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Introduction

Guided waves propagating in an inhomogeneous dielectric and varying
sinusoidally with time are treated in this paper. Both the dieleciric and the
conductor bounding the wave field are supposed to be lossless, Waveguides
are investigated in which neither the geometry of the arrangement nor the
properties of the media vary in the direction of the propagation and the
permittivity and permeability of the dielectric are constant, but different
in each region of the cross section.

The functions describing the propagation coefficient and the field
strengths are obtained as series in the frequency. SteveEnson ([1], {2])
applied a similar method to the solution of scattering problems. As against
the problem treated by Stevenson the determination of the propagation
coefficient of waveguides requires the solution of an eigenvalue problem,
the application of the method is much more complicated here than in scat-
tering problems.

From among the so-called quasi-TE, TM and TEM modes appearing
in waveguides only the quasi-TE and TM modes are treated in this paper.
Quasi-TEM mode can only appear if in addition to the bounding conductor
there is another conductor in the wave field, e.g. at microstrip transmission
lines. For this reason the methoed of calculating the quasi-TEM mode differs
considerably from that of the other modes, exceeding the scope of this paper.

The equations of the eigenvalue problem and the boundary conditions

Let the s axis of the co-ordinate system be parallel to the direction
of the propagation and let the unit vector in this direction be denoted by
k. The complex value of the electric and magnetic field in the m-th region
of the cross section A, where the permittivity and the permeability are
the constant values g, and u,_. resp..(see Fig. 1) can be written as:

E,= (eTm + ezm) exp (_Pz) (1)
H, = (by, + hzm) exp (_P:) . (2)
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Here p denotes the propagation coefficient, the veectors e;, and h,, are
perpendicular to the z axis, the vectors e, and h,,, are parallel to it, and all
the four vectors depend only on the two co-ordinatesin the cross section,
The three other vectors can he expressed in terms of the vector e,, as:

€, = 2 div erm

1 N
hzm == curl €rm (4)

Jotty,
1 .
hTm = - k x (PeTm =+ —grad div eTm] =
Jolny D
k Ie

curl curl e (3)

— P oo :
=X [] WEm €rm 1

P

The vector e, itself can be determined from the vectorial wave equation

Jops

deTm - (P2 + Em[-lmmz) €rm = 0 (6)

by considering the boundary conditions. Along the surface of the perfect
eonductor bounding the wave field the elctric field is normal to it, and along
the surfaces dividing the dielectric into parts with different properties of
media the tangential component of both the electric and the magnetic field
are equal on the two sides of the surface. In consideration of Eqs (3) to (3),
along the contour of the perfect conductor

n, X erp =10 (7

div e, =0, (8)

and along the contour separating the m-th and k-th region of the dielectric
By Xy = Dy X €y, (9)

Em Dy O = € Dy Oy (10)

div e, = div er; (11)

——curl ep, = S curl er, . (12)

AU'H’I A“ i

In these relationsships n,, and n,,, denote a unit vector normal to the contour
and pointing inside the mith region (see Fig. 1).

Equation (6) and boundary conditions (7) to (12) define an eigenvalue
problem concerning the vectorial function e, in which the square of the angular
frequency o acts as parameter. The functions p*(w?®) and e;,(r.% are obtained
as solution of this eigenvalue problem. ¥For the total uniqueness of the vectors
ern(r. %) a quantity defining the intensity of the wave, e.g. the transferred
power must be given also as a function of frequency.
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Fig. 1

It will be shown how the Tavlor’s series in w? of the functions p*(w?)
and e, (r,»?) can be determined, the square of the cut-off frequency w, being
chosen as the centre of expansion. The presented method can be generalized
so that the centre of the expansion is an arbitrary value, but the calculation
is simpler if the centre is at m{n‘,. Namely. every mode turns into TM. TE or
TEM mode at the cut-off frequency [3]. The dimensionless quantity

(i)L

c

w == (13)
is suitably introduced for the expansion, where ¢ is light velocity in vacuum,
and L is a constant of length dimension, which can be identified most simply
by some characteristics geometry of the waveguide. After introducing the
quantity

C!)OL

(14)

Wy =
c

connected with the cut-off frequency (to be determined later) the Tavlor’s
series are suitably written in the form:

2= L“’Z%’ai(w? — ) (15)

Crm=— 2 emi(w‘2 - 'w.fz))[ (16)
e

Here the vectors e,; depend only on the two cross-sectional co-ordinates.

