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Introductory remarks

In Heaviside’s operational calculus, in particular in the application of this
operational calculus to partial differential equations, difficulties arise as a result of
the accurrence of certain operators whose meaning is not obvious. Therefore it
became necessary to develop a mathematical theory that will justify the process.
One of these theories, the theory of convolution quotient is due to the Polish mathema-
tician Jan Mikusinski. His theory provides a satisfactory basis for the operational
calculus, and it can successfully be applied to ordinary and partial differential equa-
tions with constant coefficients, to difference equations, integral equations, and also in
some other fields. E. Gesztelyi [6] studied the integral representation of linear trans-
formations of the operator field and proved that every continuous operator trans-
formation which is continuous his sense can be realized on the set of continuous
functions as an integral transformation. But to decide whether an operator trans-
formation is continuous in Gesztelyi’s sense is either very difficult or cannot be
carried out at all. The case when the operator transformation is multiplicative, i.e. is
an endomorphism, is not any simpler.

1. Definitions and notations

Here we give some notations which will be used througouht the paper. Let C*
denote the set of all complex-valued functions of a real variable ¢ which vanish if
t=2 and are continuous if # = 4. The set of locally integrable functions with left sided
bounded support is denoted by CU. The quotion field with respect to the convolu-

tion product
1

t
(L1 .fg(t)=J.f (1—x)g(x) dx (forf, g€C?)
0
is called operator field and denoted by M. In general we follow the terminology of

Mikusinski’s book [11], definitions and notions which are not included in, or are
different from, {11] are as follows:
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1.1. Definition. Let f(7) be an operator-valued function on a real variable 2 running
over the interval 4. We call (%) continuous if f(%) has a representation f(A)=a{f(2, 1)}
where f(2, £) is continuous on AX[0, «); in this case {f(}, )}€C(A)C® and f(2)¢€
€C(AM. The function f(A) is said to be differentiable if there is a representation

f(R)=a{f(2, O} such that é%%_ﬂ exists and belongs to C° for each 4641 ; then we say
that f(2)e C(A)M and .

1.2) fh=a {.-——W ¢ ’)}

C (M can be defined similarly. f(z) is said to be an analytic operator function in
domain S if f(z) can be expressed by a{f(z, 1)}, where f(z, 7) €¢C° forall complex
z €8, and f(z, f) is an analytic function with respect to the variable z. In this case
f(z) €A(S)M.

1.2. Definition. An operator transformation F: M;—~M (M, is a subspace of M) is
said to be M -continuous if the operator function F (g().)) is continuous;
F (g().)) € V(A)M, whenever the operator function g(1)€ C(A)M and has values in M.

1.3. Definition. An operator transformation F: M,—~M is called weakly (or sequen-

tially) continuous if p,*p in M, always implies F(p,)—~FE(p), where Y means the
usual convergence of M (see [3], [11]).

Two kinds of the integral of operator functions will be used; one of them has
been defined by Mikusinski (see [11]) and the other type is due to Gesztelyi (see [7)).

1.4. Definition. M X M is defined as the linear space of all ordered pairs (x, »), x, y£ M
with the usual definition of addition and scalar multiplication and with the conver-
gence structure defined in M, ie. (x,, y,) tends to (x, y) iff

x, ¥ x, v, My (see [1]).

i

Since M is not a topological space with respect to the usual I-type convergence
(see [4], [12]), M X M is not a topological space either.

1.5. Definition. T is a linear mapping defined on D(I")< M. The graph G(T') of T is
the set {[x, T(x)]/x€ D(T)}. Since T is linear, G(T') is a subspace of MXM. If the
graph G(T') of T is closed in M XM, MX M, then T is said to be closed in M,
briefly T is closed.

T will stand for the set of all weakly continuous operator transformations.
The notation ||f}}, for f € C° means

Ifll o= max |f ()] (Q=0).

