EXAMPLES, COUNTER-EXAMPLES AND APPLICATIONS TO THE THEORY OF OPERATOR TRANSFORMATIONS

By

A. BLEYER

Department of Mathematics, Technical University, Budapest Received December 28, 1976. Presented by Prof. Dr. T. Frey

This note is closely connected to some previous works ([1] [2]), and also the notations are the same as in them. This paper consists of four parts. First a necessary (but applicable) condition for semi-groups of endomorphisms will be given, the second part contains some counter-examples and a new version of extention of operator transformations. In the third section applications will be presented. The last part is devoted to the applications of the semi-group theory and the Cauchy-problem.

1.

Let Φ be a linear operator transformation with $\mathcal{D}(\Phi) \subset M$. Since M and Q are isomorphic and the isomorphism is continuous, there is a linear subspace $Q_0 \subset \mathcal{D}(\tilde{\Phi})$, and the mapping $\tilde{\Phi}$ corresponding to Φ which maps Q_0 into Q. If Φ is an isomorphism, then $\tilde{\Phi}$ is, too. When $a \in Q_0$, then $\tilde{\Phi}(a) = \{\varphi_n(p)\}$ is a field sequence, and if Φ depends on a parameter, so does $\tilde{\Phi}$; $\tilde{\Phi} = \tilde{\Phi}^a$ and $\tilde{\Phi}^a(a) = \{\varphi_n(p, \alpha)\}$. If Φ^a depends continuously on the parameter, then $\{\varphi_n(p, \alpha)\}$ represents a continuous operator function. In the special case when Φ^a is a semi-group (or a group — see [1]), $\tilde{\Phi}^\circ(a) =$ $= \{a_n(p)\} = \{\varphi_n(p, 0)\}$ and $\tilde{\Phi}^{a+\beta}(a) = \{\varphi_n(p, \alpha+\beta)\}$. Assume that Φ^a is a continuous endomorphism of M for each α , then by representation theorem (see [2], [9])

(1.1)
$$\Phi^{\alpha}(\varphi) = \int_{0}^{\infty} \exp\left(-\lambda \Phi^{\alpha}(s)\right) \varphi(\lambda) \, \mathrm{d}\lambda$$

for each $\varphi \in C^0$. From here one can see at once that it is "enough" to know the operator $\Phi^a(s)$. Let us assume that $\tilde{\Phi}^a(p)$ can be representated by a single meromorphic function (i.e., $\tilde{\Phi}^a(p)$ has an *n*-independent representation) for each $\alpha \ge 0$. If Φ^a is a continuous semi-group (every Φ^a is an endomorphism but $\{\Phi^a\}$ forms a semi-group only on $\mathcal{D}(\Phi^a)$), then

(1.2)
$$\frac{\mathrm{d}\Phi^{\alpha}(\varphi)}{\mathrm{d}\alpha} = A_0 \Phi^{\alpha}(\varphi)$$

for each $\varphi \in \mathcal{D}(\Phi^{\alpha})$. (See [1].) Let $\tilde{\Phi}^{\alpha}(\varphi) = \{\varphi_n(\omega(p, \alpha))\}$ be a field sequence representation of $\Phi^{\alpha}(\varphi)$ in Re $(p) \ge \sigma_0 > 0$. Hence we have that

(1.3)
$$\frac{\mathrm{d}\varphi_n(\omega(p,\alpha))}{\mathrm{d}\alpha} = [\tilde{A}_0\{\varphi_n(\omega(p,\alpha))\}]_n$$

where $[.]_n$ is the n-th member of the field sequence. Since \tilde{A}_0 is linear, it follows that $[\tilde{A}_0\{\varphi_n(\omega(p, \alpha))\}]_n = \tilde{A}_0[\varphi_n(\omega(p, \alpha))]$; where \tilde{A}_0 is the correspondence of A_0 on the Ditkin-Berg model. If $\omega(p, \alpha)$ has the derivative with respect to α , then from (1.3)

(1.4)
$$\varphi'_n(\omega(p,\alpha)) \cdot \omega'_n(p,\alpha) = \tilde{A}_0(\varphi_n(\omega(p,\alpha)))$$

follows. At $\alpha = 0$:

 $\varphi'_n(\omega(p,0)) \cdot \omega'_n(p,0) = \tilde{A}_0(\varphi_n(\omega(p,0))),$

and by virtue of $\Phi^0 = I$:

$$\varphi'_n(p) \cdot \omega'_n(p,0) = \tilde{A}_0(\varphi_n(p)).$$

We can conclude that $A_0 = \omega'_{\alpha}(s, 0)D$, where $\omega'_{\alpha}(s, 0)$ is the operator from M which has the correspondence $\omega'_{\alpha}(p, 0)$ in Q and D is the operation of algebraic derivation.