If the above series and the relationship w = we/L are substituted into
Eq. (6), from the coefficients of the powers of (1? — wj;) the following equa-
tions arse:

% 2 7 —2 . 7
Jemo + Wy L Erm Hrm mo = 0 (1 {)
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i
/ a2 T -2 —_— __F -2 A .
Jemi Wy L Erm Urm €mi = L €rm Hrm em,i——l i 2 aj em.z—-j

=1

.. (18)

denote the relative permittivity and permeability, resp..

1=1

3]

K K

where ¢, and u.,
valid in the region 4. As the vectors ey, must satisfy the boundary
conditions at all frequencies, each vector e
the boundary conditions (7) to (12).

Eq. (17) and the boundary conditions define aneigenvalue problem,

i 18 Tequired to satisfy separately

. - . . . 24
the solution of which gives the functions e _; and the eigenvalue w;, and the
g g 0

mi
cut-off frequency is also obtained from the latter. In knowledge of the functions

e,, and the eigenvalue wj; the functions e, ; can be determined successively

mi
from Eq. (18) and the boundary conditions by recursion procedure. In calcu-

lations first the divergence and the curl of the functions e,; are possibly

determined and from these the functions e, ;. Introducing the notations

mi*
U = div €mi (19)
v, k = curle,, (20)

from Eqgs (17) and (18) the vectors e ; hecome:

L‘l
€mo — T ——(grad Umo X k— grad umo) (21)
5 Erm Urm
1 1 . 2 L
Cmi = — |~ IL—‘ grad Ui X k —L* grad Ui — ‘: a; em,i—jl — Cmi-1
W5 L Ermtym j=1 |

1= 1,

[N

(22

Taking the divergence and curl of both sides of Eqs (17) and (18) vields
for the functions u,,; and v,

/ | .2 -2 . A
’Junz(l - Wy L Erm Mrm Umo == 0 ('D)
4 i 2 -2 . — D
~JLm() - WG L Erm Hrm Vmo = 0 ("4)
{ i
/ 2 T -2 — - ! D¢
Jumz’ + Wy L Erm Mrm Ymi = —L Erm Hrm um,i—l e 2 aj um,i—j} (2‘3)
=1
{ i
: 2 F -2 . — -2 N 2
mei - Ws L Erm Hrm Vo = —L Erm Brm Umji—1 T 2 a; um,i——j) . (“6)
j=1

According to Eq. (8), along the contour of the perfect conductors

Taking this and Eqs (21) and (22) into account, according to the boundary
condition (7), along the contour of the perfect conductors

Oomi _ g (28)
on,,
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According to Egqs (11) and (12). along the contour separating the regions
A, and A, of the dielectric:

Upi == Uy (29)
1 1
T Upyp = Uy (30)
tm Hy

Taking Eqgs. (21). (22), (29) and (30) into account, from (9) and (10) along

the same contour boundary conditions will be:

1

GU i

4 1 Ty ! )
2 ; o 2 £ <
(L = - 2 a; By enz,i—j] = fL " T 2 Dy g (31)
Hm Otk Jj=1 p U Oy j=1 ;
i [P P . i
1 2 IV n Lgdumz L Na.t o
P l ,. T Atk Cmi-j| =
E€mn Um Iy L j=1
32)
. D
1 v, T, i ] (
o 2 B o mi
= L2— -+ L + Najty, e ]
c at ==
e Wy Oy Sl Jj=1
introducing notation t,, = k X n,, (see Fig. 1).

It follows from the symmetry of Maxwell’s equations that equations
entirely similar to the previous ones can be written on the basis of the mag-
netic field instead of the electric field. These equations, excepted the equiva-
lents of Eqs (7), (8), (27) and (28) result from the previous omes by inter-
changing the letter symbols:

€rm > hTm €:m — h:m €mi > hmi (33)
Em = —Unp

While the electric field is normal to the surface of the perfect conductor, the
magnetic field is parallel to it. So (7). (8), (27) and (28) will be replaced by
the following boundary conditions along the contour of the perfect conductor:

n, hTm =0 (34‘)
curl by, =0 (35)
Cjumi =0 (36)
Iy

Ui = 0 (37)

Determination of the cut-off frequency and the different modes

Quast-TM modes

Equation (23) and the boundary conditions (27), (29) and (31) define
a boundary value problem yielding the function u,, and the eigenvalue w;



234 A. MAGOS

and the cut-off frequency o, . It is proved in Appendix I that the eigenvalues
wj are non-negative real, as it could be expected.

