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Introduction 

Guided 'waves propagating in an inhomogeneous dielectric and varying 
sinusoidally with time are treated in this paper. Both the dielectric and the 
conductor bounding the wave field are supposed to be lossless. Waveguides 
are investigated in 'which neither the geometry of the arrangement nor the 
properties of the media vary in the direction of the propagation and the 
permittivity and permeability of the dielectric are constant, but different 
in each region of the cross section. 

The functions describing the propagation coefficient and the field 
strengths are obtained as series in the frequency. STEVENSON ([1], [2]) 
applied a similar method to the solution of scattering problems. As against 
the problem treated by Stevenson the determination of the propagation 
coefficient of waveguides requires the solution of an eigenvalue problem, 
the application of the method is much more complicated here than in scat
tering problems. 

From among the so-called quasi-TE, TlVI and TElVI modes appearing 
in waveguides only the quasi-TE and TlVI modes are treated in this paper. 
Quasi-TElVI mode can only appear if in addition to the bounding conductor 
there is another conductor in the wave field, e.g. at micro strip transmission 
lines. For this reason the method of calculating the quasi-TElVI mode differs 
considerably from that of the other modes, exceeding the scope of this paper. 

The equations of the eigenvalue problem and the houndary conditions 

Let the z axis of the co-ordinate system he parallel to the direction 
of the propagation and let the unit vector in this direction be denoted by 
k. The complex value of the electric and magnetic field in the m-th region 
of the cross section Am' where the permittivity and the permeability are 
the constant values Cm and f1m' resp.,(see Fig. 1) can be written as: 

Em = (eTm + ezm ) exp (-pz) 

Hm = (hTm + h zm) exp (-pz) . 

(1) 

(2) 
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Here p denotes the propagation coefficient, the vectors eTm and hTm are 
perpendicular to the z axis, the vectors e zm and hzm are parallel to it, and all 
the four vectors depend only on the two co-ordinates in the cross section. 
The three other vectors can he expressed in terms of the vector e Tm as: 

1 
---curl eTm 
jW,um 

(4) 

hTm = _._I_k X (peTm + ~ grad div eTm) 

JW,Um P 

1 ') -.-- curl curl e Tm . 

JW.Hm . 
(5) 

The vector eTm itself can be determined from the vectorial wave equation 

.de --'-- (p2 Tm , (6) 

hy considering the houndary conditions. Along the surface of the perfect 
conductor hounding the wave field the elctric field is normal to it, and along 
the sUl'faces dividing the dielectric into parts 'with different properties of 
media the tangential component of hoth the electric and the magnetic field 
are equal on the two sides of the surface. In consideration of Eqs (3) to (5), 
along the contour of the perfect conductor 

llm X e Tm = 0 

div eTm = 0, 

(7) 

(8) 

and along the contour separating the m-th and k-th region of the dielectric 

1 
curl eTm 

1 
curl eTk • 

(9) 

(10) 

(11) 

(12) 

In these relationsships llm and llmk denote a unit vector normal to the contour 
and pointing inside the Inth region (see Fig. 1). 

Equation (6) and houndary conditions (7) to (12) define an eigenvalue 
prohlem concerning the vectorial function e Tm , in which the square of the angular 
frequency W acts as parameter. The functions p2(W2) and eTm(r,w2) are ohtained 
as solution of this eigenvalue prohlem. For the total uniqueness of the vectors 
eTm(r, co2) a quantity defining the intensity of the 'wave, e.g. the transferred 
power must he given also as a function of frequency. 
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Fig. 1 

It will he shown how the Tavlor's series in w2 of the functions p2(W2) 

and eTm (r,0)2) can he determined, the square of the cut-off frequency Wo being 
chosen as the centre of expansion. The presented method can he generalized 
so that the centre of the expansion is an arbitrary value, but the calculation 
is simpler if the centre is at O)~. Namely, every mode turns into TlVI, TE or 

TEl\:[ mode at the cut-off frequency [3]. The dimensionless quantity 

wL 
(13) W 

c 

is suitably introduced fOl' the expansion, where c is light velocity in vacuum, 
and L is a constant of length dimension, 'which can be identified most simply 
by some characteristics geometry of the ·wayeguide. After introducing the 
quantity 

woL 
Wo=-

c 
(14) 

connected with the cut-off frequency (to he determined later) the Taylor's 
series are suitably written in the form: 

L-2 ~a;(w2 
;=1 

(15) 

(16) 

Here the vectors emi depend only on the two cross-sectional co-ordinates. 
If the above series and the relationship 0) welL are substituted into 

Eq. (6), from the coefficients of the powers of (w2 - w~) the following equa
tions arise: 

(17) 

4 
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Llemi + w~ L -2 crm ,Urm emi = -L -2 (I'rm ,Urm em,i-l + i aj em,i- j)' 
j=l 

i = I, 2, ... (18) 

where crm and {lrm denote the relative permittivity and permeability, resp., 
valid in the region Am. As the ..-ectors eTm must satisfy the houndary 
conditions at all frequencies, each vector emi is required to satisfy separately 
the boundary conditions (7) to (12). 