Let us consider the operator function $\Phi^{\alpha}(\exp(-\lambda s))$. $\Phi^{\alpha}(\exp(-\lambda s)) = \exp(-\lambda \Phi^{\alpha}(s)) = \exp(-\lambda \cdot \omega(p, \alpha))$. Using the previous results and assumptions:

$$-\lambda \exp\left(-\lambda \cdot \omega(p,\alpha)\right) \frac{\partial \omega(p,\alpha)}{\partial \alpha} = \frac{\partial \omega(p,\alpha)}{\partial \alpha} \Big|_{\alpha=0} \frac{\mathrm{d}}{\mathrm{d}p} \left(\exp\left(-\lambda \cdot \omega(p,\alpha)\right)\right),$$

hence

(1.5)
$$\frac{\partial \omega(p, \alpha)}{\partial \alpha} = \omega'_{\alpha}(p, 0) \frac{\partial \omega(p, \alpha)}{\partial \alpha}.$$

Summarizing, we obtained

Theorem I. Let $\{\Phi^{\alpha} | \alpha \ge 0\}$ be a continuous semi-group of continuous endomorphisms on $D(\Phi^{\alpha}) \subset M$. Assume $s \in D(\Phi^{\alpha})$ and $\tilde{\Phi}^{\alpha}(p) = \omega(p, \alpha)$ is continuously differentiable with respect to α . Then the infinitesimal generator of the semi-group is $\omega'_{\alpha}(s, 0)D$ where $\omega'_{\alpha}(s, 0)$ is the operator from M which is representated by $\omega'_{\alpha}(p, 0)$ in the Ditkin-Berg model, moreover $\omega(p, \alpha)$ satisfies equation (1.5) with the initial data $\omega(p, 0) = p$. An example: Let $\omega(p) = (p^r + \beta)^{\frac{1}{r}}$, where r > 0 and β is real. In this formula

 $p' = \exp(r \cdot \log |p| + r \cdot i \cdot \operatorname{arc} p)$ with $0 \le \arg p \le 2\pi$. Since $\omega(p) = p + 0(|p|)$ as $\operatorname{Re}(p) \to \infty$ in $\operatorname{Re}(p) \ge \sigma_0 > 0$, therefore $\omega(p)$ represents a continuous endomorphism — a substitution mapping (see [2]) —. It is easy to see that the transformations $r\Phi^{\beta} = \Phi \sqrt{p^r + \beta}$ form a group when β is running over the reals and r is fixed.

Now it will be shown that $'\Phi^{\beta}$ maps D'_+ into D'_+ .* Indeed, if $x \in D'_+$, then $x = \{\chi_n(p)\}$, where

(1.6)
$$\chi_{n+1}(p) = \chi_n(p) + p^{ln} \cdot 0 (\exp(\gamma - n)p),$$

as $\operatorname{Re}(p) \to \infty$, for $\operatorname{Re}(p) \ge c > 0$, $n = 0, 1, \ldots$, where $\chi_0(p) \ge 0$, γ is a real number independent of n, l_n is a positive integer and $\chi_n(p)$ is analytic in $\operatorname{Re}(p) \ge c > 0$ for each n. (See [5].) If $l_n = l_{n_0}$ for $n \ge n_{n_0}$ then x is a distribution in finite order. Since ${}^r \Phi^{\beta}(x) = \{\chi_n(\sqrt{p^r + \beta})\}$, we obtain from (1.6) that

(1.7)
$$\chi_{n+1}(\sqrt{p^{r}+\beta}) = \chi_{n}(\sqrt{p^{r}+\beta}) + (p^{r}+\beta)^{r} 0(e^{(\gamma-m)\sqrt{p^{r}+\beta}}),$$

as $\operatorname{Re}(p) \rightarrow \infty$. Because r > 0 and $\omega(p) = p + 0(|p|)$, from (1.7) we have

(1.8)
$$\chi_{n+1}(\sqrt{p'+\beta}) = \chi_{r}(\sqrt{p'+\beta}) + p^{l_{n}} 0(e^{(\gamma-n)p}).$$

Since a representation with (1.6) is necessary and sufficient for $x \in M$ to be in D'_+ , (1.8) proves the assertion.