For the sake of clearness the further treatment is restricted to the
case of simple eigenvalue. though the presented method can be generalized
with no difficulty to the case of multiple eigenvalue. (Multiple eigenvalue
occours, if the cut-off frequencies of two or more quasi-TM modes happen
to have the same value.) If the eigenvalue is simple, the functions u,, are
defined unequivocally up to a constant factor. This factor can be chosen
arbitrarily. unless the power transferred by the waveguide is given as a
function of the frequency. In knowledge of functions u,, and eigenvalue
wy , functions v,, can be determined as solution of the simple boundary
value problem defined by Eq. (24) and the boundary conditions (28), (30)
and (32). Thereafter vectors e,, can be calculated by means of (21). If the
product eu is constant along the whole cross section, then v,y = 0. i.e. the
vector e, is seen to be irrational.

Uunless functions u,, are identically zero. vector h, grows beyond
any bound according to (5) when the frequency tends to the cut-off frequency
w, » because the propagation coefficient converges to zero. But h,, remains
bounded according to (4). thus the magneitic field is perpendicular to the z
axis at the cut-off frequency.Onthe other hand it results from Eq. (3) that
the electric field is parallel to the z axis at the cut-off frequency. Accordingly
these modes can be identified with the so-called quasi-TM (gTM) modes.

Quasi-TE modes

The equation and the bhoundary conditions relative to functions u,,
are satisfied by the function idetically zero. For these modes the eigenvalue
w; can be determined from the eigenvalue problem relative to the funections
v, defined by Eq. (24) and boundary conditions (28). (30) and (32). By
analogy to the idea in Appendix I, the eigenvalues wj of this boundary value
problem can be proved to be all non-negative real.

If u,, = 0., div e, converges to zero in order of magnitude of (»* — ;)
and p in order of magnitude of lwl___—(-fa’ when the frequency tends to the
cut-off frequency. e, converges to zero according to (3). thus the electric
field is perpendicular to the z axis at the cut-off frequency. On the other
hand, according to Eqgs (4) and (5), the magnetic field is parallel to the =
axis at the cut-off frequency. Accordinglv these modes can be identified
with the so-called quasi-TE (qTE) modes.

The qTE modes are simpler to calculate on the basis of vectors hy,
than e,,. Then the eigenvalue wj has to be determined from the eigenvalue
problem relative to vectors h_,, using equations derived and ecalculation
process as described above.



CALCULATION OF GUIDED WAVES 235

Quasi-TEM modes

The equations and boundary conditions relative to functions u,, and

U, are satisfied by the function identically zero, i.e. modes are possible for
wich

div e,0 =0 (38)

curl e, =0 (39)

According to Eq. (17) the value w; and so the cut-off frequency must be zero
because else the vector e, would be zero. Vector e, has not to be determined
now from an eigenvalue problem, but from a simple boundary value problem
defined by Eqs (38) and (39) and the proper boundary conditions. This
problem has the trivial solution e,, = 0 only if the cross section of the dielec-
tric is a singly connected region. So now the modes investigated can only
occur in arrangements which contain further conductors in addition to that
bounding the wave field.

It can be proved by means of Eqs (3) to (5) that in these modes hoth
the electric and the magnetic field are perpendicular to the z axis at zero
frequency, which is at the same time the cut-off frequency. Aeccordingly
they can be identified with the so-called quasi-TEM (qTEM) modes. Appar-
ently their calculation differs from that of the other modes, this is why they
will be discussed in a separate paper.

Calculation of qTM modes

It has been presented so far how the cut-off frequency o, and the
vector functions e, can be determined. Now it will be discussed how coef-
ficients of the series of p? and e, can be computed for the qTM modes by
recursion procedure starting from the functions e,

The i-th step of the recursion procedure involves determining functions
U, Uy and e,; and the coefficient a;. The function u,,; can be computed
from Eq. (25) and boundary conditions (27), (29) and (31). The homogeneous
equivalent of this boundary value problem has a nomn-trivial sclution by
definition of the eigenvalue wj. So according to Fredhelm's alternative the
equation given in Appendix II must be satisfied for the existence of a sclution.
The coefficient a; can be computed from this equation. Introducing the

notation

1 )
& = Z u [j"mo Up dAd Jumo B €mi dl} (40)
m Hrm

m m

where [’ denotes the part of the boundary curve of the region A, inside
the dielectric, and n,, a unit vector normal to the curve I/ and pointing
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inside the region A, coefficient ¢; is. according to Appendix II:

1 il
a; = — —[2 Erm Jumg Upiydd + Fa; gi_j] . (41)

8o j=1
Alll

Of course the sum vanishes in the case i = 1.

With this value for the coefficient a; Eq. (25) has a solution that satisfies
the boundary conditions (27), (29) and (31), but this solution is not unique.
If u?; denotes a particular solution, the general solution has the form

Ui == Ugy; T Cum() (4'2')

where C is an undefined constant. Its value can be chosen arbitrarily unless
the power transferred by the wave guide is given as a function of the frequency.