Eq. (17) and the boundary conditions define an eigenvalue problem, 
the solution of which gives the functions emi and the eigenvalue w~, and the 
cut-off frequency is also ohtained from the latter. In knowledge of the functions 
emo and the eigenvalue w~ the functions e mi can he determined successi yely 
from Eq. (I8) and the boundary conditions by reeursion procedure. In calcu
lations first the divergence and the curl of the functions emi are p088ibly 
determined and from thesc the functions cmi . Introducing the notations 

Umi = divemi 

Umi k = curl emi 

from Eqs (17) and (18) the vectors emi become: 

V 
er/oO = --,,-'--- (grad Umo X k - grad uma) 

Wii err" ,urm 

I [ I 1','L2 1 k LQ d ~, I ---- grac Umi X - - - gra ltmi - " a j em i-j 
w~ erm {lrm ;:i ') 

I, 2, ... 

(19) 

(20) 

(21) 

Taking the divergence and curl of both sides of Eqs (17) and (18) yields 
for the functions umi and umi : 

o 
o 

JUmi + wg L -2 erm ,uml Umi = -L -2 (',eml ,uml Um,i-l --!- i aj Um,i- i) 
J=l 

j , Q L-" L-o (t f ~ ) , urni -;- wii - en" firm Urni = - - erm Prm Um,i-l -;- ~ aj Um,i-j 
J=1 

According to Eq. (8), along the contour of the perfect eonductors 

(23) 

(24) 

(25) 

(26) 

(27) 

Taking this and Eqs (21) and (22) into account, according to the boundary 
condition (7), along the contour of the perfect conductors 

GVmi = 0 
Gnm 

(28) 
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According to Eqs (ll) and (12), along the contour separating the regions 
Am and A" of the dielectric: 

Umi = U"i (29) 

1 1 
(30) -Vmi = Vu 

Pm P-k 

Taking Eqs. (21), (22), (29) and (30) into account, from (9) and (10) along 
the same contour boundary conditions 'will be: 

1 (L2 avu 
c\ Pk CHIn?!.: 

_1_ (L2 oUJ:i 

Pk \ onmk 

introducing notation tmli = k X n mli (see Fig. 1). 

(31) 

It follows from the symmetry of Maxwell's equations that equations 
entirely similar to the preyious ones can he written on the basis of the mag
netic field instead of the electric field. These equations, excepted the equiya
lents of Eqs (7), (8), (27) and (28) result from the preyious ones hy inter
changing the letter symbols: 

(33) 

Cm ++ -llm 

While the electric field is normal to the surface of the perfect conductor, the 

magnetic field is parallel to it. So (7). (8). (27) and (28) \vill be replaced hy 
the following houndary conditions along the contour of the perfect conductor: 

nm hTm = 0 

curl hTm = 0 

GUmi o 

Determination of the cut-off frequency and the different modes 

Quasi-T j\l1 modes 

(34) 

(35) 

(36) 

(37) 

Equation (23) and the boundary conditions (27). (29) and (31) define 
a boundary value problem yielding the function umO and the eigenvalue w~ 

4* 
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and the cut-off frequency Wo • It is proved in Appendix I that the eigenvalues 
w~ are non-negative real, as it could he expected. 

For the sake of clearness the further treatment is restricted to the 
case of simple eigenvalue, though the presented method can be generalized 
'with no difficulty to the case of multiple eigenvalue. (:Multiple eigenvalue 
occours, if the cut-off frequencies of two or more quasi-T:M modes happen 
to have the same value.) If the eigenvalue is simple, the functions llmO are 
defined unequivocally up to a constant factor. This factor can he chosen 
arbitrarily, unless the power transferred by the waveguide is given as a 
function of the frequency. In knowledge of functions U mo and eigenvalue 
w~, functions vmO can be determined as solution of the simple boundary 
value problem defined by Eq. (24) and the boundary conditions (28), (30) 
and (32). Thereafter vectors emO can be calculated by means of (21). If the 
product eft is constant along the whole cross section, then v mO 0, i.e. the 
vector emO is seen to be irrational. 

