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1. Introduction 

The need to control optimally a system influenced by stochastic disturbances 
has arisen as a real practical problem. The urgent solution of this problem has 
primarily been desired by such industrial technologies where the economy, the 
reliability, the stability, as well as the security of the whole system depend to a great 
extent on the performance of the regulation. This is the main reason of the huge 
progress which can be observed in the field of stochastic control engineering. The 
utilization of the theoretical results and their application for industrial and labora
torial processes have been achieved in areas where in addition to the proper hardware 
and software conditions (suitable real-time system and powerful real-time language) 
simple and powerful control algorithms have been adopted. 

One of the most successful method of the last few years for designing optimal 
control loops is the minimum variance control, first discussed in a detailed form by 
ASTROM (1970). Up to now, this method has proved its effectiveness by numerous 
industrial applications (Borisson et a1. 1973, Borisson et a1. 1974), and it really has 
nice properties, viz. : 

- it considerably decreases the deviations of the controlled signal around its 
desired value; 

- it takes into consideration disturbances occurring in practical situations; 
- it is very simple, thus it hardly needs core memory and is not time consum-

ing; 
- it is easy to implement both in the case of known and unknown system 

parameters; 
- it hardly requires any a priori knowledge about the process to be controlled 

(time delay and the order of the process); 
- it can follow the changes of the system parameters and that of the desired 

value of the controlled signals. 
The fact that such a stochastic control method of nice properties has been 

developed has to stimulate the researchers to extend the principle of the minimum 
variance control and the so-called self-tuning principle to that sort of structures, by 
which further industrial processes could be controlled. Up to now the self-tuning 
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principle is elaborated for single input-single output (SI SO) systems and is based on 
the following considerations. On the basis of the order and the time delay of the 
process to be controlled, the structure of the regulator can be determined. By means 
of the control and controlled signal observed in the closed loop the optimal value of 
the regulator paranleters can easily be estimated by a simple least squares estimation 
which is unbiased (ASTROM and WITTENMARK 1973). The main advantage of this 
method is not to require any further information about the process and disturbance 
dynamics. 

In our paper extensions of the original minimum variance control strategy 
will be considered which involve industrial application problems. 

2. Minimum variance control of SISO systems 

Let us consider a SISO system described by the well-known ASTROM (1970) 
model (see Fig. 1): 

B(Z-l) C(Z-l) 
y(t)= A(Z-l) u(t- d)+}. A(Z-l) e(t), (1) 

where z-dB(z-l)/A(z-l) is the pulse transfer function of the process, }.C(z-l)/A(z-l) 
is the pulse transfer function of the disturbance referred to the process output, u(t) 
is the control signal, yet) is the output of the noisy system, e(t) is a sequence of 
independent normal variables with zero mean value and variance one (white noise). 
Further 

A(Z-1)=1+a1z- 1+ ... +anZ- n 

B(Z-1)=bo+b1z- 1+ ... +bmz-m 

C(Z-l)= 1 + CIZ- 1+ ... + C"Z-k 

t=O, 1,2, ... 

~ B(Z-I) -dl t 0+ Y(!) 
~ Arz-1)Z. I---l>-{ 1----..:::..:... ..... , 

Fig. 1. Flow chart of the ASTRoM-model 

and d is the time delay of the process. The purpose of the minimum variance control 
is to determine the control signal u(t) in such a way that the loss function 

V =E{[y(t+ d)-YrF} (2) 
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is as small as possible. Here Yr denotes the desired value of the controlled signal 
(reference value). It is well known [Astrom (1970 and Peterka (1972)] that the optimal 
control strategy minimizing the loss function above is given by 

( )
_ C(z-I)Yr-G(z-I)y(t) 

U t - B(Z-I)F(z-l) , (3) 

where polynomials G(Z-I) and F(Z-I) are given by the following separation equation: 

The flow chart of the optimal control is seen in Fig. 2. 
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f I 
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I u(t) - I 

L-__ ~I~~ I 
J I 
J f y,. 
I f 
I f 
I I L _________________ J 

y(t) 

Fig. 2. Flow chart of the optimal control of SISO systems 

3. Minimum variance control in the case of delayed observations 

(4) 