Now by solving the simple boundary value problem in Eq. (26) and the
boundary conditions (28), (30) and (32), functions v,,; can be determined.
After this the vectors e ; have to be computed by means of (22). ending the
i-th step of the recursion procedure.

If the product eu is constant throughout the cross section. the relation-
ship (41) yields for the coefficient q;:

a, = —é&, U, . 43)

7

The right-hand sides of Lgs (25) and (26) are seen to be identically zero
for every value of i, so both functions u,,; and v,,; can be chosen identically
zero, furthermore all the coefficients ¢; but «, are zero. Thus. the square of
the propagation coefficient:

a

pP = —eu(e? — wf) . (44)

Calculation of qTE modes

The qTE modes can be calculated by recursion procedure as described
if the calculation is based on the magnetic instead of the electric field strength.
So, starting from functions h,,, the coefficients of the series of p? and h
can be determined by recursion procedure.

The recursion procedure and its formulae are obtained from those for
the q¢TM modes by interchanging the letter symbols according to (33). The
only difference is to substitute boundary conditions (36) and (37) for (27)
and (28) in determining functions u,,; and v

™m

mi*

On the region of convergence of the series

The region of convergence of the series raises some theoretical questions.
Unfortunately the results of this investigation permit to determine the
numerical value of the radius of convergence in very simple cases alone.
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The parameter o® in Eq. (6) can be regarded as a complex variable.
Then the eigenvalue problem deseribed by the equation defines a function
pX?) of a complex variable with an infinity of values. The branches of the
function are connected with several modes. The position of the branch points
on the branch relative to the investigated mode determines the region of
convergence of the series,

w

The branch points on the real axis are related to the phenomenon of
the backward waves. The dispersion curve of certain waveguides has the
character shown in Fig. 2 (see e.g. [4]. [5]) Dispersion curves of two different
modes are really seen in the figure. The dispersion curve of one of these
modes is sloping between frequencies w, and ,. i.e. the phase velocity and
the group velocity have opposite directions. This is the phenomenon of the
backward waves. Over the frequency o, the propagation coefficient is real
(not seen in the figure). then it turns again purely imaginary with increasing
frequency. The propagation coefficient of the other mode is purely imaginary
over the frequency ¢, , and its absolute value increases with the frequency.
Approaching the frequency ¢, from above, both modes converge to the same
wave pattern, ie. two different solutions of the eigenvalue problem turn
into a single solution at the frequency o, . With frequency decreasing below
the value ;. two solutions appear again, with eigenvalues p? not purely
real any more, and of course the two eigenvalues are conjugate to each other.
Now the function pw?) is seen to have a branch point at of .

The function p*(»?) has real branch points solely for certain arrange-
ments, but complex branch points may occur in all arrangements. These
determine the radius of convergence of the series, more exactly that one
among the singular points lying on the branch of the function p*»?) related
to the investigated mode which is nearest to the centre of the series develop-
ment.
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Examination of the derivative dp?/dw® permits to locate the branch
points. Appendix III shows this derivative to be expressible as:

y €m Um S‘ (eTm X hTm) dA

2 ey
m

dp® _ Am ‘ (43)
d(I)“ 2 { (eTm X hTm) dA

m Am

There is a branch point for the value w? where the denominator in the right-
hand side of (45) becomes zero, while the numerator is not zero. If also the
numerator is zero, the limit value of the derivative must be examined. If such
a limit value exists, the function is differentiable at the given point, and there
is no branch point. Generally it is so if ® equals the cut-off frequency. If it
could be determined where the denominator in the right-hand side of (45)
becomes zero, determination of the radius of conmvergence would cause no
problem. Unfortunately, except for very simple arrangements, finding these
points seems to be unpromising.

If e, and h,,, are real, the power transferred by the waveguide stands
in the denominator of (435). If the phenomenon of backward waves occurs,
this power is negative because the direction of the energy flow is opposite
to the direction of wave propagation, and the transferred power is zero at
both boundary points of the range of frequency where the phenomenon
occurs. One of the two boundary points is the cut-off frequency, it is, however,
no branch point, as it was mentioned. But the other boundary point is a
branch point. If e, and h,, are real, the right side of (45) is the weighted
arithmetic mean of the product —eu. with the powers flowing in several
layers of the dielectric as weighting factors.