Unless functions llmO are identically zero, vector hTm grows beyond 
any bound according to (5) when the frequency tends to the cut-off frequency 
wo' because the propagation coefficient converges to zero. But hzm remains 
bounded according to (4), thus the magnetic field is perpendicular to the ;:; 
axis at the cut-off frequency. On the other hand it results from Eq. (3) that 
the electric field is parallel to the;:; axis at the cut-off frequency. Accordingly 
thesc modes can be identified with the so-called quasi -T:M (qT:M) modes. 

QllClSi-TE modes 

The equation and the boundary conditions relatiye to functions llmO 

are satisfied hy the fUIlction idetically zero. For these modes the eigenyalue 
u;~ can he determined from the eigenyalue problem relative to the functions 
vmO defined by Eq. (24) and boundary conditions (28), (30) and (32). By 
analogy to the idea in Appendix I, the eigenyalues 1{;~ of this houndary value 
problem can he proved to be all non-negative real. 

If llmO 0, div e Tm converges to zero in order of magnitude of ((1)2 - U)~) 
and p in order of magnitude of \' (J)2 (')5' ·when the frequency tends to the 
cut-off frequency. e zm converges to zero according to (3). thus the electric 
field is perpendicular to the;:; axis at the cut-off frequency. On the other 
hand, according to Eqs (4) and (5), the magnetic field is parallel to the ;:; 
axis at the cut-off frequency. Accordingly these modes can be identified 
with the so-called quasi-TE (qTE) modes. 

The qTE modes are simpler to calculate on the hasis of vectors hTm 

than eTm • Then the eigenyalue w~ has to be determined from the eigenvalue 
prohlem relative to vectors hmo' using equations derived and calculation 
process as descrihed ahoye. 
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Quasi-TENI modes 

The equations and boundary conditions relative to functions umO and 
vmO are satisfied by the function identically zero, i.e. modes are possible for 
,vich 

div emo 0 

curl emo = 0 

(38) 

(39) 

According to Eq. (17) the value w~ and so the cut-off frequency must be zero 
because else the vectoT emo would be zero. Vector emo has not to be determined 
now fTom an eigenvalue problem, but from a simple boundary value problem 
defined by Eqs (38) and (39) and the proper boundary conditions. This 
problem has the trivial solution emo 0 only if the cross section of the dielec
tric is a singly connected region. So now the modes investigated can only 
occur in arrangements which contain further conductors in addition to that 
bounding the wave field. 

It can be proved by means of Eqs (3) to (5) that in these modes both 
the electric and the magnetic field are perpendicular to the z axis at zero 
frequency, which is at the same time the cut-off frequency. Accordingly 
they can bc identified ,dth the so-called quasi-TEM (qTEM) modes. Appar
ently their calculation differs from that of the other modes, this is why they 
will be discussed in a separate paper. 

Calculation of qTM modes 

It has heen presented so far ho'w the cut-off frequency UJo and the 
vector functions emo can be determined. Now it ,till he discussed how coef
ficients of the series of p2 and eTm can be computed for the qTM modes by 
recursion procedure starting from the functions emO" 

The i-th step of the recursion procedure involves determining functions 
Umi' Vmi and emi and the coefficient Gi . The function llmi can he computed 
from Eq. (25) and houndary conditions (27), (29) and (31). The homogeneous 
equivalent of this houndary value prohlem has a non-trivial solution by 
definition of the eigenvalue w~. So according to Fredholm's alternative the 
equation given in Appendix II must he satisfied for the existence of a solution. 
The coefficient Gi can be computed from this equation. Introducing the 
notation 

(40) 

where 1;" denotes the part of the boundary curve of the region Am inside 
the dielectric, and nm a unit vector normal to the curve 1;" and pointing 
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inside the region Am' coefficient a i is, according to Appendix II: 

(41) 

Of course the sum vanishes in the case i = l. 
W-ith this value for the coefficient ai Eq. (25) has a solution that satisfies 

the boundary conditions (27), (29) and (31), but this solution is not unique. 
If u~i denotes a particular solution, the general solution has the form 

(42) 

where C is an undefined constant. Its value can be chosen arbitrarily unless 
the power transferred hy the 'waye guide is giyen as a function of the frequency. 

Now hy solving the simple boundary yalue problem in Eq. (26) and the 
boundary conditions (28). (30) and (32), functions vmi can he determined. 
After this the Yectors emi have to be computed by means of (22), ending the 
i-th step of the recursion procedure. 