It must be noted that our proof works for any continuous endomorphism Φ for which $\Phi(s)=\omega(p)=cp+0(|p|), c>0$, as $\operatorname{Re}(p) \to \infty$.

Let us fix x from D'_{+} and also r>0 be fixed. Then ${}^{r}\Phi^{\beta}(x)=g(\beta)\in C_{\infty}[(-\infty,\infty)]M$. Indeed, by (1.8):

$$\frac{\chi_n(\sqrt{p^r+\beta})}{e^{\sqrt{p}}} + 0(e^{-np}) = \chi_{n+1}(\sqrt{p^r+\beta})$$

as $\operatorname{Re}(p) \to \infty$ for each *n*, hence $\{e^{-\sqrt{p}}\chi_n(\sqrt[p]{p^r}+\beta)\}$ defines a continuous operator function, and in fact this function is differentiable in any order with respect to β . (Since if $x \in D'_+$ then $e^{-\sqrt{s}} \cdot x \in C^0$, see [5].)

It is easy to check whether the infinitesimal generator of the group ${}^{r}\Phi^{\beta}$ is $\frac{1}{r}{}^{r-1}D$. A familiar argument shows that $\{{}^{r}\Phi^{\beta}\}$ is a strongly continuous group on D'_{+} . (See [1], [10]). Let us mention two special cases of r=1 and r=2;

(1.9)
$${}^{1}\Phi^{\beta}(a) = T^{-\beta}(a) = \{e^{-\beta t}a(t)\},$$

(1.10)
$${}^{2}\Phi^{\beta}(a) = \left\{ \int_{0}^{t} J_{0}(\sqrt[t]{\beta(t^{2}-\lambda^{2})})a(\lambda) \,\mathrm{d}\lambda \right\} \sqrt[t]{p^{2}+\beta}$$

* Footnote: D'_+ is the set of distributions with half-line support. For the embedding of D'_+ into M see [5].

⁵ Periodica Polytechnica 21/2

if $a \in C^0$. Since, for $i\beta = \gamma$, $J_0(\beta(\sqrt{t^2 - \lambda^2})) = I_0(\sqrt{\gamma(t^2 - \lambda^2)})$ (1.10) holds for each real β . The endomorphisms ${}^r \Phi^{\beta}$ are bijective as it can easily be checked, and ${}^r \Phi^{\beta} {}^r \Phi^{-\beta}$ are inverse transformations for fixed r and β .

Let us consider the operator function differential equation

(1.11)
$$y^{(n)}(\lambda) = \left(\frac{1}{r}l^{r-1}D\right)^n(y(\lambda))$$

with initial data $y^{(k)}(0) = y_k$, k = 0, 1, ..., (n-1). By theorem 4.8 of [1], we have obtained that (1.11) has unique solution in $B^{(n)}(M)$ —see for the definition [1]—if $y_k \in D'_+$ (See for application (3.8)).

2.

If $\omega(p)=o(|p|)$ as $\operatorname{Re}(p) \to \infty$ in $\operatorname{Re}(p) > \sigma_0$ and here $\operatorname{Re}(\omega(p)) \ge \sigma_0 \ge 0$, then the $\omega(p)$ -substitution transformation does not exist for each $x \in Q$ in general. There is an operator $\omega(p)=o(|p|)$ and $x \in Q$ such that by the formal $\omega(p)$ -substitution $x(\omega(p))$, does not present an operator, although x has an *n*-independent representation. We encounter this case, for example, when $\omega(p)=p^{-1}$, which corresponds to the Hankel transformation (see [7]); let now $x=p^{-2}\exp(-p^{-2})$ (it is a function from C⁰), then $x(\omega(p))=p^2\exp(-p^2) \notin (MR) \subset Q$ (see [5]). Similar examples can be constructed for $\omega(p)=o(|p|^{\alpha}), \alpha \ge 0$.