On the application of the method

For simple arrangements the coefficients of the series can be analytically
determined. As an illustration the case of the rectangular waveguide with
inhomogeneous dielectric will be investigated in the last part of the paper.
Cases imposing numerical evaluation will be treated in a subsequent paper.
Here only a rough comparison will be presented between the usual numerical
method to determine the dispersion curve and the method described in this
paper.

First, let us consider how the phase factor can be determined at a given
frequency by the usual methed. On this purpose let the eigenvalue problem
defined by Eq. (6) or an equivalent problem relative to a two-dimensional
vector be solved. If this eigenvalue problem requires to diseretize the differ-
ential equations, and on this purpose IV grid-points are chosen in the cross



CALCULATION OF GUIDED WAVES 239

section, the eigenvalue relative to the investigated mode has to be selected
among the eigenvalues of a matrix of size 2N x 2N. The eigenvalue found,
the approximate values of veetor e or hy, in the grid-points can be com-
puted by solving a system of linear equations with 2N unknowns. Deter-
mination of the dispersion characteristic requires multiple repetitions of the
procedure at frequency values chosen suitably densely.

€. Mg sz
—%—b1
'

X

Using the method in this paper for determining the Taylor’s polynomial
approximating the function p*w?), an eigenvalue problem has to be solved
but once for determining the cut-off frequency. This eigenvalue problem is
connected to a scalar function, so if there are IV grid-points, the eigenvalue
of a matrix of size N X IN rather than 2N X 2N must be determined. The
eigenvalue problem once solved, only systems of linear equations with NV
unknowns has to be solved, and integrals to be evaluated numerically.

Rectangular waveguide with inkomogeneous dielectric

The described procedure will be adopted to the rectangular waveguide
with two dielectrics of permitivities ¢, and & in Fig. 3. PracEE [6] and
YEGoOROV [7] investigated this arrangement most minutely in the usual way.
Their works contain among others the dispersion equation, the numerical
solution of which gives the dispersion characteristic of a concrete arrange-
ment. Applying the presented procedure to this arrangement yields the
results below.

qT'M modes

The qTM modes can be identified with the so-called LE_, modes for
which m is non-zero.
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The constant L in the definition of the parameter w is chosen as
L = b, - b, = b. Determination of the eigenvalue w} = wib%c® requires to

solve the system of transcendental equations

€3 k% - &1 k"" ( cr2 7T Srl) w* 8% m?
kyetgr by + kyctgroh, =0

using notations r; = by/b, r, = b,/b and s = b/d, m being an arbitrary positive
integer. With knowledge of %, and %, the eigenvalue wj is given by the

relationship:
T 1.
w=—UF -2 m)=—Gh - =
én €ra
For the qTM modes the vectors e; and e,; are parallel to the x axis. Their
magnitudes are:

{ Tmx
po— %' o - " - I
Crixy == 2 ~’1ij cos fj(} ky) 0« v« b
=0 a
amx

©2ix = .Z Byj cos——filb =y by) b<y b

where the following notation has been introduced:

=BV si ey 1 * i o
fj(:’ k) = (~;’b)‘ sin (Ih,’b) . 1{ ] l.y even.
(z/b) cos (kz'b). if jis odd.

The coefficients A can be determined from the recurrence formula

(_1)j~1 i—j+1 .
—”11‘1': o 7 &1 —'41'—1./—1 T 2 ay -‘11‘—1;,;‘—1 +~jGi+1 Ai,j+1 .
LJky k=1 )
i=1 2.... j=ii—1...1
Of course the coefficient A4, , appearing in ihe case j = 7 must be zero.

The coefficients B;; can be determined by the same formulae, except that
e, and k, replace e, and %, . One of the coefficients 4, and By may be

chosen arbitrarily, the other can be computed from the equation:

i i
‘}ﬂ‘ Ay; fiby -J:EBijfj(bz,kg). 1=20,1....
J= j=0

With knowledge of the coefficients 4;; and B;; the quantities ¢; defined by
(40) are: ;
8= 3 (Ap A Fi; + By By; Fy) i=0, 1....

=0
where:

bm
Fmi = _(‘j_J sin (km.xlb)f;(y’ m) dy m = 1’ 2
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So the value of a;., is given by the formula

17 i q
oy = — —| (e Ao Aij Frj + e, Boo By Foj + F a8
&o Lj=0 j=1

i=20.1,...

and now the procedure continues with computing the coefficients A4
and B, ;.

The radius of convergence can be determined approximately by
investigating the derivative dp? de®. Applying the results of (7) the evaluation
of (45) leads to the relationship

i+1f

L)

dp®

de?

