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Discrete orthogonal transformations provide a useful tool of computer aided 
signal processing. In signal processing an important problem is the separation of the 
signal from the noise. Another problem is the efficient storage of the signal in the 
computer memory. The paper gives a short review of this field. 

Mathematical bases 

A function g(t) may be expanded into a series of orthogonal functions [4]: 

g(t)= L: aJ;(t) 
i=j 

For the orthogonal system offunctions {Ht)}: 

I U;,~;, ia 

~ J f;(t) ·jj(t) dt=W 

o 

if i-,= j 
if i=j 

The coefficients {aJ are determined by the relationship [4]: 

, 

ai=~ J flt)g(t) dt i=1,2, ... 

o 

where I is the range of orthogonality. 

(1) 

(2) 

(3) 

Such an expansion is e.g. the Fourier series, where the orthogonal functions are a set 
of trigonometric functions, and the orthogonality range is (0, 2n) [5]. The above 
equations may be written in discrete matrix form by dividing (0, I) into N=2n(n>0, 
integer) subintervals, and within each "interval J;(t) and g(t) are supposed to be 
constant. 
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Introducing the designation k= tiN, we obtain the relationships 

and 

N 

g(k)= 2: aJi(k) 
i=1 

1 N 
a i=- 2: g(k) -i;(k) 

N k=1 

k=1,2, .. . ,N 

i= 1, 2, ... , N 

which may be written, introducing the symbols 

in the form of 

gT=[g(I), g(2), .. " g(N)] 

fl=[fi(I),J;(2), ., .,J;(.N)] i= 1,2, ... , N 

1 
a=-FO" N to' 

(5) 

(6) 

(6a) 

(7) 

This shows that the connection between the sampled functions and the ex­
pansion coefficients is given by an orthogonal transformation, which may be rep­
resented by a matrix multiplication. For the matri.x F it is true that 

where I is the unity matrix 

where T is the symbol of transposition. 
(8) 

The rows and columns of Fare orthogonal to each other which is the presentation 
of (2) in discrete form. What is the apparent meaning of the transformation? The 
original vector g formed from the sampled function values is a vector of an N-dimen­
sional space. Upon orthogonal transformation it becomes a vector of another space 
characterized by the transformation matrix [4]. 

Performing the matrix mUltiplication required for the transformation may be 
accelerated by applying the fast transformation technique developed for several dis-'" 
crete systems of orthogonal functions, e.g. Fast Fourier Transformation (FFT), 
Walsh-Hadamard Transformation (WHT), Haar Transformation (HT), Discrete 
Cosine Transformation (DCT) [1]. 

Fast transformations significantly reduce the time and space requirement. 
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The generalized Wiener filtering 

The mathematical model is shown in Fig. 1. 
The input is the vector z, sum of signal x and noise w; F designates the orthog­

onal transformation, A is the filter matrix, and x is the filtered vector. The problem 
is to find A:so that x approximates x best. Let us minimize the expression: 

E{llx- xI\2}= tr(E{(x-x)(x- X?})= 8. (9) 

Here E { ... } means the expected value and tr is the trace of the matrix. 
From the figure if follows that: 

(10) 

By substituting this into (9) we have: 

Fig. I; 

The condition of the minimum is that the derivative of (11) with respect to A equals 
zero: 

(12) 

Here we utilized the identities of the difterentiation according to a matrix and 
the exchangeability between the differentiation and the expected value formation. 
As E{ . .. } needs only be formed for the variable values, we obtained for the op­
timal A: 

(13) 

Here the relationships (8) and the identity (AB)-I=B-IA -I were utilized. The 
relationship may also be written by the covariance matrices [1, 2]. 
By definition: 

Kx=E{(x-E{x))(x-E{x}}T} = 

=E{xxT}-E{x }E{x }Ta 
(14) 
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The quantities appearing in (13) are: 

Assuming 

E{ XZT} =E{x(x+ w)T}=E{nT}+E{xwT} 

E{ZZT}=E{xxT } +E{wwT}+E{xwT} +E{wxT }. 

1 Ni ~ 
E{x}=- 2: xi=O 

/'.;[ i=1 

and x, ware uncorrelated 

then 

With the above taken into account, (13) may be written in the form: 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Cmin is obtained by substituting Aopt into (9) and by performing the appointed opera­
tions [1]: 

In the transformed domain the covariance rnatrix may also be determined. 

Since 

y=Fz 

Ky=E{yyT} - E{y }E{y V = FE{zZT}FT - FE{z }E{z }TFT 
I.e. 

Here Kz is the transformed co variance matrix. 
As K is a real synmletrical matrix, 

tr(K)= tr(FKFIt)= treK). 

By substituting (22) and (23) into (21): 

Cmin= tr(Kx - KAK-" + K,vl-1Kx)' 

(21) 

(22) 

(23) 

(24) 

(25) 

On the basis of (21), (24), (25) the value of Cmin is seen to be independent of 
the orthogonal transformation F. Accordingly it is advised to select F in a way that 
the transformation requires little computational work. From (10) it follows to be 
useful to select F in a way, that Aopt contains as few non-zero elements as possible, 
besides the data of the given random characteristics. 
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Karhunen-Loeve transformation 

First let us examine the transformation F, which results in an optimal diagonal 
filter Aod ' Let us utilize the following theorem: If }'i and t; (i= 1, 2, ... , N) are the 
eigenvalues and the eigenvectors, respectively, of a real symmetrical matrix Q, then 
transform 

where (26) 

results in a diagonal matrix [4]. From (26) it is evident, that if F is chosen to be the 
eigenvector matrix of matrix Ar , then 

(27) 

is the desired optimum diagonal matrL'i:. The above orthogonal transformation whose 
basis vectors are eigenvectors of the specified Ar co variance-matrix is called the 
Karhunen-Loeve Transformation (KLT). 