1= Q9
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2. Notion of the semi-group of transformations, foundations

The set I" of linear operator transformations is called semi-group if the fol-
lowing conditions hold:

(@) y={T.Ja=0, T,€T};

(®) D(T,)> D(y), for every o and D(p) is a linear subspace of M;

©)T,.;=T.T50n DI') for «, =0;

(d) Ty=1 (I is the identity);

(e) For each fixed x¢ D(I"), T (x) is a continuous operator function with re-
spect to « in any finite interval [«;; o,]JC[0; <], i.e.; T (x)€C([ey; %))M.

2.1. Proposition. For each x€ D(I"), T (x) isintegrable (in the sense of Mikusinski [11])
in any finite interval [ot;; ,].
Let us define the operator transformation 4, by

1
(2.1) A= (T,=D.

A ¢Tand D(4,)>D(I") for each 7=0. By (e), for each fixed x¢ D(I") the operator
function 4,(x)€ C([d, BDM for §, 0. An operator is denoted by x, , when it is of
the form

B8

(2.2) X, 5= J T (x) d.

=

By 2.1 the set of such kind of operators is not empty. Since 4, €T,

)
A, )= T D = (T~ 1 ( J T, (%) dy)=

x

2

4
:'-:3‘ J‘ [Tr]_ I](Ty(-x)) d?’:——:—]— [ {‘ (T1]+7— T‘/)(x) d‘}’]:

(%

Bt a7
1 1
=— | T()dy—— | T, (x)dy;
p J (%) dy 7 J (%) dy
)

-3

on the right-hand side both integrals exist and there is a common function g, from

C such that T.(x)=g> {f(z, )}, where f(z, ) is a continuous function in the domain
[, B+ n]X[0, «). Therefore using the mean value theorem for integrals:

(2.3) Ar](xa, 8)=T g1 (x)—T (),
where = 6;=§+ n and o= 6,=«+ 7. Thus when 70 by (e)
(2'4) Aq(xc:, ﬁ)—’Tﬁ(x)~Tu(x)'
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As mentioned already, 4,(x) is a continuous operator function in (0; 1); therefore

there exists a nonzero function g,€C® such that g7 '{f(n, )}= A4,(x), where (1, 1) is
continuous on the set (0; 1)< [0; ). Assuming that lim 7 (%, f)=a(f) does exist, then

70
the value of the operator transformation A4, is defined by
(2.5) Ao(¥)=g5'a;
hence

Ag=lim - [T,—1].
n—~+0 n

The domain of 4, (the set of all operators x belonging to D(I") for which (2.5)
is well defined) is denoted by D(4y). (2.5) unambigouosly defines Ay(x), when it

exists. Indeed, let us assume that 4,(x)=g; ' {f(n, )} and A,(x)=&;'{f(n, N} are
different representations of 4,(x) in %€(0; 1)for which lim f(, H=a(’) and lim

70 n—0

f(n, H=a(r). Then by the continuity of the convolution and by virtue of
&A1 DY=gA(m, 1)}
g la= g7'a follows.
The operator transformation 4, is said to be the infinitesimal generator of the
semi-group [.

2.2. Theorem. The operator transformations 7, and 4, commute on D(A4,), moreover
for each x€ D(4,) the operator function T’ (x) can be differentiated with respect to 7

and satisfies or
X
26) = A (=T, A)

for each 1=0.
Proof: If x€ D(Ay), then, by the definition of A, and (c),

@D ~?17— [7ss )= To00= "177" [T(T ()~ INI=T (—71; T,~ I)(x)):
:—:7- (Tﬁm I)Ti(x)_’TsAo(X)z AOTE(X):

where the limit should be taken as in the definition of 4, (by (c): 4((x)€ D(I")). Con-
sequently, T&(x) is a differentiable operator function, i.e., there exists a representation
in [E— 7, &+ 7] (where 1=0 arbitrary, but £é— 5=0) for that

dT: — a s — : E 2 E)7 "9
ci?):“ , { féi: t)}za 1{1»11—13)f( +7 t,); AG t)}=T5 Ag().