= — U X

o ey(2q1by — sin 2¢,by) g, sin® goby + &4(2g5by — sin 2¢5b,) gy sin® qib

(2g1b, — sin 2q;,) g, sin® guby + (2.0, — sin 2¢,b,) ¢; sin® g;b,

where g, and ¢, denote the soiution of the following svstem of transcendental
equations:

qi — @& = (& — &) pe®
The differential coefficient dp?/de? does not exist for the values g, and ¢,

which satisfy the svstem of equations

(2161 — sin 2q;b1)g, sin® goby + (2¢b, — sin 2¢,by)g; sin® ¢;b, = 0
g, ctg g:b; + ¢, ctg ¢.b, = 0.
=0

and all pairs of values ¢, = 0 and ¢, satisfving the equation 1 + b,q, ctggb; = 0

All pairs of values ¢, == 0 and ¢, satisfying the equation 1 - bg, ctgg.b,

q
are solutions of this system of equations. In these cases both the numerator
and the denominator in the formula of dp*de? are zero, hut it is easy to see
that the limit value exisis, so these pairs of values do not represent singular
points of the function p*w)%. Let us introduce notations x = ¢,b,. v = g,b,
and 7 = b;/b, and rewrite the system of equations in the following form:
(2y — sin 2y)x sin® x + r(2x — sin 2x)y sin®y = 0
xetg x+retgy=20.

The approximate solution of this system of equations is treated in Appendix
IV. The singular points of the function, p*®?) can be determined from the
solutions for which xy == 0, by means of the relationship:
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For the determination of the radius of convergence those must be considered
which lie on the branch of the function p*(w? connected with the investigated
mode. Among these singular points the one nearest to the point w; determines
the radius convergence of.

As numerical example let an arrangement be considered where d = 2.35,
b, = 0.2b, ¢, =10 and ¢, = 1. For the qTM mode of the smallest cut-off
frequency, i.e. for the LE, mode the eigenvalue wj was found to be wj =
= 6.1691, in correlation with the cut-off frequency w, = 2.4838¢/b. The
following values were obtained for the first six coefficients q;:

a, = —2.6948 ay = —0.19991 a; = —0.013380
a, = 2.1452 . 10—+ a; = 1.4630 - 10~* g, = 8.7376 - 105 .

In Fig. 4 the continuous line represents the exact dispersion curve, and the
dotted lines represent its approximation by Taylor’s polynomials of first,
second, third and fifth degree. The radius of convergence of Taylor’s series

b

25 30 35 b
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o

- s
35 =

W
(=3

25

4
i

a
Ui

was determined approximately on the basis of Appendix IV. The estimation
described there gave that the singular point nearest to the value o] is o] =
= (7.15 — j7.54) (c/b)®. From this it follows that the radius of convergence
of Taylo1r’s series in ®? is R = 7.60 (¢/b)*%. from what it follows that the series
is convergent to the value w = 3.7l¢fb. It correlates with this that e.g. the
approximation of tenth degree not plotted in the figure is worse over the
value o = 3.7¢c/b than the one of {ifth degree.

gqTE modes

The cut-off frequency of the qTE modes can be determined from the
system of transcendental equations

€kl — €4k = (1 — o) 7'M’
ek tg riky + ek, tg Tk, =0,

where r, r, and s represent the same quantities as previously, and m is a
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non-negative integer. Knowing k, and k,, the cut-off frequency can be
calculated the same way as for the qTM modes.

In the case of m = 0 the field strenghts do not depend on x, and the
vectors hy, and hg, are parallel to the y axis. This is why the electric field
is parallel to the x axis, so these modes are true TE modes and can be identi-
fied with the LE;, modes. If m is positive integer, the vectors h and b,
are parallel to the x axis, so these modes can be identified with the LM,
modes. On the basis of the analogy previously described, these modes can
be computed similarly to the gTM modes. The calculation of the modes
belonging to the index m = 0 differs from this because m cannot be zero
for the qTM modes. Formally substituting m = 0 in the results found for
the qTM modes, the relationships describing the ¢TE modes belonging to
the index m == 0 are directly got.

Instead of further details the numerical results are given for the mode
LE, of the arrangement already investigated. The cut-off frequency of this
mode is o, = 2.3322¢/b. The following values were got as the first twelve

coefficients a;:

4y = —2.4245 a, = —0.17046 a; = —0.013306

a, = —2.3516 - 10~ g, = 9.7536 - 10~> a; = 1.2329 . 10-?
a; = —4.2496 - 10~ ¢y = —1.8891 - 1077 ¢, = —2.0196 - 10~°
a = 9.1837 - 10710 q,, = 4.6234 - 10710 g, = 3.7221 - 10-1

In Fig. 5 the exact dispersion curve is piotted in continuous line, and its
approximations by Taylor’s polynomials of several degrees in dotted line.
Taylor’s series is convergent approximately to the value » = 3.63¢/b according
to calculations similar to previous omes and not given here in detail. The
curve of Taylor’s polynomial of eleventh degree, plotted in the figure, is in
accordance with this.