In many practical cases the controlled signal cannot be directly observed, 
because the sensor or measuring device has a considerable time delay. Then the 
ASTRoM-model can be extended as: 

B(Z-l) C(Z-l) 
y(t)= A(Z-l) u(t-dt)+}· A(Z-l) e(t), 

Ym(t)=Z-d2y(t)=y(t-d0, 
3 Periodica Polytechnica 21/1 
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where d1 and d2 denote the time delays of the process and of the sensor, respectively, 
yet) and Ym(t) denote the controlled and the measured output signal, respectively. 
The purpose of the control is to minimize the loss function 

E{[Y(H d1)-Yr]2} = min 
u(t) 

on the basis of the observations 

Ym(t), Ym(t-1), ... , u(t-1), u(t-2), ... 

Using the separation 

where 

we get 

F(--I)-1..1-1'--I+ +1' _1-d,-d2 
:4 - I Jl~ ••• Jdl+d2-1L. , 

B(Z-I)F(Z-I) G(Z-I) 
y(t+ d1)= C(z-l) u(t)+ C(z-I) y(t- d:J+ }.F(z-l)e(t+ d1), 

thus the optimal control law is given by 

( )
_ C(z-I)Yr- G(Z-I)y(t- d2) 

U t - B(Z-I)F(Z-I) 
C(Z-I)Yr- G(Z-I)y",(t) 

B(z-I)F(z-l) 

This control law is seen to be a strategy just like a minimum variance strategy of a 
process with time delay d= d1 + d2 • The increase of the loss function comparing the 
cases determined by d2= 0 and d2 ;;:::0 is 

AV- '2(1 1'2 1'2 ) '2(1 1'2..1- 1'2 1)LJ -I. +Jl+" '+Jd,+d2-1 -I. +JI I .. '+Jd,- -

4. Limitation of the control signal 

The various limitations of the control signal can be interpreted by an additional 
term in the loss function: 

where ~=const. is a factor to weigh the loss due to the control action. Using Eq. (4), 
a second-order term of u(t) should be minimized: 

(5) 
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Let's have the following notations: 

B(Z-l)Fz-l)= bo+ Q(Z-l)Z-l 

C(Z-l)= 1 +P(Z-l)z-l. 

Thus to achieve the minimum of the loss function the condition 

bo[bou(t)+ Q(Z-l)U(t -1)+ G(Z-l)y(t)- C(z-l)Yr1+ au(t)+ ap(z-1)u(t-1)= 0 

has to be met. From this condition the optimal control is given by 

b 
u(t)= b

2 
0 {C(z-l)Yr- G(Z-l)y(t)- [Q(Z-l)+ ap(z-1)]u(t-1)} 

0+0: 

or introducing 

by 
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(6) 

Naturally, this strategy turns into Eq. (3) for 0:= o. Fig. 3 shows the optimal strategy 
for a 7"'0. 

y(I) 

Yr 

Fig. 3. Optimal control in case of limitations of the control signal 

In many industrial control systems the control signal can be limited by satura
tion, that is, it has to satisfy the inequality 

(7) 

3* 
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where U 0 is the limit of the range of admissible control signals. It means that 

0':=0, if 

and 

x= co, if I u(t) I>Uo' 

If a self-tuning algorithm by Eq. (3) is working and Eq. (7) holds in every moment, 
then no influence is exerted by the limitation. If the control signal produced by Eq. (3) 
IS 

I u(t) [>Uo (8) 

then the real value of the process input is 

llr(t)= Uo sign {u(t)}. 

It is clear that the more the number of the events increases ifEq. (8) is satisfied, 
the greater the loss function increases. To investigate the simplest case, if Yr= 0 and 
Eq. (8) holds for every t, the input of the process is a binary sequence of + Uo and 
- U 0 and the controlled signal has the form: 

Writing yet) according to the equation above and eliminating e(t) we obtain 

G(Z-l). { -G(Z-l) }] 
- C(Z-l) SIgn B(Z-l)F(Z-l)y(t-d) + 

+}.F(Z-l) e (Hd). (9) 

Eq. (9) shows that even in this simple case analytical determination of the 
loss function involves great difficulties because of nonlinearity. Thus the simulations 
have great importance even from this point of view. The simulation results show that 
a self-tuning regulator can considerably reduce the influence of the disturbance, even 
if strong limitations of the control signal exist [Wittenmark (1973)]. 
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5. Extension of the minimum variance control strategy for the case of 
observable noise 