It has only to be proved that (2.6) holds for the left-side derivative, too. By (2.5) and
(c), for n=<0,

1 1 1
7 [Ts-:«n"Ts]:T,;‘T§+1;U“T—n]=—_77Ts—(—n)[T—n“I]"*TsAoonT;‘?
for each x€ D(A,) whenever £+ n=0.
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From the above proof and (2.5) one can easily get that,

2.3. Proposition. If x€ D(A,), then TE(x)€ D(A,) for each £=0 and Té(x) is differanti-
able with respect to £ in any order.
2.4. Lemma. If x¢€ D(A,), then

(2.8) Tox)—x= [A, T ,(x)dn.

[

0

Proof. From (2.5) and 2.2 it follows that
d _ 1)
dg (Ti(x))_g.\ { ag } *

where T(x)=g5 {f(§, 1}. Multiplying both sides of (2.5) by g, and integrating from
0 to &, then

&

0

0

holds; and taking into consideration (d), from

{j(ss t)_f(os t)}zngTEAO(x) dé
0
(2.8) follows.

The next two theorems show the main character of the operator transforma-
tion A,.
2.5. Theorem. D(Ay) is dense in D(I").
Proof. For arbitrary x€ D(I") by 2.1:

5 -

-,177— f T(x) dé=
]

&7
A,,< | Ts(x)d5)='717"j (7, 1) di=- f T(x) dé
0 0 n

:"H T (T~ D) dp~ [T~ 11(x):

therefore, for each x¢ D(I),

-4
%

f T«(x) dé€ D(4y).

0



180 A. BLEYER

Using the mean-value theorem for integrals.and property (e),

1 3
B J T, (x) dp—x,
0
which proves the theorem, since D(A4,) is a linear subspace of D(I").

2.6. Theorem. Ay is closed in D(I").

Proof. Ay is closed if G(Ap)is closed in D(p)X D(y), i.e.;if f,€ D(4y) and f,~f¢ D(I")
(in 1.-type convergence) such that 4y(f,)~g in M, then f€ D(A4;) and g= Ay(f). Put
f,, in (2.8), then by theorem 2.2

=

T.()-1=| T8 d
&
follows, since T, € 7. Therefore

n

1
Ar,(f)-———n— j T (g) du—~g,

0

whenever 70, because of (e), i.e.; /€ D(4,) and Ay(/)=g.
2.7. Let us define the powers of the infinitesimal generator. The operator transformation

o will be defined inductively, as follows:

Ad=1, A=A, and for r=2,3, ...

(2.9) D(AY)= {x/xc D47 and Ay (x)eD(4g)}
and for x€ D(Ap)
(2.10) Ap(x)= “_{{} A (A5 ()= Ao 4571 ().

2.8. Theorem. (a) D(Ap) is a linear subspace in D(I"), and Aj is a linear operator
transformation.

(b) If xe D(A4Y), then T(x)€ D(Ap) for all 7=0 and

@.11) S (T()= AT (=T Ai(x);
2.12 T Ax)— rg —Eﬁ Ak(x)"——l“-— 5(5—— T 4 (x)d
(2.12) A T AR W)y~ T, A¢x) du.

0

(c) For each n both D(A4p) and QD( o) are dense in D(I"), moreover Ay is closed in

D).
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Proof. (a) follows from the definition. (b) is a generalization of 2.3, and 1.3. (2.11)
can be proved by induction, using (2.6). Integrating both sides of (2.11) from 0
to £ we obtain for each x¢ D(4Y):

1
(2.13) T Ay (x)— 45 ()= [ T.Ay(x) d&.
b

By repeated integration of (2.13) and using its reductive character relation (2.12)
follows.