Appendix I

It will be proven that the eigenvalues of the boundary value problem
defined by Eq. (23) and boundary conditions (27), (29) and (31) are all non-
negative real.

Let Eq. (23) be multiplied by the conjugate of the function u,/u,,,
and integrated over the region .4  of the cross section:

1
- % w? L2 * _
Aupg uhe dAd 4+ wi L srmfumo uro d4d = 0.
Hl’nl

n Am
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Transforming the first integral by means of one of Green’s theorems, the
following equation arises:

" 1 Bu,,

. s 1 r . .
Wy &, L2 j Upo Ung dA = -———J grand u,, grad u;, d4 +Ju§om dl,

Hrm frm O
A A L

where [ denotes the boundary curve of the region A,, and n, denotes a
unit vector normal to it and pointing inside the region. Writing this equation
for every region of the cross section, and summarizing them, the line integrals
cancel out along the separating contours because of the houndary conditions
(29) and (31) and give zero along the contour of the conductor because of
(27). So after ordering the following expression is obtained for wj:

-1 ~

1 .
w} = L 3 — |grad u,, grad uj, d4
m

- ® ;
:/S CrrnJ‘umO Uy d4
2

Jre !

Am A

It is seen that wj can only be non-negative real, if the values ¢, and u

rm rm

are all positive real.

Appendix I

In this Appendix the condition will be derived that must be satisfied
by the right-hand side of Eq. (25) and the inhomogeneous part of the
houndary condition (31} so that the boundary value problem relative to
the function u,,; should have a solution.

Multiplying Eq. (23) by u,,; and (25) by (—u,,), adding them and
integrating over the region A, :

“Ame

a; u

i
Erm Upm Umj—1 T J oYmi—j

4 ) N S
J<(umi Aumo — Une Jumi) dd =1L f“m()

A Am

Ihy-

The left-hand side of the equation can be transformed by means of one of
Green’s theorems. Writing such an equation for every region of the cross

section dividing them by p,, and summing up, yields:

rm

c 1 U, du .
S\J Upmp - — Ui 0 44 = L2 5‘ Jumo X
<y - P ==
m J Hrm ang, any, m
Im Am
( LS
e Erm um,i——l "’r — 2 aj um,i-—j] d.‘i N
k Urm j=1 /

where [ denotes the boundary curve of the region 4, and n,, the unit vector
normal to the contour and pointing inside the region. The line integrals give
zero along the contour of the conductor because of the boundary condition
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(27). Integrals of the second term of the integrand are cancelled for two

contiguous regions because of the boundary conditions (29) and (31). The

other part of the integral can be transformed by means of the same boundary
1

conditions, giving the equation
i 1 i
\ 4 :
rm Umi-1 T T 2 A Ui dd +— 2 a; Jumo Bpy € i dl|=0.

; Umo
e
m [ J ) Brm j=1 Hrm j=1

Am I

&

where I/, denotes the part of the boundary curve of the region A in the
dielectric, i.e. not including the part on the contour of the conductors. This
equation must be true, if the equation (25) is to have a solution satisfying
the boundary conditions (27), (29) and (31).

Appendix III

A relationship will be derived. giving the value of the differential
coefficient dp?/dw®

The solution of the boundary value problem relative to Eq. (6) is
considered in the points Q2 belonging to a small neighbourhood of the point o*:

p 2 20 O2 2 2
deTm (-Q ) + [P ('Q ) -+ em.“mQ ]eTm(Q )=20. (I)
The solution of the houndary value problem is chosen so that the vectors
erm(0?) are continuous in dependence on Q% For this reason, if the eigen-
value p*(¢?) is multiple, the vector e, (»?® cannot be an arbitrary solution
of the boundary value problem, but such one which corresponds to a mode.
Consider Eq. (I) in the points 0% == ® and 0® = ©® - 0w’ and substract
one of these equations from the other. Introducing the notations
ée'fnz = eTm(QZ) e eTm((”)z)
op* = pX2?) — p¥(e?)
the following equation is obtained:
2 ! 2 } 2 i A e 2)
AéeTm -+ [Pg(f')“) o Emim® ]6eTm e ('—SP T C‘/mu‘ma") ) e’I‘m(Q ) =0. (II)
Let hy,, be a solution of the boundary value problem relative to the equation
AhTm + [Pe(wz) -+ 8mﬂn1(")2] brp, = 0. (III)
Multiplying vectorially Eq. (II) by the vector hy,, and Eq. (III) by the

vector Je;,. and adding them:

by X ddery, + dery X dhry + (0p* + emptm00®) Bry X (%) = 0.