There are examples when w(p) defines an isomorphism of (MR), i.e. for each $\sigma_0 > 0$ there is $\sigma_1 > 0$ such that $\operatorname{Re}(\omega(p)) > \sigma_0$ for $\operatorname{Re}(p) > \sigma_1$, but it cannot be extended to the whole. It can be shown that if $w(p) = \sqrt{p}$, then $f(t) = \exp(\exp t^2)$ cannot be w(p)-t transformed. (See [10].)

Now we shall show another possibility of making extension of the above kind of transformations. Let \mathcal{M} be the set of all complex functions f which are defined on some right half plane, Re $(p) > \sigma_f$, and meromorphic there. \mathcal{L} will stand for the set of all holomorphic functions defined on a right half plane. If f_1 and f_2 belong to \mathcal{M} , then $f_1=f_2$ iff there exists a right half plane where $f_1(p)\equiv f_2(p)$. By the theorem of Mittag-Leffler and Weierstrass any $f \in \mathcal{M}$ can be written in a ratio of two functions from \mathcal{L} . We say that $f_n(p)\in \mathcal{H}$ tends to $f(p)\in \mathcal{H}$ if there exists a right half plane Ω such that $f_n(p), f(p)$ are holomorphic there and $f_n(p) \rightarrow f(p)$ uniformly on any compact subset of Ω . Let C_0^{∞} denote the set of perfect functions, i.e.: $r(t)\in C_0^{\infty}$ if r(t) is differentiable in any order, $r(t)=0(e^{ct})$ for some c>0 as $t \rightarrow \infty$, $r^{(k)}(t)\in C^0$ (for k=0, 1, 2, ...)and $r^{(k)}(0)=0$ for each k. It can be proved that the quotient field* Q_0 of C_0^{∞} is isomorphic to (MR). (See [11], [12]). If $x\in C_0^{\infty}$, then $\bar{x}(p)$ denotes its Laplace transform.

* with respect to the convolution product.

Let $x \in Q_0$, and $x = \frac{\{r(t)\}}{\{q(t)\}}$, then $\bar{x}(p) = \frac{\bar{r}(p)}{\bar{q}(p)} \in (MR)$. The sequence $x_n \in Q_0$ is called fundamental sequence if there is a representation of x_n , $x_n = \frac{r_n}{q_n}$ such that \bar{r}_n , $\bar{q}_n \in \mathcal{L}$, $\lim_{n \to \infty} \bar{r}_n(p) = \bar{r}(p)$ and $\lim_{n \to \infty} \bar{q}_n(p) = \bar{q}(p)$ in \mathcal{L} . Obviously $\bar{x}(p) = \frac{\bar{r}(p)}{\bar{q}(p)} \in \mathcal{M}$. The function $\bar{x}(p)$ is said to be the Laplace transform of the fundamental sequence $\{x_n\}$ and $\mathcal{L}(\{x_n\}) = \bar{x}(p)$. Two fundamental sequences are said to be equivalent if they have the same Laplace transform. The set of the equivalence classes will be denoted by \mathcal{A} and the elements of \mathcal{A} are called hyper-functions. The following theorem holds (see [11]): Theorem II. Let $A = \{x_n\} \in \mathcal{A}$. Then the mapping $\mathcal{L} : \mathcal{A} \to \mathcal{M}$ defined by $\mathcal{L}(A) = A(z) =$ $= \mathcal{L}(\{x_n\})$ is an isomorphism between \mathcal{A} and \mathcal{M} . If $r \in C_0^{\infty}$ then $I = \left\{\frac{r}{r}\right\} \in \mathcal{A}$ is the operator cf identity and for $x \in Q_0$ $X = \left\{x \cdot \frac{r}{r}\right\} \in \mathcal{A}$.