If the product ep, is constant throughout the crOSE section, the relation
ship (41) yields for the coefficient (11: 

-er Pr' (43) 

The right-hand sides of Eqs (25) and (26) are seen to he identically zero 
for every value of i, so hoth functionE U l1li and vrni call be chosen identically 
zero, furthermore all the coefficients (li hut Cl1 are zero. Thus, the square of 
the propagation coefficient: 

p~ (44) 

Calculation of qTE modes 

The qTE modes can be calculated hy recursion procedtue as described 
if the calculation is hased on the magnetic instead of the electric field strength. 
So, starting from functions hmD' the coefficients of the series of p2 and hTm 

can he determined by recursion procedure. 
The recursion procedure and its formulae are obtained from those for 

the qTlVI modes hy interchanging the letter symbols according to (33). The 
only difference is to substitute boundary conditions (36) and (37) for (27) 
and (28) in determining functions U mi andvmi • 

On the region of convergence of the series 

The region of convergence of the series raises some theoretical questions. 
Unfortunately the results of this investigation permit to determine the 
numerical value of the radius of convergence in very simple cases alone. 
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The parameter (j)'.!. in Eq. (6) can he regarded as a complex variable. 
Then the eigenvalue problem described by the equation defines a function 
p2(W2) of a complex variable with an infinity of values. The branches of the 
function are connectcd with several modes. The position of the branch points 
on the branch relative to the investigated mode determines the region of 
conyergence of the series. 

_______________ c ____ -'--_________ »-

W 

Fig. 2 

The branch points on the real axis are related to the phenomenon of 
the hackward waves. The dispersion curve of certain waveguides has the 
character shown in Fig. 2 (see e.g. ['1], [5]). Dispersion curves of two different 
modes are l'eally seen in the figure. The dispersion curve of one of these 
modes is sloping betwecn frequencies COl and COo- i.e. the phase velocity and 
the group velocity haye opposite dircctions. This is the phenomenon of the 

hackward wayes. OYer the frequency coo the propagation coefficient is real 
(not seen in the figure). then it turns again purely imaginary 'with increasing 
frequency. The propagation coefficient of the other mode is purely imaginary 
over the frequency (1)1' and its absolute yalue increases with the frequency. 
Approaching the frequency (1)1 from above, both modes couyerge to the same 
wave pattern, i.c. two differeut solutious of the eigenvalue problem turn 
into a single solution at the frequency 0)1 • With frequency decreasing below· 
the value (1)1' two solutions appear again, with eigenvalues p2 not purely 
real any more, and of course the two eigenyalues are conjugate to each other. 

Now the function p2(W2) is seen to haye a hranch point at (J)i . 
The function p2( (1)2) has real hranch points solely for certain arrange

ments, but complex branch points may occur in all arrangements. These 
determine the radius of convergence of the series, more exactly that one 
among the singular points lying on the hranch of the function p2(W2) related 
to the investigated mode which is nearest to the centre of the series develop
ment. 
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Examination of the derivative dp2jdw2 permits to locate the branch 
points. Appendix III shows this derivative to be Axpressible as: 

(45) 

.:E J (eTm X h Tm ) dA 
n1 Am 

There is a branch point for the value w2 where the denominator in the right
hand side of (45) becomes zero, whjle the numerator is not zero. If also the 
numerator is zero, the limit value of the derivative must be examined. If such 
a limit value exists, the function is differentiable at the given point, and there 
is no branch point. Gencrally it is so if w equals the cut-off frequency. If it 
could be determined where the denominator in the right-hand side of (45) 
becomes zero, determination of the radius of convergence "would cause no 
problem. Unfortunately, except for very simple arrangements, finding these 
points seems to be unpromising. 

If e Tm and hTm are real, the power transferred by the waveguide stands 
in the denominator of (45). If the phenomenon of backward waves occurs, 
this power is negative because the direction of the energy flow is opposite 
to the direction of 'wave propagation, and the transferred power is zero at 
hoth boundary points of the range of frequency where the phenomenon 
occurs. One of the two boundary points is the cut-off frequency, it is, however, 
no hranch point, as it was mentioned. But the other houndary point is a 
hranch point. If eTm and hTm are real, the right side of (45) is the weighted 
arithmetic mean of the product -fp, , .. ith the powers flowing in several 
layers of the dielectric as weighting factors. 

On the application of the method 

For simple arrangements the coefficients of the series can be analytically 
determincd. As an illustration the case of the rectangular wavcguide 'with 
inhomogeneous dielectric will he investigated in the last part of the paper. 
Cases imposing numerical evaluation will he treated in a suhsequent paper. 
Here only a rough comparison will he presented hetween the usual numerical 
method to determine the dispersion Cluve and the method described in this 
paper. 