mi
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Tt can be proven simply, but somewhat lengthily that if the vectors a and b
lie in the xy plane and do not depend upon the co-ordinate z, then

ax 4b+ b x da = kdiv [a(k curl b)] +- k div [b{k curl a)] —
— curl (a divh) — curl (b diva).
Applying this identity to the previous equation. and integrating the equation
over the region 4. the following relationship is obtained by means of
Gauss” and Stokes’ theorems:

——ﬂ [, b7,k curl der) - nyder,(k curl hy) 4 t he, div der, -

+ tmae’fm div hTm] dl '":_ t( [(‘5P2 + 8mﬂuméw2) hTm X eTm(‘Qz)] dA =0 H
Am

where t,, == n_ X k. Let this equation be written for every region A, of
the eross section and add them up. The function de;,, must satisfy the boundary
conditions (7) to (12). the fuanction h,, the boundary conditions (34) and
(35) and the ones analogous to Egs (9) to (12). The line integrals are seen to
give zero in the sum of the equations, and so the following relationship is
obtained after ordering:

5‘ €m Mm S [eTm('Qa) X h']'m] dA

wred

ép‘l m Am o
b S [ (erm(@) x hyy) dA

m Am

Let now the value £ converge to »? and denoting the vector e, (w? simply
by er,. the derivative of the function p*(w?®) with respect to ©? is obtained as:

2 Em Hm AS‘ (eTm X hTm) dA

m

dpg__

dw?

2 s (eTm X hTm) dA

m Ap

where the denominator is supposed to be non-zero. If the numerator is zero
and the denominator is not, the function is not differentiable at the given
point. If both are zere, the limiting value can exist in the foregoing sense.
In this case the function is differentiable in the investigated point.

Appendix IV

A method for the approximate solution of the following system of
equation will be presented:

(2y — sin 2y)x sin® x + (2% — sin 22)y sin’y = 0
xetgx 4+ ryectgy = 0.
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Solutions where x or y is zero are uninteresting, and it is enough to look for
solutions where y lies in the first quarter of the complex plane. First

he
fimiting case r == 0 is treated, the selutions of which are denoted by X and Y.

They satisfy the equations
ctg X =0
2Y —sin2Y = 0

This vields the values for X

7T,

<
A = Im + ?
where m is an arbitrary integer. Ten roots of the other equatien. which have
the smallest absolute values are given here:
Y, = 3.749 - j1.384 Y, = 6.950 + j1.676 Y, == 10.119 + ;j1.858
Y, == 13.277 4 j1.992 Y, = 16.430 -~ 72.097 Yo = 19.580 -+ jZ.154

Y, = 22,727 = j2.258 Yy o= 25.874 - ]-.181 Y, == 29.020 - j2.379

The other rests can be caleulated with a relative error less than 1073 by
means of the asymptoetical formula

I

Y, = ’n - ~1—] T~ L Ln(dn +— 1) =
4 ; 2

the solutions of the system of equations are investigated in

dependence on the parameter r. Let x,.(r) and y,,(r) denote the pair of
solutions fHr which x,,(0) = Xm and y,,.(0) = Y,. The functions x,, ()

and y. (r) can be determined e.g. numericaily if the two equativns are differ-
entiated with respect to r, and the sy stem of differential equations so obtained
for the umctwu: x,..(r) and y,,(r) is numerically integrated starting frem
and Y, . If the rocts are needed for a value r > 1, of

1

course the reciprocal of v is introduced as a new parameter, the caleulation

the initial values Xm

(r) caz be

sed upon. As rough estimation the functions x,,.(r) and v, (

s ba
appro,«;imate[{ by Taylor’s polynomial of first degree:
141 —477

R
Tmn 7 'Xm R —

' 2X,,

n

Ymn o (1——' Y 2

[\V]

where into the expression of x_,, the value of the square root feund in the
right haif plane has to be substituted.
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Summary

A method has been given to determine the Taylor’s series expansion of the dispersion

function of waveguides with inhomcgeneous dielectric about the cut-off frequency. The
Taylor’s series of the transversal component of the electric or magnetic field is got also as
a result of the presented recursion procedure. The radius ef convergence has been determined
from the branch points of the square of the propagation coafficient on the complex plane.
The rectangular waveguide with inhomegeneous dielectric ha: been treaied as an example
and compared with published results.

w

6.
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