In order to prove (c) let us consider Cgo(R™) to be the class of infinite differentiablely
functions with compact support defined on R = {t/0<t<<}. If peC(R™), then
for every integer r ¢ "€ Coo(R™), moreover the mapping @()T,(f) is a continuous
operator function with domain R for each fe D(I"). Let D(I")y, be the subset of D(I7)
for which g€ D(I"), if there exist f€ D(I") and g€ Chp(R ) such that

o

(2.14) g= [S(p(}.)T,-,(f) di.

8
Since T;€¢ and the support of ¢ is compact for each f€ D(I") and @€ Ch(R™) the
integral (2.14) does exist and g€ D(I"). Obviously, D(I")y, is a linear space. First we
show that D(I")eoC D(4y),7=1,2, . ... For sufficiently small 7= Osupp ¢(u— 7)C (0,20),
therefore

oo o

Az<g>=—‘;J P, o~ T d= J (p= )= F()T( ) i

T
Q 0

oo

—-— [\ F(WT(f) du= Ao(g),

Y
. where the limit should be taken as in the definition of 4, it was treated. Repeating

the above argument for all g€ D(4p) (r=1, 2, ...), we get that

An@=(-1) J POWT,(f) du,
hence 0

D(Ioo= 0, DAY.

Now it will be proved that D(I"), is dense in D(I'). Let f¢ D(I") and be fixed.
P.€Coo(R™) is such a function:

(n if uE(l-}——%,g———l—):In;

n n’'n w
. . 1 2
()= larbltrary but |g,(w)=n if uc Pl -1

0 otherwise.
6 Periodica Polytechnica 21/2
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o

Then gnzj (Pn(u)Tu(f) dueD(F)OO

4]
and g,—~f in M. Indeed, T, (/)€C([0, 1])M, therefore there exists g=0,g€C? such

that Tu(f)zq_’{f (u, 1)}, where f(u, £) is continuous in [0, 11X [0, «). We shall prove
that gg,—~¢fin C°. If ¢ and Q are arbitrary positive numbers, then

2n -1

lag,—afll o= j P (s 1) du—gf ()| =
!

n=-1

= max (19, -1 (o Oll o)+ max (19, - 1/ Dl o)+

2n = t—p=2

+ J (f(, D)~ (' =207 gf (D) du || =

.

=g+ (n‘; —211‘2)]}]’(14,,, Ha—gf (D] o=2e,

since n " n"?=u,=2n"'—n"? and f(u,, £)~qf(¢) almost uniformly by (e).
Hence D(I)g1s dense in D(I") and, as a consequence of the statement proved
previously, we have that both D(A4y) and nD(4}) are densein D(I"). To prove that

Af is closed we might use the method used in the proof of theorem 2.6.
The proof of theorem 2.8 is complete.

Remark. The formula (2.12), being similar to the classical Taylor series of the exponen-
tial function, is called Taylor-formula.

When X is a Banach algebra and B is a bounded operator acting on X into
X, then the operator function (in the sense of functional analysis)

(tB)
Kl

2.135) T(H=exp (BH)=I1+ T O=t<<)
£=1

defines a uniformly continuous semi-group of operators ([8]). By formula (2.12) we
might guess the same situation whenever B is a (weakly) continuous operator trans-
formation. This is not true generally; (2.12) in our case could also be divergent.
Consider, for example, the operator transformation F,: x-sx, which is obviously
continuous, then there exists a continuous semi-group of operator transformations,
namely y= {e~*/A=0}, the semi-group of translations with F=s as an infinitesimal
generator; nevertheless the series

As
n!

Sy

1+ 3
n=1

does not converge in the operator sense.
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Otherwise, in the case of B=k, where k is a locally integrable function, the

series
ik o Ak .
€ = 1 + Z 1 (“ 1)

n=1 7

converges in the operator sense, and D(e~*)= M.
When B=D, D is the operation of the algebraic derivation, and then

= (AD)"

= n!

converges on C?, as can be seen from

r(p=pe 3 LVETOL_ ay

n!

therefore 77,(.) is a continuous semi-group of transformations on C° althought the
transformations are continuous endomorphisms of M. We prove ([3]) that 7,(.) is a
continuous semi-group on the set of distributions with half line support, D/, . It is an
open question whether T,(.) is or is not a continuous semi-group on M.