First, let us consider how the phase factor can be determined at a given 
frequency hy the usual method. On this purpose let the cigenvalue problem 
defined hy Eq. (6) or an equivalent prohlem relative to a two-dimensional 
vector he solved. If this eigenvalue prohlem requires to discretize the differ
ential equations, and OIl this purpose J:V grid-points aTe chosen in the cross 
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section, the eigenvalue relative to the investigated mode has to he selected 
among the eigenvalues of a matrix of size 2N X 21V. The eigenvalue found, 
the approximate valucs of vector eTm or hTm in the grid-points can be com
puted hy solving a system of linear equations with 21V unknowns. Deter
mination of the dispersion charactcristic requires multiple repetitions of the 
procedure at frequency values chosen suitahly densely. 

yi 

c 2 • }.IQ I~ 
t-

Cl .}.IQ it>, 
x 

\. d ·1 

Fig. 3 

Using the method in this paper for determining the Taylor's polynomial 
approximating the function p2(W2), an eigenvalue problem has to he solved 
hut once for determining the cut-off frequency. This eigenvalue prohlem is 
connected to a scalar function, so if there are N grid-points, the eigenvalue 
of a matrix of size N X N rather than 2N X 2N must be determined. The 
eigenvalue problem once solved, only systems of linear equations with lV 
unknowns has to he solved, and integrals to be evaluated numerically. 

Rectangular waveguide "With inhomogeneous dielectric 

The described procedure -will be adopted to the rectangular waveguide 
"I\ith two dielectrics of permitivities Cl and C2 in Fig. 3. PRACHE [6] and 
YEGOROV [7] investigated this arrangement most minutely in the usual way. 
Their works contain among others the dispersion equation, the numerical 
solution of which gi-v-es the dispersion characteristic of a concrete arrange
ment. Applying the presented procedure to this arrangement yields the 
results helow. 

qTlvI modes 

The qTM modes can he identified "I"ith the so-called LEmn modes for 
"IIrhich m is non-zero. 
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The constant L ill the definition of the parameter w is chosen as 
L = bl + b2 = b. Determination of the eigenvaiue w~ = OJ~b2/c'!. requires to 
solve the system of transcendental equations 

er'!. ki CrI k~= (er'!. CrI) :;r2 S2 m2 

kl ctg Tl kl + k2 ctg T2k2 0 

using notations Tl = bI/b. T2 = b2/b and s = bid. m being an arhitrary positive 
integer. With knowledge of kl and k2 the eigenvalue w~ is giycn by the 
relationship: 

le5 = _1_ (ki --;- ';'{2 S2 m2) _1_ (k~ -]- ';'{2 s'!. m'!.) . 
CrI Cr2 

For the qTlVI modes the vectors eli and e2i are parallel to the x axis. Their 
magnitudes are: 

i 
eZix= ~ B i). cos :71llX f(b 

~ cl) 
b. 

where the following notation has been introduced: 

fl;;, k) = {(Z.;b») sin (kZ;.'.!b) • 
(::;b)1 cos (kz.b) • 

if j is eyen. 

if j is odd. 

The coefficients Aij can he determined from the recurrence for1llula 

i-i~l 1 .t al; A i - li . j - 1 -'- j(j + 1) A i,j';'l . 
I;~l I 

i = 1. 2 .... j = i. i 1.. .. 1 

Of course the coefficient A i ,i';'l appearing in the ease j = i must he zero. 
The coefficients Bij can he determined hy the same formulae, except that 

er'!. and kz replace CrI and hI' One of the coefficients AiO and B iO mav be 
chosen arbitrarily. the other can he computed from the equation: 

i 

.::2 A idibl' k l ) 
j~O 

i 

.::E Bidj(bz• kz) • 
j~O 

i = 0,1. ... 

With knowledge of the coefficients Aij and Bij the quantities qi defined by 
(4.0) are: 

i = 0, 1, ... 

where: 

d Ibm. 
- SIn 
2 

In = 1,2 

o 
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So the value of ai +1 is given by the formula 

i = 0,1, ... 

and now the procedure continues ,\ith computing the coefficients A i +1,j 

and Bi+1,j' 

The radius of COll\-ergenee can he determined approximately by 

investigating the derivative dp2j do}. Applying the results of (7) the eyaluation 
of (45) leads to the relationship 

dp2 

do} 
Po >< 

cl(2qlbl - sin 2qlbj) qz sin" qzbz + E~(2q2b2 - sin 2q2bZ) ql sinz qlbl 
X 

( 'J b . 'J b) . q b ' (.) I . 'J b) . ~ b -ql 1 - sm -ql 1 q'2 sm- q2 '2 --;-- -qZ)2 - sm -qz '2 ql sm- ql 1 

