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Circuit equations of transmission networks 

Let us consider a transmission network consisting of tranSIDlSSlOn 
lines and two-terminals with concentrated parameters [5]. Let b be the 
number of the transmission lines connected in n nodes ,vith each other. Let 
the ith network line be given by its admittance matrix 

where 

YOi is the wave admittance, y; the transmission coefficient and 1; the length 
of the ith line. Assume the two-terminal between the vertices of the jth node 
of the transmission network is given with passive admittance Yj together 
with voltage and current (ideal) generators ugjand igj' resp., as usual. Figure 1 
shows the closure of the jth node where j and j' mark the vertices of the 
node in question. 

Suppose that none of the nodes is short circuited and mark by uj the 
voltage between the vertices of the jth node (taking the direction in Fig. 1 
into consideration). Marking the column vector of size n of the node volt ages 
by U, if det (Ye + Yg) ,~ 0, so according to [5] we can write: 

(1) 

In formula (1) Yg is a diagonal matrix of size n consisting of admittances 
of the passive two-terminals connected to the nodes, Ug and Ig are column 
vectors of size n of the source volt ages and source currents, and Ye is the 
node admittance matrix of the transmission network. 

" Research work effectued in collaboration with the Department of Theoretical Elec­
tricity, Technical University, Budapest. 
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1. pAv6 

Fig. 1 

transmission 
line 

(2) 

\vhere P = < PI" .. , Pb >, R = < r1" .. , rb > are diagonal matrices 
consisting of the parameters of the transmission lines, A/ and Ato are the 
directed, and the undirected (non-reduced) incidence matrices resp., of the 
network graph. In formula (2) the superscript refers to the matrix trans­
position. 

If the network graph, the two-terminal admittances connected to the 
nodes together the driving generators, and the parameters of the transmission 
lines are known, then using (2), from (1) each node voltage can be determined. 
We remark that from computer aspects, in using formula (1) it is necessary 
to determine the elements of an inverse matrix, that is, to calculate deter­
minants and cofactors. 

Further we shall point out that the node voltage calculation of a trans­
mission network is possible ill another way as well. Namely a substituting 
model to the netv,-ork in question can he gh-en (often a ladder netwoI'k), 
whose node potentials are equal to the node volt ages of the original network 
in that order. This model consists purely of passive elements and (ideal) 
generators. Fm calculating the node potentials of the model a topological 
formula can be given, so it is possible to use a purely topological method to 
determine the node voltages of transmission networks. 

The concentrated element model of the network 

Mark the nodes of the transmission network with natural numbers 
1, ... , n. Order a model to the network obtained from the original network 
by replacing the ith transmission line \vith a n-network term, \\'ith length 

and cross adminttances -rj and Pi + ri' respectively. The parameter admit-
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tance matrix of the substituting n-network trivially· equals the admittance 
matrix of the ith line [1]. We must take care that the n-network terms, 
substituting the lines joining the same vertex are connected in a common 

node. 
The network model trh.ially holds the follo-wing two properties 
1. The model often is a ladder network \vith n + 1 nodes. 
2. The cross admittances connected v,ith the jth node can be reduced 

to a two-terminal of admittance parameter 

Sj= ~(p,,+T,,), 

" 
where subscript k refers to all subscripts of the transmission lines 

which are incident in the jth node of the original network. 
We agree that the nodes of the model have the same mark as the nodes 

of the network, and the reference node of the model is marked by n + 1. 
Now we prove that the node potentials of the model are equal to the 

node volt ages of the original network in that order. 
According to [5], the model equation system of the model network is 

v = Y-l A(Y~ U~ + I~) , (3) 

where V is the vector of the node voltages, Y is the node admittance matrix, 
A is the (reduced) incidence matrix of the model, Y; is the (diagonal) admit­
tance matrix of the passive elements, U; and I; are vectors consisting of 
source voltage and current generators of the passive edges. 