It would be a confusion if an operator transformation generated more than
one semi-group. The following theorem shows that we have no such case in certain
circumstances.

29. Theorem. If 4,is a linear operator transformation with domain D{(4,), and D(4y)
is dense in a linear subset M, of M, moreover 4, is closed in M, then 4, is the in-
finitesimal generator at most one continuous semi-group y containing continuous
operator transformations with domain D(y)= M,.

Proof. Let us assume that 4, is the infinitesimal generator of two semi-groups 7%(.)
and 7(.). If f€ D(A4,) then T,(f )€ D(4,) and the operator function g(7) =T, _.7(f)
is continuously differentiable with respect to 7, and g'(r)=0. Indeed, F(z)=T.(f)
is a differentiable operator function, and by (2.7) and the continuity of T, we have

Tl) s, (F)+ T,_,( s

dr
= _AOTr—rTr(f)+Tr—-rAOTr(f):O
since A, and T,_, commute. Therefore g'(v)=0 and g(z)¢ C(([0, )M imply that
g(r)=c, that is, g(v)=g(®)=g(0)=T,(f)=T(f). Since D(4,) is dense in D(I"), T(f=
=T(f) if fe D(I").

2.10. Corollary. If A, satisfies the conditions of theorem 2.9, then 4, is not the in-
finitesimal generator of any continuous semi-group being different from that generated
by A, and contains weakly (pointwise) continuous operator transformations.

It is a simple fact, but we should remark that, if there is >0 such that T, is
continuous for every u€[0, €], then T, is continuous for each u=0. (The proof follows
from property (c).)

6*
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3. Resolvent, strengly continnous semi-groups

Let U be a linear operator transformation with domain D(U) and range
R(U) in M. The transformation U,=AI— U is defined also on D(U) for all complex
numbers Z. Let the range of U, be denoted by R(U;). The resolvent set o(U) of U is
the set of all complex numbers 2 for which the inverse of U, exists and is unique.
The inverse transformation U; ! is called resolvent and denoted by R(2, U).

The continuous semi-group I is said to be strongly continuous if for each
JED(I') there is q =0, g ,£C° such that ¢,T.(f) is a continuous parametric function,
g T (f)EC(0,)] C° and ||g;T, (/)llo=llgllo (0=7<ee) for each 2>0 with scme
fixed f€C°. (g, is independent of © and depends only on f.)

For the future we need:

3.1. Proposition. If f(u)e D(4) for all u€l0, o), j o(u) f (1) du does exist and belongs

0
to D(A), where ¢(u) is a numerical function, and if 4 is a closed operator transforma-

tion in D(A), then

B oo

A ( p(f (1) du)z [ p()A(f () du.
[ 0

0

whenever the right side exists. (See [1].)

3.2. Theorem. If I'={T,/r=0} is a strongly continuous semi-group of weakly con-
tinuous operator transformations, and the infinitesimal generator of the semi-group
is A, then for each 2, for which Re(%)=0, we have

3.1 R(2, AO)(f)zj e~ T () du
0

where € D(4,); moreover

for any sequences 2, for which larg 4,|= oco<£2£- .