-where ql and q2 denote the solution of the following system of transcendental 

equations: 

The differential coefficient dpZj dco2 does not exist fOT the values ql and q2 
which satisfy the system of equations 

All pairs of values ql =--= 0 and q2 satisfying the equation 1 --;-- b112 ctgqzbz ° 
and all pairs of valuei' qz ° and ql satisfying the equation 1 + bZql ctg qlbl = 0 
are solutions of this system of equations. In these case:;: hoth the numerator 
and the denominator ill the formula of dp2jdw2 are zero, but it is easy to see 
that the limit yalue exists, so these pairs of values do nut represent singular 
points of the fUllction p2(wf. Let us introduce notations x Qlbl' Y = qZb2 
and T hI/ b2 and rewrite the system of equations in the follo',ing form: 

(2y - sin 2y)x sin2 x + r(2x sin 2x) y sinZ,· 
-' -' 

o 

x ctg x + r ctg y = ° . 
The approximate solution of this system of equations is treated in Appendix 
IV. The singular points of the flmction, p2( (t}) can he determined from the 
solutions for which xy =-= 0, by means of the relationship: 
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For the determination of the radius of convergence those must be considered 
which lie on the branch of the function p2(W2) connected with the investigated 
mode. Among these singular points the one nearest to the point w~ determines 
the radius convergence of. 

As numerical example let an arrangement be considered 'where d = 2.3b, 
bI = 0.2b, erI = 10 and e r2 = 1. For the qTM mode of the smallest cut-off 
frequency, i.e. for the LEn mode the eigenvalue lV~ was found to be w~ = 

= 6.1691, in correlation \\ith the cut-off frequency Wo = 2.4838cjb. The 
follo\\ing values were obtained for the first six coefficients a i : 

a I = -2.6948 

a 4 = 2.1452 . 10-4 

-0.19991 

a5 = 1.4630 . 10-4 

a3 = -0.013380 

8.7376 . 10-6 • 

In Fig. 4· the continuous line represents the exact dispersion curve, and the 
dotted lines represent its approximation hy Taylor's polynomials of first, 
second, third and fifth degree. The radius of convergence of Taylor's series 

:j 
I 

5 

2.5 

Fig. 4 
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3.0 3.5 

~Fig . .5 

was determined approximately on the basis of Appendix IV. The estimation 
described there gay!' that the singular point nearest to the value UJ~ is UJi = 

= (7.15 - j7.54) (clb)2. From this it follows that the radius of convergence 
of Tay10r's series in (1)2 is R = 7.60 (clb)2, from "what it fo11o"ws that the series 
is convergent to the value UJ = 3.71clb. It correlates with this that e.g. the 
approximation of tenth degree not plotted in the figure is worse over the 
value (I) = 3.7clb than the one of fifth degree. 

qTE modes 

The cut-off frequency of the qTE modes can be determined from the 
system of transcendental equations 

Cr2kl tg Tlkl + cr1k 2 tg Tzk 2 = 0 , 

where TI , T2 and s represent the same quantities as previously, and m is a 
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non-negative integer. Knowing kl and k2' the cut-off frequency can be 
calculated the same way as for the qTNI modes. 

In the case of In = 0 the field strenghts do not depend on x, and the 
vectors hTl and hT2 are parallel to the y axis. This is 'why the electric field 
is parallel to the x axis, so these modes are true TE modes and can be identi
fied ,vith the LEon modes. If In is positive integer, the vectors hTl and hT2 
are parallel to the x axis, so thesc modes can be idcntified ,dth the LNImn 
modes. On the basis of the analogy previously described, these modes can 
be computed similarly to the qTM modes. The calculation of the modes 
helonging to the index m = 0 differs from this because In cannot be zero 
for the qTNI modes. Formally substituting In = 0 in the results found for 
the qTNI modes, the relationships describing the qTE modes helonging to 
the index In 0 are directly got. 