Supoptimal diagonal filters 

Filters, Aopt=FArFT will be discussed which may be computed by the fast 
transformations. After transformation, the main diagonal elements of Aopt will be 
kept: 

From (20), using (23) 

- - -
A[Kx+Kw]=Kx 

we get, keeping the diagonal elements of A: 

i=1,2, ., .,N 

where Kx(i, i)= FK"FT denotes the i-th diagonal element of Kx. 
Using (9), (21), (23) the mean square error is [1]: 

- -
ed= tr(K,,)- tr(AdK,,) 

(28) 

(29) 

(30) 

(31) 
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but as Ad is diagonal 

(32) 

here we utilized (30). In the case of KL T : 

(33) 

where !Xi and Pi (i= 1,2, ... , N) are the eigenvalues ofKx and Kx+ Kw respectively. 
As a conclusion: the ideal transformation method is KLT, which results in an optimal 
diagonal filter, and the error (33) equals the mininmm value (25). The disadvantage 
of this method is that the eigenvectors of AI" must be determined, rather high in 
computation demand with increasing dimension, and the performance of the operation 
(10) requires a full matrix multiplication. In the case of suboptin1al diagonal filters, 
if fast transformation methods are used, the computational work decreases consider­
ably, and the en-or will be as described by (32). The transformations can be compared 
on the basis of (32). The transformation is good if the value of (32) is low. 

Data Compression 

The basic problem is the following: vector x of N elements is given. By y = Fx 
transformation a new vector is obtained. Some of its elements are omitted before the 
inverse transformation, or replaced by selected elements. The objective is to select 
a subset of kf components of y, where lvf is substantially less than N. The remaining 
N - M components can then be discarded without introducing an objectionable 
error, when the signal is reconstmcted using the retained Jl1 components ofy. 
With (6a): 

N 

x=FTy= .2; Yli 
i=1 

X
T

=[Xl' ... , XiV] 

(34) 

(35) 

(36) 

We retain the elements {Yi' i=l, 2, ... , M} (M<N), and substitute the N-M 
components ofy by preselected constants bi to obtain 

A1 lV 

x(M)= .2; Yifi+ .2; bifi (37) 
i=1 i=M+l 

where X'(M) denotes the estimate of x. 
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N 

8=X-X(M)= ~ (Yi-bj)fi. 
i=M+l 

Using (38) the mean square error is 

8(M)=E{STs}=E t=~+l j=%+l (Yi- bi)(Yj-bj)f7fj} 

29 

(38) 

(39) 

8(M) is seen to depend on the transformation F and on {bi}' The process of choosing 
the optima b; and f; is carried out in two steps. The optimum b; are obtained from 
(39) as follows: 

i=1v.[+1, .. . ,N. (40) 
But as 

(41) 

(40) may be written as: 

i=M+1, ... ,N. 
(42) 

Substituting (42) into (39) and using (41): 

N N 

8(M)= ~ f7E{(x-E{x})(x-E{x})T}fj= ~ f?Kxfi . (43) 
i=M+l i=M+l 

Relationship (14) was utilized here. 
To obtain the optimum f; not only 8(M) has to be mininnzed with respect to 

fi' but also the constraint f7fi= 1 has to be satisfied. This may be performed with the 
help of the Lagrange multiplicator, and the following final result is obtained: 

(44) 

where Y; denotes the Lagrange multiplicator. By definition (44) implies that f; is the 
eigenvector of Kx and y; is the i-th corresponding eigenvalue. Here also the KLT 
transformation proves ideal. The error: 

N 

8min(M)= ~ Yi' 
i=M+l 

(45) 

The matrix Ky=FKxFT will be diagonal if F is the matrix of KLT. From (45) it 
follows that, omitting a component Yk the mean square error increases by Yk' the 
corresponding eigenvalue. Thus the set of Y; with the greatest M eigenvalues should 
be selected, and the remaining Yi discarded since they can be substituted by the 
constants b;. From (42) it follows that b;= 0 if E{x}= O. For all other transformations, 
however, Ky has non-zero off diagonal terms. 
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Thus a logical criterion for selecting transformed components is to retain the 
set of M components with the greatest variances-the remaining N - Ai components 
can be discarded. This selection is called the variance criterion. As it has been men­
tioned in the case of the Wiener filtering, the efficiency of the various transformations 
may be determined by error examination, here by the variance criterion. The presence 
of few elements of relatively great amplitudes in the main diagonal ofKy is favourable. 

For example, we have vectors of 128 elements. Storing these as words in a 
computer memory, every vector would occupy 128 places. With the help of this 
procedure, selecting the first 43 elements with the greatest variances, it is enough to 
store these, representing a 3-fold data compression without the change of the char­
acter ofx at the resetting, i.e. "i is very similar to x". In pattern recognition problems, 
data compression corresponds to feature selection [1, 3]. 

Applications 

An important field of application of the method may be in computer aided 
medical diagnostics, where it may help classification and storage of various physiolog­
ical curves (e.g. electrocardiograms). Another possibility is pattern recognition [1]. 
It may be used also in processing seizmogranls. It must be added, that the processing 
supposes availability of certain hardware, crucial for the utilization of the methods 
in practice. 

Summary 

The paper deals with the discrete orthogonal transformations, as a modern and useful tool 
of computer aided signal processing. 

In signal processing, a frequent problem is to separate the signal from the noise (filtering). 
Another problem may be the storage of the signal in the computer memory. The size of the memory 
may be reduced, if only the most important characteristics of the signal are stored. These tasks may 
be performed effectively by the application of orthogonal transformation. 

The purpose of this paper is a short review of this field and calling attention to the theme. 
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