Proof. Let us consider the following transformation:

(3.3) R(f)= J e™M T (f) du,
0
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where f€ D(y) and Re(A)=0. First it will be shown that (3.3) is well defined for all
Jf€D(y). By the definition of the strong continuity we have g€ C? ¢,#0 and g€ C°
such that

Vg TNl a=lgd 03 (220, u=0)

and therefore

»

0

4 R(f)= J e qTuy(f) du

converges, as £, =. R(R,;)C D(4,) and

3.4) (- AR f)=f
or each f< D(y). Indeed,

S

AR(f )=% j e T, ,—T)f)du=

N ot A
e —1

- fe—’-" u(f)du-‘%J & MT(f) duR,(f)~f= ARAf).

v

Hence R(R;)cD(4g) and (3.4) is fulfilled. Let f€D(4y); then T,(f)€D(4,) and
R;(f)eD(4y). Since A, is closed in D(I'),

e =3
»

" eTHT (A S)) du= 4, < J e T (f) du)z——AoR,:(f)

0 0

R Ao(f)=

holds by 3.1. Comparing this result with (3.4), we obtain (3.1). To prove (3.2) let us
consider the relation

=3

IRG, A0 =f=7 | T~
4
for f€ D(4,) and Re(1)=0.
Since {T,/uz=0} is strongly continuous, for any ¢=0 there exists o(e, 2)=>0
such that || g7 (f)—q,f|l o< when O=u=0. In this case

2] g T )= g | du= 2 e= oV Tt (tg gy
Q
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when Re (A)=0. Let Re ()= 0>w»=>0, then

=

121 | e g T )~ asfll o du=
5

£

=4 [ e (gl ot 1gpfil o) du=(lgsll o+ gl p)e™ Y1 +(tg zof=<e
5

if ¢ is large enough.

The proof of theorem 3.2 is complete.

The next theorem shows some advantages of the representation (3.1).
3.3. Theorem. R(2, AgXf)=g(?) is an analytical operator function for any /¢ D(4,) on
Re(2)=>0; ie.: g(A)€ A(Re(2)=0)M.
Proof. Let 0<p< = and

v
y

QfF‘(}')(f)z qfe—}‘uTu(f) du'

o

0
g7F () f)eA(Re().)>0)C° by the strong continuity of {7, /u=0}. If Re(Z)=0 and
Re(Z+ h)=0, then

Y

A£G A N=h" G F Ot ) ()= arF DN+ | gre™ T (fudu=

~
v

0
| T /] — ult —Au a
=\ ¢;T.(f) kﬁ(e —D+u)e ™ du.
‘

. 1l i 4
Since | (e “ 1)+ ul= kvl when O=u=0, hence
I

v

| g (N g= e et ﬁ 14T f ) o du=0,

%

4]
as fi—0. Therefore

ARG, A)F)_ |

& (—we™T,(f) du,

b
for Re (4)=0. Repeating the previous argument

TR L) f (—uf'e™™T,(f) du.

o
0
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Since g/F,(2)(f)€ A(Re().)>O)C° for any v=0 and its derivatives converge uniformly
to the derivatives of qR(Z, 4p)(f) in Re(2)=0, we obtain that
R(2, Ap)(f)€ A(Re(2)=0)M.
It is easy to see the following:
3.4. Lemma. If 2,, J,€0(A4y), f€ D(R(, Ap))N D(4y), then

(3:3)  (R( A9 — R 49)())= (s 2R, ADRCzs ANf);  RC:p» o)
and R(2,, Ay) commute;

, "R(2 ,
(3:6) SRCAND_ (1) » mi (RO, 49,

for n=0, 1, 2, ..., f€ D(R(%, 49))N\ D(Ay).

3.5. Theorem. Let A, be a linear closed operator transformation, with domain D(A,)
being dense in the linear subspace D(I") M. The following are necessary for 4, to
be the infinitesimal generator of a strongly continnous semi-group with domain
D(I"): for each f€ D(A,) there exist g£C°, q€C°, g0 such that

3.7) g;(RC, AD)(NHEC® (n=1,2, ...)
if Re(4)=0;
(3.8) [g/(RGs 4)) (N 9= ligfl1 - o7

for each Q=0 where c=Re(4).
Proof. (3.7) follows from 3.2 and 3.3. By (3.1) and (3.6)

J =5 | ! "~ N
d Rd(}/;_f;io)(f)zj (__ u r—le—ZuT”(f) dll,
0

therefore, by the strong continuity,

ES

il r—1pcs Ny i Al
g, ERCAID gy, | e du= gyl ate— 1167
dar-i ‘1 o

i}
and now a comparison with (3.6) gives (3.8).