Instead of further details the numerical results are given for the mode 
LEOl of the arrangement already investigated. The cut-off frequency of this 
mode is COo = 2.3322cJb. The foUo'wing values were got as the first twelve 
coefficients ai : 

a l = -2.4245 a 2 -0.17046 a 3 - -0.013306 

a.1 = -2.3516 10-4 a 5 = 9.7536 10-5 a 6 1.2329 . 10-5 

a 7 -4.24,96 10-8 a8 - -1.8891 10-7 a 9 -2.0196 . 10-8 

alO = 9.1837 . 10-10 all = 4.6234 . 10-10 a l2 3.7221 10- 11 

In Fig. 5 the exact dispersion curve is plotted in continuous line, and its 
approximations hy Taylor's polynomials of several degrees in dotted line. 
Taylor's series is convergent approximately to the value (!) = 3.63cjb according 
to calculations similar to previous ones and not givcn here in detail. The 
curve of Taylor's polynomial of eleventh degree, plotted in the figure, is in 
accordance with this. 

Appendix I 

It will be proven that the eigenvalues of the houndary value problem 
defined hy Eq. (23) and boundary conditions (27), (29) and (31) are all non
negative real. 

Let Eq. (23) he multiplied by the conjugate of the function umolflrm 

and integrated over the region Am of the cross section: 

dA = O. 
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Transforming the first integral hy means of one of Green's theorems, the 
follo>\ing equation arises: 

1 j' aI'ancI U ar'ad u* d,4 ...LJu* _1_ oumo dl -- e mO e mO - I mO , 
firm flrm onm 

AT/J lm 

where lm denotes the houndary curve of the region Am' and llm denotes a 
unit vector normal to it and pointing inside the region, Writing this equation 
for every region of the cross section, and summarizing them, the line integrals 
cancel out along the separating contours because of the houndary conditions 
(29) and (31) and give zero along the contour of the conductor because of 
(27). So after ordering the follo"'iVing expression is obtained for w~: 

'J . -1 1 ~ w5 = (~crm U mO u;;o dA I L2 ~ -- I grad U mO grad u;,o dA 
nz I m Prm J 

Am Am 

It is seen that lV~ can only be non-negative real, if the values crm and firm 

are all positive real. 

Appendix II 

In this Appendix the condition 'will he derived that must he satisfied 
by the right-hand side of Eq. (25) and the inhomogeneous part of the 
houndary condition (31) so that the houndary value prohlem relative to 
the function Umi should have a solution. 

Multiplying Eq. (23) by llmi and (25) by (-llmo), adding them and 
integrating over the region Am: 

f(llmi Llumo - UmO JUmi) dA = L-2 J llmO [cml firm u m,i-1 + ~ aj llm,i- j) dA. 

Am Am 

The left-hand side of the equation can be transformed by means of one of 
Green's theorems. Writing such an equation for every region of the cross 
section di-dding them by {inn ancI summing up, yields: 

L-2 ~ J U mO X 

Am 

( 1 i ) >< crm U m,i-1 + --~ aj um,i-j cIA , 
l ,urm j=l 

where lm denotes the boundary curve of the region Am and llm the unit vector 
normal to the contour and pointing inside the region. The line integrals give 
zero along the contour of the conductor hecause of the boundary condition 
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(27). Integrals of the second term of the integrand are cancelled for two 
contiguous regions because of the boundary conditions (29) and (31). The 
other part of the integral can be transformed by means of the same boundary 
conditions, giving the equation 

where l:n denotes the part of the boundary curve of the region Am in the 
dielectric, i.e. not including the part on the contour of the conductors. This 
equation must be true, if the equation (25) is to have a solution satisfying 
the boundary conditions (27), (29) and (31). 

Appendix III 

A relationship 'will he derived, giving the value of the differential 
coefficient dp'.!.jd(j)'!.. 

The solution of the boundary value problem relative to Eq. (6) is 
considered in the points Q2 helonging to a smallneighbonrhood of the point (j)2: 

0 2] (02 ) - 0 cmflm-- e Tm -- - • ( I) 

The solution of the boundary value problem i8 chosen so that the vectors 
e nn(Q2) are continuous in dependence on Q2. For this reason, if the eigen
value p2(O) is multiple, the -vector e Tm «(j)2) cannot he an arhitrary solution 
of the houndary value problem, hut such one which corresponds to a mode. 
Consider Eq. (I) in the points Q2 = 0)2 and Q2 0)2 +- (0)2 and suhstract 
one of these equations from the other. Intl'0ducing the notations 

the following equation is obtained: 

(bp'!. (Il) 

Let hTm be a solution of the houndary value problem relati...-e to the equation 

/1h '[ 2( 2) I • 2] h .cJ Tm I P 0) I cm.um(.~ Tm o . (Ill) 

Multiplying vectorially Eq. (Il) hy the vector hTm and Eq. (Ill) by the 
vector OeTm , and adding them: 

o. 