In the beginning of this section we saw transformations which cannot be extended to Q_0 , i.e. there exists $x \in Q_0$ such that the image of x — by the formal $\omega(p)$ -substitution — is a meromorphic function not belonging to (MR). It can be seen that $x(\omega(p)) \in \mathcal{M}$, i.e. it is a hyper-function. One can show that if x=r/q, r, $q \in C_0^{\infty}$ and if

$r_n = \begin{cases} r(t) \\ 0 \end{cases}$	$ \begin{array}{l} \text{if } 0 \leq t < n, \\ \text{if } t > n. \end{array} $
$q_n = \begin{cases} q(t) \\ 0 \end{cases}$	$ \begin{array}{c} \text{if } 0 \leq t < n \\ \text{if } t > n \end{array} \right\}, $

then

and

$$\Phi^{\omega}(x) = \bar{x}(\omega(p)) = \frac{r(\omega(p))}{\bar{q}(\omega(p))}$$

and $\lim_{n \to \infty} \bar{r}_n(\omega(p)) = \bar{r}(\omega(p)), \lim_{n \to \infty} \bar{q}(\omega(p)) = \bar{q}(\omega(p))$ in \mathcal{L} .

An example. Consider the integral equation

(2.1)
$$F(t) = G(t) + \lambda \int_{0}^{\infty} \frac{\cos 2\sqrt{tx}}{\sqrt{t}} F(x) dx$$

where G(t) is a given function. In the operator term (2.1) becomes

(2.2)
$$F = G + \lambda \int_{0}^{\infty} \sqrt{\frac{\pi}{s}} \cdot \exp\left(-\frac{x}{s}\right) F(x) \, \mathrm{d}x.$$

5*

Introducing the transformation $\Phi^{\frac{1}{s}}$

(2.9)
$$F = G + \lambda \sqrt{\frac{\pi}{s}} \Phi^{\frac{1}{s}}(F).$$

Since $\Phi^{\frac{1}{s}}(\Phi^{\frac{1}{s}}(F)) = F$, we obtain

(2.4)
$$\Phi^{\frac{1}{s}}(F) = \Phi^{\frac{1}{s}}(G) + \lambda \sqrt{\pi} \Phi^{\frac{1}{s}}\left(\frac{1}{s}\right) \cdot F,$$

Therefore

$$F = \frac{1}{1 - \pi \lambda^2} \left[G + \lambda \sqrt{\frac{\pi}{s}} \, \Phi^{\frac{1}{s}}(G) \right],$$

hence in case $\lambda \neq \pm \frac{1}{\sqrt{\pi}}$

(2.5)
$$F(t) = \frac{1}{1 - \pi \lambda^2} \left[G(t) + \lambda \int_0^\infty \frac{\cos 2\sqrt[4]{tx}}{\sqrt[4]{t}} G(x) \, \mathrm{d}x \right]$$

i

if the integral exists. Take $\{G(x)\} = \{1\} = l$, then the solution F is not a function, and

$$F=\frac{1}{1-\pi\lambda^2}(l+\lambda\sqrt{\pi s}),$$

is a distribution in finite order. Take, now, $\{G(x)\}=s^{-2}\exp(-s^{-2})$, then the solution of (2.1) is a hyper-function, since $F(p) \in \mathcal{M}$,

$$F = \frac{1}{1 - \pi \lambda^2} (s^{-2} \exp(-s^{-2}) + \lambda s \sqrt{\pi s} \exp(-s^2)),$$

but $F(p) \notin (MR)$.

3.

In this section some applications will be given. Let us consider the integral equation

(3.1)
$$f(t) = \int_{0}^{t} J_{0}(\sqrt[y]{2u(t-u)})g(u) \, \mathrm{d}u$$

where f(t) is a given function. Using the endomorphism $\Phi^{p+\frac{1}{p}}$, (3.1) can be written in operator term as follows:

$$\Phi^{p+\frac{1}{p}}(g) = p\{f(t)\}$$

Since $\Phi^{p+\frac{1}{p}}$ is invertible on *M*, the inverse transformation is $\Phi^{\omega(p)}$ where

$$\omega(p) = \frac{1}{2}(p + \sqrt{p^2 - 4}),$$

168

and thus we get the solution

$$g = \frac{1}{2}(p + \sqrt{p^2 - 4})f\left(\frac{1}{2}(p + \sqrt{p^2 - 4})\right)$$