First let us consider the node admittance matrix of the model in 
question. For the purpose of calculating it let us introduce a direction of 
the net,vork graph as follows: Let the direction of the passive edge with 
parameter -r; he the same as that of the corresponding graph edge in the 
transmission network. Direct each of the other passive edges towards the 
reference node. For writing down the reduced incidence matrix of the model, 
let the edges with admittance -it occur in the first b columns of the matrix, 
further n columns contain the admittances Sj in that order, finally the last 
n columns refer to the edges of admittances Yj" Then partly 

A = [At 11] , 

partly the passive edge admittance matrix of the model is: 

T 
o 
s 
o 

where S < SI" .. , sn)' 1 and 0 are unit and zero matrices of size n. 
It is known from [3]: 

y AT A+. 

(4) 

(5) 

(6) 



254 1. p.A.v6 

Taking into account (4) and (5), from (6): 

[-R 0 0] [At] [At] 
Y = [At 1 I] . ~ ~ ~g. ! = [-At R S Y]· ! = 

= -At R A+ + S + Yg• 

Mter some calculation we get 

(7) 

S = ~ At P At + ~ AIO P Aii; + ~ At R At + ~ AIO R Aii; . (8) 
2 2 2 2 

Considering (7) and (8) we can write from (2) 

(9) 

Because of det (Y) ~ / 0, Y-l really exists. 
Secondly let us consider the factor of y-l in the right-hand side of 

Eq. (4). We can ,vrite: 

o 
S 

o 
(10) 

",-here 0 are zero vectors of size b or n. Write the right side of (10) as fo11o".-s: 

After multiplying we obtain 

A(Y~ U~ + I~) = Yg Ug + Ig . (11) 

Having compared (9) and (11) to (1), our statement is proved. 
For the sake of further applications, the property of the model proved 

above will he written as: 

(12) 

(12) is another form of (1). Formula (12) contains only the node admittance 
matrix from the model. 

Finally, (12) will also be given terms of the topological formula. Therefore 
let us consider the jth equation of the system (12): 

_ 1 ~ d· Y (,,,- I·) 
Uj - ..;;;;., a J kj.l. k u gk --, 19/c 

det (Y) k=1 

(13) 

where det (Y) marks the node determinant, and adj Y kj the cofactor concerning 
the element Y kj of matrix Y. 
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It follows from [3]: 

det (Y) = EF, and adj Ykj = EF~j,n+l , (14) 

where F is a tree, F!j, n+l is a 2-tree of the model graph, the latter separates 
the vertices k and j from vertex n + 1, and the summation affects all suitable 
tree and 2-tree edge admittance products. 

According to (14), from (13) 'we get the topological formula of the node 
voltages: 

j = 1, ... , n. (15) 

For the numerical calculation of the voltage u j see the detailed flow 
chart in Fig. 2 which can be used to make a computer program as well. We 
remark that calculating u j by such a program one can practically use the 
k-trees generation method in [2]. 

Topological formula for transmission network 'With extreme closures 

Formula (15) is not valid if some of the nodes are closed hy short­
circuit. Without violating the general case it is assumed that the short-circuit 
closure contains a source voltage generator hut no parallel source current 
generator exists. To extend formula (15) for the general case our method 
is the follo,ving: To the transmission network in question another network is 
formed by substituting a (real) admittance Y for each short-circuit closure. 
Formula (15) is valid for this new network, if det (Y) --.C. 0, which is supposed. 
Arrange the edge admittance polynomials in both the numerator and de­
nominator of (15) according to the decreasing order of exponents Y. Let 
the degree of polynomial .E F he In. At the same time In is the numher of the 
short-circuit closures in the original net\vork. It is clear that the degree of 
the numerator of (15) is not higher than In. If Y ---:xc; both the new network 
becomes the original one and the limit of (15) gives the node volt ages of the 
transmission network we are interested in. As the right-hand side of (15) 
is a rational fractional function of Y, it is sufficient to determine only the 
coefficients of the largest exponent of Y both in the numerator and in the 
denominator. 