37 

In its original form the minimum variance control stands for reducing sto
chastic disturbances represented by filtered white noise. In addition to this type of 
noise, another type of additive noise to be derived from an observable input signal 
exists in practical industrial loops. For example such a process is the control loop of 
the temperature of the fresh steam in a traditional power plant, where the temperature 

y(t) 
)----

Fig. 4. Flow chart of the modified AsrnoM-model in the case of observable noise 

after the superheater is influenced by the load outside the random noises. Another 
typical application of the use of this structure may be the thickness control of cold or 
hot rolled sheets by means of the compressive force, where the observable inputs are 
the sheet thickness and quality previous to rolling. Further applications will be 
mentioned later. Assuming the system parameters to be known or previously iden
tified MISO AsTROM model has the form (see Fig. 4): 

yet) (10) 

where z-dlB1(z-I)/AI(Z-I) is the pulse transfer function of the process, z-d2Bz(z-1)/ 
AI(Z-l) is the pulse transfer function for the observable input signal uzCt). In this 
structure 

!lil), ui2), ... , uit) are the observable inputs, 
y(I), y(2), .. ~, yet) are the observable outputs, 
lII(I), uI(2), ... , uI(t-l) are known and lII(t) is to be determined in such a 

way that the loss function 

(11) 

is mininlUm. For simplicity's sake now yr= 0 is considered, but the results will be 
generalized for Yr ;::0. Using the separation 

r 
C1(z-I)= A1(z-I)F1(z-I)+ z-dlG1(Z-I) 

the optimal controllaw is easy to derive from Eq. (10) (Hetthessy 1974): 

-Gt(Z-I) B2(z-l) 
UI(t)= B

1
(Z-1)F

t
(Z-1) yet) BI(z-!) u2(t-d2+dt)· (12) 
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y{t} 
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Fig. 5. Optimal control for d2?!!iid1 

The flow chart of the optimal control is shown in Fig. 5. However, this strategy can 
only be physically realized if the condition 

d2~dl 

holds, otherwise Ul(t) ought to be determined from an observation after t, which is 
impossible. For d(>d2 let 

d=d1-d2>O, 

and the constant and stochastic components of u2(t) have to be separated by 

C (Z-I) 
u2(t)= U2+ f1 A~(Z-l) vet), 

where vet) is white noise. Using the polynomial separation 

where 

-1 'jil '-I ~;; i-nl-n,-d 
G2(z )=g20+g2IZ + .. ·+g2,(nl+n2+d-If -

the optimal control law is given by 

- G1(Z-1) GZ(Z-l) 
Ul(t)= BI(Z-I)Fl(Z I) y(t)- C2(Z 1)B2(Z I)FI(Z 1) U2(t)+ 

+[ G2(Z-1) Bz{Z-l)] u. 
\ 6 2(z I)B2(z 1)F1(z I) B1(z 1) I 2· 

(13) 
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The minimum value of the loss function is 

Vmin=}·2(1+ fl~+ ... +J1~d)+.u2(fio+fil+ ... +fi.(d--l»)· 

If minimization of the loss function 

is required, then the optimal control signal is determined by the relationship: 

Cl(Z-l) Gl(Z-l) t 
ul(t) Bl(z-l)F1(z-1) Yr Bl(Z-l)Fl(z-l) Y( )-

G2(Z-l) 

Fig. 6 shows the optimal control. 

39 

(14 

Eqs. (12), (13) and (14) demonstrate that if the structure in Eq. (11) exists, the 
minimum variance control can be realized by using simultaneous feedback and 
feedforward. 

y[t) 

r----~----~ ----------------~ 
I REGULATOR I 
I I 
I I 
I I 
I I 
I I 

: G2(Z-~ B2(Z-I) : 
I C2(z-~B,(z_Vr;(z-V - s;rz=rj I 
I I 
I I 
I I Yr 
I I 
I I 
L _________________ ~--------J 

Fig. 6. Optimal control for dl >-d;z 
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6. Minimum variance control of MISO systems 