CALCULATIOl'i OF GUIDED WAVES 247 

It can be proven simply, but somewhat lengthily that if the vectors a and b 
lie in the xy plane and do not depend upon the co-ordinate z, then 

a X flb + b X fla = k div [a(k curl b)] + k div [b(k curl a)] -

curl (a diy b) - curl (b diva) . 

Applying thi::< identity to the previous equation, and integrating the equation 
over the region Am' the following relationship is obtained by means of 
Gauss' and Stokes' theorems: 

r [nmhTm(k curl beTm ) + nmbeTm(k curl h Tm ) tmhTm div beTm 
l;n 

+ tmbeTrn div h Tm ] dl + J [(bp? + cmflmbo/') hTm X eTm(22)] dA = 0, 
Am 

w-here tm nrn X k. Let this equation be written for every region Am of 
the cross sectiun and add them up. The function oeTm must satisfy the boundary 
conditions (7) to (12), the function hTm the boundary conditions (34) and 
(35) and the ones analogous to Eqs (9) to (12). The line integrals are seen to 
give zero in the sum of the equations, and so the following relationship is 
obtained after ordering: 

.:E Cm flm 
m 

.:E J (e Tm (Q2) X h Tm ) dA 
m Am 

Let now thc value Q2 COllyerge to (1)2, and denoting the vector eTm( (1)2) :-imply 
by e Tm , the derivative of the function p2(0)2) with respect to 0)2 is ohtained as: 

~ Cm flm J (e Tm X h Tm ) dA 
n2 Am 

.:E J (e Tm X h Tm ) dA 
n1 Am 

where the denominatol' is supposed to be non-zero. If the numerator is zero 
and the denominator is not, the function is not differentiahle at the given 
point. If both are zero, the limiting value can exist in the foregoing sense. 
In this case the function is differentiable in the investigated point. 

Appendix IV 

A method for the approximate solution of the follo'iving system of 
equation will he presented: 

(2y sin 2y)x sin2 x + r(2x - sin 2x)y sin2 y = 0 

x ctg x ry ctg y = o. 

5 
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Solutions where x or y is zero are uninteresting, and it is enough to look for 
solutions where y lies in the first quarter of the complex plane. First the 
iimitiug case T 0 is treated, the solutinns of which are dennted hy X and Y. 
They satisfy the equations 

ctg X = 0 

2Y sin 2Y = 0 

This vields the values for X 

Xm=(m+ ~)n, 
where m is an arbitrary integer. Ten roots of the other equaiipn, which have 
thc smallet't absolute values are given here: 

Y 1 = 3.749 j1.384 

Yi c:= 13.277 -+- .11.992 

Y7 = 22.727 + j2.258 

Y lO = 32.164 -+- j2.430 . 

Y 2 = 6.950 + j1.676 

Y-n 

y 
8 

16.430 +- j2.097 

25.87'1 j2.184 

Y3 == 10.119 + j1.858 

Ys = 19.580 -+- j2.18cl 

Y! 29.020 -.:- .12.379 

The other root~ can be calculated with a rclativf' e~'r"l' le~s than 10-:; by 

mea;\" of thp a"ymptotieal formula 

1 
2 Ln(4n -+- 1) ;r . 

.'\ ItW the solutions of the system of equations are investigated ill 
dqwndc!l(:(> PH the parameter r. Let xmr:(r) and Ym)r) denote the pair of 

sobti"n~ fM which Xryw(O) Xm and Ymn(O) Y!j' The fUllctii'llS xmr,(r) 
and .Yn:rz(r) can he determined e.g. numerically if the two eqna!i!Jns are differ
eJltiated 'with respeet tn r, and the system of differential equations Sf) obtained 
flJI' thr fUIlctioHS x.n,,(r) and Ymn(l') is numerically integrated starling from 
the il1i;jal yalue5 Xm and Y m' If the roots are needed fo1' a yalue r > L of 
course the reciprocal of r is introduced as a new parameter, the calculation 
i~ based UP01l. As rough estimation the functions xmrz(r) and YrI!T/(r) can he 
approximated by Taylor's polynomial of first degree: 

where into the expression of Xmn the value of the square root found in the 
right half plane has to be substituted. 
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Summary 

A method has been given to determine the Taylor's series expansion of the dispersion 
fUllction of waycguides with inhomogeneous dielectric about the cut-off frequency. The 
Taylor's series of the transversal component of the electric or magnetic field is got also as 
a result of the presented recursion procedure. The radius of convergence has lwen determined 
from the branch points of the square of the propagation codfici.:nt on the complex plane. 
The rectangular waycguide with inhomogeneous dielectric has been treated as an example 
and compared with published results. 
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