For this reason mark the nodes of short-circuit closure by n m + 
+ 1, ... , n, the other nodes by 1, ... , n - rn, and apply formula (15), so 
we get: 

(16) 

j = 1, ... , n. 
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According to the remark concerning the coefficients, the generalized formula 
for calculating' the node volt ages is: 

J:Flm+l rTk~ __ ml (Yk • u gk + igk) J:Ffi};'~l + , i, ugk' J:FZ];;~l) , 
k=Tl-m,l 

Uj (17) 

j 1, ... , n. 

In formula (17) the meanings of the k-trees are: 
Fm+! marks an (m + I)-tree of the model graph which becomes a 

connected circuitless graph after fusing one by one the vertices of the short­

circuited nodes; FG:;;~l is an (m + 2)-tree which separates vertices k and j 
from n + 1 after the former fusion; finally FG:;;~l means an (m + I)-tree 
which also separates vertices k and j from n 1 but no'w the fusion does 
not affect the kth node. 

Observe that from (17): 

Uj = Ugj 

if j n - m + L ... , 11, that is, the voltage of the short-circuited node is 
trivially equal to the voltage of the corresponding source generator, moreover 
in case m = 0, formula (17) turns into formula (15), so (17) is really more 
general than (15). 

Topological formula for the driving-point impedance matrix of the trans­
mission network 

For the determination of characteristic matrices of a transmission 
network see reference [6]. Now use (17) for detelmining elements of the 
dri,-ing-point impedance matrix of a transmission network by a topological 
formula. 

Let us consider a transmission network with nodes closed by passive 
two-terminals. Let the nodes be ordered in three groups. Nodes belong to 
the first group if they can be joined to other networks, i.e. they are drh'ing­
point nodes; nodes of the second group are closed hy finite admittance; and 
the other nodes closed by short-circuit belong to the third group. We agree 
that nodes of the first group are marked hy 1, ... , I, those of the second 
group by I + 1, ... , n - m, and of the third group hy 11 - 11l 1, ... , n 
where n is the numher of the nodes, m is the numher of the short-circuits 
in the transmission network. 

For determining the matrix elements connect source current generators 
i gk ,vith the driving-point nodes, where k is the mark of the node k = 1, ... , I. 
Taking into account that the network contains no source voltage generators, 
all u g1i = 0, where k = L ... , n. Referring to (17) we can write: 
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n 

+ ~ O· .EFD,t~l' j = 1, ... , l. 
k=n-m+l 

So we have got: 

UJ = 1 ~i I' .EFrJ·.Ln,2' 1' J' = 1, ... , I. "'Fm+l":" g' , • .., k=l 
(18) 

From the definition of the driving-point impedance matrix and from 
(18) k · Fm.!.2 Fm.!. 2 • • f 11 ta -lng kj;n+l = jk:n+l Into account It 0 ows: 

i, j = 1, ... , I . (19) 

Again we suggest the use of the method in [2] for the production of 
elements zij of the impedance matrix by topological formula. 

Applications 

1. Consider the transmission network in Fig. 3. Let us calculate node 
volt ages u j (j = 1,2, 3) by a topological formula. 

The network has two transmission lines with given admittance param­
eters (see Fig. 3). 

Figure 4 shows the network model and its graph, edges of which are 
indicated by the corresponding edge admittances from the model. 

According to formula (15) in the present situation we can write: 

ig3 . .EF§j,4 

:EF 
j = 1, 2, 3. (20) 

In order to calculate uj we need k-trees F, Fi1,4 F;Z,4 and F;,4 of the 
model graph. 