First consider a system of two inputs (Hoffmann 1971) (see Fig. 7): 

B (Z-I) B (z-l) 
y(t+ d)= J(Z-I) Ul(t)+ J(z-l) uit)+ 

C(z-l) 
). (d) (15) + . A(z-l) e t+ . 

y(tJ . 
Fig. 7. The MISO extension of the ASTRoM-model 

Let the purpose of the control be to determine UI(t) and U2(t) in such a way 
that the loss function 

(16) 

is minimum. Using the separation by Eq. (4) we have 

_ B1(z-1)F(z-1) BzCZ-l)F(z-l) I 

Y(Hd)- C(z-l) u1(t)+ C(Z-l) uit)-r 

G(Z-l) 
+ C(Z-l) y(t)+}.F(Z-l) e (Hd), 

thus the optimal control law has to meet the condition: 

BI(z-l)F(z-I)UI(t)+ Biz-I)F(Z-I)uit)+ G(Z-l)y(t)= O. (17) 

Eq. (17) shows that the problem is undetermined, because UI(t) or U2(t) can be arbitrar
ily chosen. To complete the problem it is necessary to modify the loss function by 
weighting the control signals. There are two possibilities. 

Either ul(t) and uit) can be determined by Eq. (17) if the loss function 

Vu=E{O:luICt)+ ~~(t)} (18) 

is also taken into consideration. It is easy to show that VII is minimunl if 

0:1 b20 U2(t)=- . -b Ul(t). (19) 
0:2 10 

Then using the notation 

BCZ-I)=Bl(Z-l)+~ . b20 B2(z-1) (20) 
~ blO 
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by means ofEq. (17) we obtain 

-G(Z-l) 
tll(t) B(z I)F(z 1) yet) .. 

Or as the second possibility, an extended loss function 

(21) 

is minimized. Since Eq. (19) holds also in this case, using the notations by Eq. (20) 
and 

rxI b~o 
rx=rx1+-'-b2 ' 

0::2 10 
(22) 

the extended loss function has the following form: 

. {[F(z-I)B(r l
) G(Z-l) J2 

Ve=E C(Z-l) ul(t)+ C(Z-I) yet) + 

+ O::l~(t)+}.2[F(z-l) e (H d)F} . (23) 

Thus the problem is traced back to a previous SISO problem. Because of Eq. (5) the 
optimal control is 

(24) 

In connection with both methods some remarks arise. 
If the minimization of loss function 

V =E {[y(H d)- YrF} 

is required (Yr;:=': 0), then the expressions of the optimal control signals contain an 
additional, constant term. 

Both methods can easily be extended for the case of three or more (r) control 
signals (r> 1) introducing the notations: 

(j=2,3, ... , r). 
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Finally, if the system is described by 

A(Z-1)y(t)=B1(z-1)1I1(t- d1)+ Bz(Z-l)lIz(t- d2)+ ... + B,(Z-1)U2(t- d,)+ 
+ AC(z-l)e(t), 

then let 

d=min {d1, d2, ••• , d,}. 

Then extending the polynomials Bi(z-l) (i= 1, 2, 3, ... , r) by a proper number of 
zero coefficients, it is possible to use the original system model given by Eq. (15). 

7. Minimum variance control of MIMO systems 

Consider the multivariable extension of the ASTROM model (see Fig. 8): 

A(Z-l)y(t)= B(Z-I)U(t- d)+ C(z-l)Ae(t), (25) 

where y is the q-dimensional output vector, u is the q-dimensional control vector, 
A, B and C are polynomial matrices of Z-l : 

n 

A(Z-l)=Iq+ 2: z-j Aj 
j=l 

m 

B(Z-l)= 2: z-jBj 
j=O 

k 

C(z-l)=Iq+ 2: z-jcj , 
.i=l 

+ 

Fig; 8. The MIMO extension of the ASTRoM-model 

eft! 

further e is a sequence of normally distributed independent vector variables with zero 
mean value and covariance matrix Iq. Here Iq is a qxq unit matrix. The loss function 
to be minimized is 

v = [y(t+ d)- Y ,]T[y(t+ d)- y,]. (26) 
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Using the separation 

C(Z-l)= A(Z-l)F(z-l)+ Z-dG(Z-l) 