in operator term. Let us study the solution, assuming $f'(t) \in C^0$ and f(0)=0. Then, by $p\{f(t)\}=f'+f(0)$, we obtain

$$g = (p^{2} - 4) \left\{ \int_{0}^{t} f'(u) \int_{\frac{1}{2}u}^{t - \frac{1}{2}u} I_{0} \left(2\left(t - \frac{1}{2}u - v\right) \right) I_{0} \left(2\sqrt{v^{2} - \left(\frac{1}{2}u\right)^{2}} \right) dv du \right\} = \\ = \left\{ \frac{d^{2}}{dt^{2}} \int_{0}^{t} f'(u) \int_{\frac{1}{2}u}^{t - \frac{1}{2}u} I_{0} \left(2\left(t - \frac{1}{2}u - v\right) \right) I_{0} \left(2\sqrt{v^{2} - \left(\frac{1}{2}u\right)^{2}} \right) dv du \right\} - \\ - 4 \left\{ \int_{0}^{t} f'(u) \int_{\frac{1}{2}u}^{t - \frac{1}{2}u} I_{0} \left(2\left(t - \frac{1}{2}u - v\right) \right) I_{0} \left(2\sqrt{v^{2} - \left(\frac{1}{2}u\right)^{2}} \right) dv du \right\} \in C^{0}.$$

If $f'(t) \in C^0$, but $f(0) \neq 0$, then the solution $g = \Phi^{\omega}(f') + f(0)$ is a distribution which is not a function.

The kernel function of equation (3.1) is a zero order Bessel function in first kind, if we use the transformation $\Phi^{p+\frac{1}{p}}$, and then we can solve the equation similarly:

(3.2)
$$f(t) = \int_{0}^{1} \left(\frac{t-v}{v}\right)^{\frac{1}{2}v} J_{\nu}(2\sqrt{v(t-v)})g(v) \, \mathrm{d}v$$

where J_{ν} is the ν -th order Bessel function in first kind, with $\operatorname{Re}(\nu) > -1$. Indeed, using the relation

$$\frac{e^{-v(p+\frac{1}{p})}}{p^{v+1}} = \begin{cases} 0 & \text{if } 0 \le t < v \\ \left(\frac{t-v}{v}\right)^{\frac{1}{2}v} J_v(2\sqrt{v(t-v)}) & \text{if } t > v \end{cases}$$

(3.2) can be written in operator term:

$$\Phi^{p+\frac{1}{p}}(g) = p^{\nu+1}{f(t)}$$

The same method as it was treated for (3.1) can be applied for (3.2).

Applying the transformation $\Phi^{\sqrt{p^2+y^2}}$ we could solve

(3.3)
$$\int_{0}^{t} J_{0}(v(t^{2}-u^{2})^{-\frac{1}{2}})g(u) \, \mathrm{d}u = f(t),$$

(3.4)
$$\int_{0}^{t} I_{0}(v(t^{2}-u^{2})^{-\frac{1}{2}})g(u) \, \mathrm{d}u = f(t).$$

Having different representations of $\exp(-u(p^2+v)^{\frac{1}{2}})$ we can solve integral equations similar to (3.3) and (3.4).

Consider the following integro-differential equation

(3.5)
$$\frac{\partial y(v,t)}{\partial v} + \frac{1}{2} \int_{0}^{t} xy(v,x) \, \mathrm{d}x = 0.$$

The equation can be written in operator form as follows:

(3.6)
$$y'(v) = \frac{1}{2}lD(y(v)).$$

Since $\frac{1}{2}lD$ is the infinitesimal generator of the transformation semi-group $\Phi^{\sqrt{p^2+v}}$, having the initial value at v=0, $Y_0=y(0)$, the solution of (3.6) in $D'_+ \subset D(\Phi)$ is

$$y(v) = \Phi^{\sqrt{p^2 + v}}(Y_0) = (p^2 + v)^{\frac{1}{2}} \left\{ \int_0^1 J_0((v(t^2 - u^2))^{\frac{1}{2}})Y_0(u) \, \mathrm{d}u \right\},$$

assuming $Y_0 \in L_{loc}$. By an easy computation, from (3.5) one can get

(3.7)
$$\frac{\partial^2}{\partial v \partial t} (y(v, t)) + t \frac{1}{2} y(v, t) = 0.$$