Ohserving the model graph in Fig. 4 and the meaning of the edge 
admittances: 

:EF 

and finally: 
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After some calculation we have the following formulas for the edge 
admittance products: 

.E F = PIPZ YI + (p~ - r~) (PI + YI) + P2(pi - ri) , 

.EF5I.4 = -r1PZ' .EF52.4 = -rZ(Y1 + PI) , 

and .EF5,4 = P2(Pl + rl + Y1) • 

Taking into account (21) and (22) we have got from (20): 

U 1 = ----------=--"--=-"'-"---------

PIP2Y l ri} 
.-L 

U - I 

2 - PIPZ YI + (p~ - r~) (PI + Y 1) + pz(pi - ri) 

P2(Pl + r1 + YI ) iga 

(21) 

(22) 

2. Consider the transmission network in Fig. 5. Calculate the node 
volt ages uj (j = I, 2, 3). 

The network in question has extreme closures in the 1st and the 2nd 
node. However, net'lvork in Fig. 5 differs from that calculated earlier only 
by the closure of the 1st node (see Fig. 3). But now, formula (15) cannot 
be used because of the short-circuit closure. Now m = 1, and taking (17) 
into account we can write: 

1(. "F3 U-=--t3·"" 3"4 ) .EF2 g. j, 
U I . .EFf- 4) g J. (23) 
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Fig. 5 

~ 
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where the model graph in Fig. 4 can he used again, for calculating the k-tree 
admittance products if you write Y instead of Y1• 

In this case the meanings of the corresponding k-tree products are as 

follo·ws: 

J:F2 = J:FI,.l = TIT2 - 52(7"1 T2) + 53(5 2 - T2) P~ + PIPZ 

J:F i,4 = J:FZ, J:Fi2,4 = 7"17"2' J:Fi3,4 -T1S 2 + 7'IT2 -7'lPZ' 

J:F~1.4 = 0, J:F~2,4 -T2 and J:Fg,4 = 52 = P2 . 

From (23) and (24) we have ohtained: 

Ul = ug1 

T1 T2lLgl - 7'2 ig3 

PIP2 - 7'~ 

3. Calculate the driving-point impedance matrix of the transmission 
network in Fig. 6 hy the topological method. 
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y 

Fig. 7 

The model of the network is seen in Fig. 7 together with its graph. 
Using formula (17), at present 1 = 2 and m = 1. So we can write: 

__ 2:Fb,5 
"'ij - 2:F2 ' id 1, 2. 

To final the k-tl'ees fo1' (25) we shall use the method [2J. 

F1'om Fig. 7, the modified adjacency matrix of the graph is: 

r 0 0 3 0 

I
nH 
1 2 3 CD 

5 
5 
5 

CD 
o 

(25) 

(26) 

The circled symbols in (26) refer to the admittance Y in the network graph. 
To produce the F2 2-trees for (25) all circuitless representations should 

be calculated from (26) which contain the symbol 0 only in the 4th and 5th 
components. Now, to produce 2:F2 let us substitute the corresponding edge 
admittances. The substitution is made easier by Table 1. 

Table 1 

The symbol 

3 5 

occurring iu the 

first second third 

component of the k-tree representation corresponds to the factor 

in the admittance prodnct 
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Table 2 

Type of the Possible 2-tree 
Circuit-less i Corresponding edge 

2-trees representa tions ! admittance products 
I 

I 
3 3 1 0 0 n 

I (-,,)( -,,)( -,,) 2 n 

4 y 

5 y j( -T1)( -T2)(83 + Ys) 
I 

I 3 5 0 
01 

n I 

2 y (-T1)S2( -T2) 

4 
I 

y (-T1)S2( -Ta) 
F2 5 

I 
Y (-T1)sis 3 + Ya) 

5 3 1 0 0 y I S1( -72)( -T1) 

2 n 

4 y S1( -72)( -Ta) 

5 y s1(-72)(Sa + Ya) 

5 5 0 0 y i S1S2( -71) 

2 Y I S1S2( -72) 

4 y S1S2( -7a) 

5 y i 51S2(Sa + Y a) 
! 