Eq. (25) has the following form: 

y(H d)= [F(z-l)C-l(Z-l)B(Z-I)U(t)+ A -l(Z-I)G(Z-l)C-l(z-l)A(z-l)y(t)]+ 
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+F(z-l)Ae(t+d), (27) 

thus the optimal control strategy is: 

u(t)= B-l(Z-l)[C(Z-l)F-l(Z-l)y r- G(z-l)F-l(Z-l)y(t)]. (28) 

To avoid producing B-l(Z-I) and F-l(Z-l) let us have 

and 

-F(Z-l)=Iq+F(z-l); 

v(t)= F-l(Z-l)y(t)= y(t)- F(Z-l)V(t); 

V r=F-l(z-I)y r=y r- F(Z-l)V,. 

Rewriting Eq. (28) by means of these notations we get 

u(t)=BOl[C(Z-l)V r- G(Z-I)V(t)- B(Z-I)U(t)]. 

The optimal strategy is shown in Fig. 9. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

: e[t) 

1 
I 
I 
I , , 
,yl' 

, , , 
I 
I L ______ _ 

---------------------------~ 
Fig. 9. Flow chart of the optimal control of MIMO systems 
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8. Relations between the classical design and the minimum variance control 

The latest results of the stochastic control theory have clearly shown that the 
classical (PI, PID, ... etc.) regulators are not sufficient to achieve the theoretically 
best control, if the system is not influenced by deterministic disturbances (xdet) alone. 
In the presence of stochastic disturbances (xstoc) a more complicated signal formation 
is needed than by the classical controllers, but this complicated signal formation is 
simple to produce by a digital computer. Although a nrinimum variance controller 
yields good results even for transient processes (start up, shut down, change of the 
set point), that sort of processes often require optimum control from some other 
aspects (minimal overshot, minimal reset time, ... etc.). In other words, a combina
tion of the minimum variance and classical controllers has to be constructed in such 
a way that the stochastic disturbances are handled by an internal minimum variance 
regulator and the deterministic disturbances by an external classical controller. To do 
this, the separation of the disturbances is needed, possible by a filter cutting a range 
of frequencies due to the stochastic disturbances (Fig. 10). Thus the stochastic 
component is given by 

Ys=Y-Yf' 

where Y f is the filtered output. The stochastic component is connected to the minimum 
variance controller via a sampling unit, while Y f is the input of the classical controller 
(Fig. 10). The control signal is derived from two sources, the classical controller, and 
the minimum variance controller via a holding unit. In connection with Fig. 10 it 
has to be remarked that Ys slightly differs from the real stochastic component, due to 
the characteristic of the filter. 

u(iJ 

Holding unit 

i~dEt 

,YS r-1 
.-------,~.d~ 111nlmum variance ~ Samolmo Unlt I. O· rdie," I 

regulator ! . ~. _ 

L-________ -j CloSSica! regulalOf • 
I lV 

t(J -f 

Fig. 10. A possible combination of the MV and classical controllers 
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9. Conclusions 

In our paper the minimum variance control is considered. Besides the well
known classical control cases some problems encountered for practical control sys
tems are discussed. These regulators are unlike to be more complicated than the 
basic case but lend themselves for much more complex control tasks. We hope our 
experience will give suggestions to other researchers and engineers for further investi
gation. 

Summary 

The optimum system design according to the classical, quadratic - by the sense of Wiener -
criterion is a little bit difficult. 

The minimum variance (MV) control introduced by AsTROM makes considerably easier to 
solve this task by parametrizing the system and designing directly in the time domain, and it promotes 
its practical applications, too. Nowadays, when the research work is mostly directed towards the 
adaptive, self-tuning solution of the minimum variance control, it is necessary to make a review and 
outlook about the above subject. Besides the classical MY regulators such control cases are considered 
in this paper which have been developed in accordance with the industrial demands during the 
practical applications, e.g. the relationships of the MY regulator for delayed observations are also 
given. The different restrictions regarding the control signals are also discussed. The lVIV regulator 
is extended to the case of observable disturbances, too. Basic establishments are formulated for MY 
control of MISO systems. Finally the equation of MV regulator for MIMO systems is given and a 
possible solution of effective cooperation of classical and MV regulators is treated. 
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