Put y(0, t) = a(t), $y'_v(v, 0) = z(v)$ or $y(v, 0) = z_1(v)$. Assume that Y(v) is a solution of (3.6) with $\{Y(0, t)\} = Y(0) = \{a(t)\}$, then the solution of (3.7) is $y(v) = Y(v) + z'_1(v)$. Indeed, integrating (3.7) with respect to t from 0 to t

$$y'_{\nu}(v, t) - y'_{\nu}(v, 0) + \frac{1}{2} \int_{0}^{t} xy(v, x) dx = 0$$

follows and by $y'_{\nu}(v, 0) = z'_{1}(v)$ we have that

$$Y'(v) = \frac{1}{2} lD(Y(v)) - \frac{1}{2} lD(z'_1(v)) = \frac{1}{2} lD(Y(v)),$$

since

$$\frac{1}{2}lD(z_1'(v)) = z_1'(v)\frac{1}{2}lD(1) = 0.$$

If y_0 is assumed to be Laplace-transformable $y(0) = y_0 = \{y_0(t)\}, y(0) = y^{(p)}$ then the solution is

$$y(v,t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{pt} y^{((p^2+v)^{\frac{1}{2}})} dp.$$

170

Here we should take care of certain conditions related to the differentiability of y(v, t), but it can be found by a familiar argument.

Similar investigations can be made for the integro-differential equation

(3.8)
$$y'_{v}(v,t) = -\frac{1}{2} \int_{0}^{t} \frac{(t-x)^{r-1}}{\Gamma(r)} y(v,x) x \, \mathrm{d}x$$

for r>0, $-\infty < v < \infty$ and $t \ge 0$. If r is not an integer, (3.8) cannot be reduced to a partial differential equation. The solution of (3.8) — compared with the equation (1.11) — is

$$y(v, t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{pt} y_0^{-}((p^r+v)^{1/r}) dp,$$

which is Laplace-transformable, whenever $y_0 \in C^0$; if y_0 is not Laplace-transformable, then the solution exists also but theorem IV of [2] must be used. If $y_0 \in D_+$, then the solution is similarly given by the same formula (see [2], theorem IV, (2.11)).

4.

One of the most familiar operations in classical analysis having the semi-group property is the Riemann-Lioville integral of fractional order. In the classical case we have the following: let X be the Lebesgue space L([0, 1]), and let Re(v) > 0 and form

(4.1)
$$J^{\nu}(f) = \frac{1}{\Gamma(\nu)} \int_{0}^{f} (t-u)^{\nu-1} f(u) \, \mathrm{d}u.$$

It is well-known that $J_{r}(f) \in L([0, 1])$, and has the semi-group property in the righ half-plane, we also have

$$J_{v} = \sum_{n=0}^{\infty} (J - I)^{n} {v \choose n}, \qquad J = J^{1}$$

and a theorem of Hille shows that $f(t) \in \mathcal{D}(A)$ if there is an α , $0 \le \alpha \le 1$ such that $J^{\alpha}(f)$ is an absolutely continuous function of t. For such an f(t) we have

(4.2)
$$A(f) = d/dt \int_0^t K_{\alpha}(t-u) f_{\alpha}(u) \, du,$$

where $K_{\alpha}(t) = 1/\Gamma(1-\alpha)t^{-\alpha}(\log t - \Psi(1-\alpha))$, $f_{\alpha}(t) = J^{\alpha}(f)$ and $\Psi(.)$. is the logarithmic derivative of the gamma function.

