. Schmidt class of linear systems 

~ow, let us eonfine our discussion to linear systems in c(X, Y). Let 
j(X, Y) be subset of all bounded linear operators in c(X, Y). It is ·well-kno'nI 
that j(X, Y) is also a Banach spaee with the norm: 

1 All : I - : sup i I Ax 11/11 xii (12) 
!lXl! = 1 
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From here, we assume that X = Y = H is a Hilbert space, and we 
denote j(X, Y) = J(H). 

Let {<Plh:l is a complete orthonormal family of H. 
Definition 4. An operator A in j(H) is called Schmidt operator if 

~ i (A<PI' <PI;) i2< = or ~ 11 A<PI 112< co. 
k,I I 

We denote the set of all Schmidt operators by s(H). s(H) is called the 
Schmidt class of bounded linear operators. If A belongs to s(H), then we 

have ~ [(A<pI' <PI;) 12 = ~! Arpl!! 2 and this value does not depend on the 
k.I I 

choice of complete orthonormal family {rplh:l' Let 

(A, B) = ~ (Arpl' B<pI) 
I 

Then, s(H) is a Hilhert space with this inner product and norm: 

(13) 

(14) 

Family of operators {<PI; 0 (PIL"I is seen to he a complete orthonormal familv 
of Hilbert space s(H), 'where operator rpl; 0 <PI is defined as: 

Then, anv system in s(H) can be expressed as: 

A = ;E (Arpl' <PJ rpl; 0 rpl 
k,I 

6. c-Decoding of suhset iu s(H) hy finite-shot chaunel 

Let {rpI}I:1 he a complete orthonormal family of s(H). 

(15) 

(16) 

Lemma 2. Let D he a suhset in s(H). D is relatively compact if and only if 
given c /~ 0, there is an integer numher N =N(s) such that for any system 
A in D. 

i!A or, ::>: I (A<pI' rpl;)/2 < s 
k?:.N+l.I?:.N+1 

N 

where, AN = ;E (Arpl' rp,.) rpl; 0 <PI . 
1:=1,1=1 

From this lemma, we have immediately the next theorem: 

THEOREi~l 3. 

If D in s(H) is relatively compact, then D is an a-deeodahle class of 
systems hy finite-shot channel. 
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PROOF: Given c: > 0, there is N=N(c:) such that I A - AN 11 <:' c:, where 

AN L';:1, /~1 (Atp/, tp,J tp" @ If/· Therefore it is sufficient to prove that 
the coefficients {(Atp/, <Plc) }t'~1/~1 can be determined from the output data of 
the finite-shot channel. Let Xi Ifi (i = L _ .. , N). Then, 

Alfi = (L'",/(A.If/, rh) If" @ If/) fPi = 2' (ACfi' tp,,) <p". 

" 
Let yi = ;;E y~ . If", yi, = (l,rh) be output of cfJfPi' Then, N-components 

k 

yf, • •• , yJv are equal to (Alfi' rz),' .. , (ArFi'(fJ\') respectiyely. Therefore from 
the N-shot channel cfJlf1"'" rpN' we obtain A;\. (Fig. 4) (q.e.d.) 

7. Example 

Vie consider now as input and output space H, Hilbert space Lz[-;Z:,;Z:], 
which consists of all square-integrable function~ on [ - ;z:,;z: ] and iuner product: 

(x,y) .r x( t) y( t) dl . (17) 
-." 

It is 'well-kno'nl that L z[ - ;z:,;z:] has a complete orthonormal family: 

1 
-=-cosk· t. 
!;z: . CfZk+1(t) = \:- sin kt 

f! ;z: 

(k L 2, ... ) 

and Schmidt class on LA - ;z:,;z: ] equals the set of all integral operators as: 

y(s) = (Ax)(s) J k(s,t)x(t)dt 

where integral kernel /i:(s,t) satisfies the condition: 

J J k(s,t) !2dsdt -<: = . 
-7t -:t 

(18 ) 

(19) 

(20) 

Complete orthonormal family of s(Lz[ -;z:,;z:]) is family of integral operators 
with kernel 

(21) 

Summary 

An input-output system can be mathematically determined by a triad (U, Y, F) 
where U, Y, and F are input space, output space and mapping from U to Y, respectively. 
Identification problem is to find out inputs and the corresponding outputs, if F is unknown 
- black box. 
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This paper presents methods to identify F within a tolerance c, from knowledge of 
a finite set of input-outpnt relations in the case where F belongs to a specified subset of the 
space consisting of all mappings from G- to Y. These methods can be obtained from c-approxi. 
mation of the subset of mappings involving F. 
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