The conditions (3.7) and (3.8) offer the possibility of defining a new semi-
group on the set D(R(/'., AO)) N D(Ay), which is very closely connected with the origin-
al semi-group. Let us assume that (3.7) and (3.8) are fulfilled for some linear closed
operator transformation A4;. Then in the case of U,=22R(4, Ay)—Al we obtain

Ii

e k
(3.9) Fuf)= 2 UKH  (0=v=e),
k== Ve
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which forms a strongly continuous semi-group on the set D(R(?., Ao))ﬂD(Ao). In-
deed, using (3.7) and (3.8) we could show that

s (220)" U)" k
a0 N=a; (e 3 RO A
converges uniformly with respect to v in any finite interval [0, 2]. From (3.9) it follows
that for Re(A)=0, Re()=0
UUF)’()" f):FV(;”')Uu(f)'
Assuming that (3.7) and (3.8) hold, we have
1q,(2RCs A)(N)= 1) a=14,R(: AJA)] a=0(2]""
when || - <, therefore U,(f)— Ay (f) as |4]|— <=.

3.6. Theorem. If {T,/u=0} is a strongly continuous semi-group of continuous linear
operator transformations, 4, is its infinitesimal generator and U,=22R(%, Ag)— I,
then

(3.10) Fi(f)= 2 . U=

=

(7 U)

(RG, 40 (S)

isa gtrongly continuous semi-group on the set D(R(4, 4y)) ND(A4g)=D(F?) -
D(F?%) is dense in D({T,}) and for any f€ D(F%)

FU)~Tf)
as |A] -~ =, uniformly with respect to v in any compact subset of [0, =].
Proof. By 2.5, D(F}) is dense in D({T,}). If FX(f) converges, as |A| =, then Fi(f)
—~T(f); indeed,

¥
a

FUf)—f= | FULf) du
b
and by the previous argument

T)(f)—f: TuAO(f) dll
&
holds. T,(.) is a semi-group with the infinitesimal generator A,, hence 7,=T, by the

theorem of unicity.

Now we are going to show that FA(f) converges: for each
JED(R(Z, Ap) nD(Ay).
By (3.1) we obtain

(RG» A)()= G257 J W' HT (/) du

¢




SEMI-GROUPS OF OPERATOR TRANSFORMATIONS 189

qu’;:(f)zqf<e";"' % ik! (k——l) J e~ MFT () dute” “f):

Q

- ) 23 I""l 5 N
= [(;\Z oM %{I%IT)T) g TAf) du+ e q,f.

Thus
aFdf )=j K(2 v, 1)g T (f) dute™"fqp,
0
where
e 2,\k+1
3 1y 1y o A V) (A%v) k4 o= Mut )
K(,v,u)=¢ 2 R+ DT u A(u) 1,(22(uv)?).

Since e~ *fg,;~0 as |A| <o, it is sufficient to show that

0

| KO m g 1) dugr(r) s e
0
The kernel function K(4, v, u) has the following properties:
(I) K(, v, 1)=0 when 2, v, u=0;

KG,v,u)du=1—¢e""
0
Because ¢,T,(f)€C([0, ==))C", it follows that

(1)

2
A

G(3, U)=j 14, TS )—q T.Af)] o du=o0(|f—7|
Hence we should show, using (11), that

3

j KO 0, g, T )= 4T )l g du—0
0

when [A] - co.