Using the operator calculus, this semi-group can be defined on L_{loc} by

$$(4.3) J^{a}(f) = l^{a}f$$

where α is real and $l = \{1\}$. By the use of the result of Boehme [3] it can be extended to the whole complex plane and it is an analytic strongly continuous group with infinitesimal generator $A = \ln l = s \{\ln t\} + C = s \{\ln \gamma t\}$, where C = 0.577... is Euler's constant and $\gamma = eC$. This semi-group, too, has the basis relation, for $\operatorname{Re}(\alpha) > 0$ and $f \in C^0$,

(4.4)
$$\{d/dt J^{a+1}(f)(t)\} = J^{a}(f),$$

and the resolvent formula can be given by

4.5)
$$R(\lambda, J)(f) = \lambda^{-1} f(t) + \lambda^{-2} \int_{0}^{t} \exp\left((t-u)\lambda^{-1}\right) f(u) \, \mathrm{d}u$$

for all $f \in L_{loc}$, or for $x \in M$

(4.6)
$$R(\lambda, J)(x) = \lambda^{-1}x + \lambda^{-2} \{ \exp(t/\lambda) \} x$$

Therefore the solution of the singular integro-differential equation

(4.7)
$$y'(\lambda, t) = d/dt \int_{0}^{t} \ln (\gamma(t-u))y(\lambda, u) du$$

is given by

$$(4.8) \qquad \qquad \{y(\lambda, t)\} = l^{\lambda} y_0,$$

where $y_0 = y(0) = \{y(0, t)\}$. To investigate the properties of the solution we might use the results of Boehme [3].

Finally we show another example of the Cauchy-problem. Consider the equation

(4.9)
$$y^{(n)}(v) = (D+sD)^n(y(v)), \quad Y_i = y^{(i)}(0) \quad (i=0, 1, \dots, (n-1))$$

where D is the operation of algebraic derivation. It is not too difficult to prove that D+sD is a bounded transformation on D'_+ , and using (1.6) one can prove that for any $x \in D'_+$ there are $g_x \in C^0$ and $0 \neq q_x \in C^0$ such that

$$\|q_x(D+sD)^n(x)\|_{\Omega} \leq \|ng_x\|_{\Omega},$$

herefore

(4.10)
$$y(v) = \sum_{k=0}^{n-1} \sum_{m=0}^{\infty} \frac{v^{mn+k}}{(mn+k)!} (D+sD)^{mn} (Y_k)$$

is the unique solution of the Cauchy-problem in $C_n(C)D'_+$. (See [1].)

Summary

In the study of the operational calculus the notions of the linear operator transformations play a very important role and have proved very useful. This paper deals with semi-groups of endomorphisms, gives a sufficient condition for an operator to be the infinitesimal generator of a semigroup. Several examples, and applications of this subject can be found in this paper. Also some connections between distribution and operator transformation have been discovered here.

References

- BLEYER, A.: On semi-groups of operator transformations, Report of Istituto Matematico "U.Dini" Univ. di Firenze, (1973/74) 12
- 2. BLEYER, A.: A note to the construction of continuous operator transformations, Acta Math. Acad. Sci. Hung. (in print) (1973) (The results can be found also in a seminar report of the Univ. of Florence-Facoltá d'Ingegneria.)
- 3. BOEHME, T. K.: Operational calculus and the finite part of divergent integrals, Trans. Amer. Math. Soc. 106 (2) (1963) pp. 346-368
- 4. HILLE, E.-PHILLIPS, R. S.: Functional analysis and semi-groups, Amer. Math. Soc. 1957
- SCHATTE, P.: Funktionentheoretische Untersuchungen im Mikusinskischen Operatorenkörper, Math. Nach. 35 (1967) pp. 19-56
- 6. MIKUSINSKI, J.: Operational Calculus, New York, 1959
- 7. ERDÉLYI, A.: Tables of Integral Transformations, Vol. Iº (1964)
- 8. DITKIN, V. A.-PRUDNIKOV, A. P.: Integral transformations and operational calculus (1965)
- 9. GESZTELYI, E.: Über lineare Operatoren Transformationen, Publ. Math. (Debrecen) 14 (1967) pp. 189–204
- 10. BLEYER, A.: Kandidátusi disszertáció (1974) (Hung. Acad. Sci.)
- PREUSS, W.: Eine Verallgemeinerung der Laplace-Transformation, Report of Symposium of Generalized Func. Wisła, 1973
- 12. KRABBE, G.: Ratios of Laplace Transforms, Mikusinski Operational Calculus, Math. Annalen, 162 (1966) pp. 237-245

Dr. András BLEYER, H-1521 Budapest