Calculation of 1:F2 is summarized in Table 2. In the 1st column we 
wrote the type of the k-tree, the 2nd column contains all 2-tree representations 
in question, while marks "y" and "n" in the 3rd column indicate whether 
the completed cycle check performed on the representation has a finite out­
come or not, i.e. whether the corresponding graph is circuitless or not. The 
4th column of the table contains the edge admittance product for the circuitless 
case. Hence, 1:F2 is the sum of data in the 4th column. After some simple 
calculation we have got: 

1:F2 = Tlh(sa - '1 + Ya) + S2('2 + T3 - S3 - Ya») + 
+ Sk2h + '3 - S3 - Y 3) + 5 2(5 3 + Y a - '1 - '2» . 

Concerning the production of Fi~,5 3-trees see Table 3. Similarly to Table 2, 
the 1st column in Table 3 contains the type of the k-trees, the 2nd column 
consists of the 3-tree representations (at present the 1st, 4th and 5th com­
ponents of the representation must be 0), the 3rd column informs us about 
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Table 3 

Type of the Possible 3·tree 
Circuit~less 

Corresponding edge 
3·tree5 representations admittance products 

0 3 1 0 0 y (-T 2)( -T1) 

2 n -

4 Y (-T 2)( -T3) 

F3 
1 .. 5 

5 Y (-T 2)(S3 + Y3) 

0 5 1 0 0 y S2( -T1) 

2 Y S2( -T2) 

4 Y S2( -T3) 

5 Y s2(S3 + Y 3) 

F 3 

12..5 
0 3 1 0 0 y (-T 2)( -T1) 

3 0 1 0 0 n -

2 y (-T 1)( -T2) 

4 Y (-T1)( -T3) 

F 3 

2.5 
5 Y (-T1 )(S3 -+- Y 3) 

5 0 1 0 0 y SI( -T1) 

2 Y sl( -T2) 

4 Y sl( -T3) 

5 Y SI(3 -;- Y 3) 

the result of the completed cycle checks, finally the edge admittance products 
needed for the calculation are in the 4th column of the table. 

Taking Table 3 into account we have arrived at the driving-point 
impedance matrix of the network: 

r3 - 8 3 - Y3) + 8 2(8 3 + Y 3 - r 1 - rz - r~) r1r2J' 

r 1(r2 r3 8 3 - Y 3) + 81(8 3 -1- Y 3 - r 1 - r 2 - r3) 
z 1 

Summary 

In this paper the author deals with networks consisting of transmission lines, nodes 
{)f which are closed by passive or active two-terminals and by break or short-circuit (extreme 
closures). First the model network is introduced, ordered to the transmission network, which 
contains only passive admittances and (ideal) source generators. It is proved that the node 
potentials of the model are equal to the node voltages of the original network. In order to 
calculate the node voltages, topological formulas are deduced. A method elaborated earlier 
by the author is suggested for, searching k-trees needed for using these formulas. Another 
topological formula is also given for the driving-point impedance matrix of the transmission 
network, and finally the topological analysis is shown on concrete examples. 



264 1. pAv6 

References 

1. GEHER, K.: Linear Networks. * Linearis haI6zatok, ~:Iiiszaki Konyvkiad6, Budapest 1968 
2. P.ivo, 1.: Generation of the k·trees of a graph, Acta Cybernetica, Tom. 1, Fasc. 2, Szeged, 

1971, pp. 57-68 
3. SESHU, S.-REED, M. B.: Linear graphs and electrical networks, Addison-Wesley, London 

1961 
4. SrnONl:l, K.: Theoretical Electricity. * Elmeleti ,illamossagtan, Tankonyvkiad6, Budapest 

1976 
5. V.iGo, 1.: The calculation of transmission networks 1Vith the aid of graph theory, Periodica 

Polytechnica El. Eng., Budapest, 13 (1969) pp. 155-168 
6. V.iGo, 1.: Determination of the characteristic matrices of network consisting of trans­

mission lines, Periodica Polytechnica El. Eng., Budapest, 15 (1969) pp. 381-389 

Dr. Imre P . .\.vo, H-6720 Szeged, Somogyi u. 7. Hungary 

,. In Hungarian. 