The proof of this assertion might be taken from [8]. We should recognize that
he uniform convergence with respect to v follows from the strong continuity.
3.7. Corollary. In theorem 3.6 we should have assumed only the weak continuity of
the operator transformations.
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3.8. Corollary. (Theorem of unicity) If A4 is the infinitesimal generator of a strongly
continuous semi-group which contains weakly continuous operator transformations,
then there exists no other strongly continuous semi-group with the infinitesimal
generator 4.
Comiments. The converse of theorem 3.5 and 3.6 would be more interesting. In the
classical theory of semi-groups this problem leads to the necessary and sufficient con-
ditions due to Hille and Yosida. In the theory of operator transformations it cannot
be realized generally. This arries from the fact that, if F is a continuous mapping
from a Banach space X into X, then || Ffii <C|/fil, with some constant C, and in the
operator field there is no norm with respect to the usual convergence.

In some cases this bar can be left out; for instance, when Ay=F,: x-cx.
Now we get the bounded logarithm defined by L. Mdzé ([9]). In this case the strong
continuity of the semi-group implies the boundedness of the logarithm in MAaté’s
sense, and the Hille~-Yosida theorem holds: (3.7) and (3.8) form necessary and suf-
ficient conditions to the boundedness of a logarithm, and also to the strong continuity
of the semi-group. The logarithm w is bounded in Mdté’s sense when for each >0
there exists f€C?, =0, such that || fexp(—2iw)|| ;= fI| 5; in our case w is bounded
logarithm if w generates a strongly continuous semi-group, that is, for Re(2)=0 there
exist f, g€CP, /=0 such that | fexp(—iw)l ;= gl 5. Obviously our bounded loga-
rithm is more general than MAaté’s but not too much. We might apply the argument
of Mdré without any modification ([9]) and obtain the following: Ay=F: x—~wx,
generates a strongly continuous semi-group if and only if there exist f€C?, g€C?,
(f=0) such that

L RO, ApreIeC®  (for Re(9=0)
and
%f (RG A)V') =gl (for Re (1)=0).

Describing by term w, we obtain Maté’s conditions:

)' \ Kk .
(a) (HW)fea;
b }"kf“<‘}" for Re ()=0, =0
()h Ptw ) H.):‘gﬂﬂ (for e(‘)> y 82 )

We should remark finally that formula (3.10) gives an assymptotic procedure
to construct bounded logarithm, since in this case U, is an operator transformation
of type F.,.
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4, Cauchy-problem; application of the transformation semi-group

Every exponential function represents a continuous semi-group of transfor-
mations which could easily be verified by the definition. They can be applied to solve
partial differential equations (4], [5], [11]). Here we deal with some similar kinds of
questions studying “transformation-differential” equations. (It might be a partial
differential equation.) Let us formulate a so-called “abstract Cauchy-problem”. U is
a given linear operator transformation with domain D(U) and range R(U) in M. More-
over, given xo& D(U), a fixed operator; and we should find an operator function
¥ AD=y(’, x,) satisfying the following:

D) ¥(DeC(0, =)M;
(ii) for each A=0 p(2)€ D(U) and
@n . YBH=Uu*);
(i) p(1)—x, A0,

The third condition could determine the CP’s describing what kind of convergence
is taken into consideration. We have CP, if y(2)e C([0, =DM and y(0)=1x,: CP, if
YOIECK(O, =M and y(D=a{y(h N} with {35 D}EC,((O0, TNC?, and [y, 1)
—a~ xgll 0 for all 2=0 as A~0, and finally CP;: when y(7),—~x, in M whenever
%.,~0. Remark. If U=F_: x—cx, then CP, can be solved and the solution is the
exponential function ¥(1)=xge™, provided c is a logarithm in Mikusinski’s sense.
If ¢ is a bounded logarithm, then the solution y(%)=xe* is a bounded operator
function (see for more detail later on). If U= D,D is the operation of algebraic deriva-
tion, then for all xp¢.D . (the set of distributions with leftsided bounded supports)
the solution is T%(xg) ([3]). If x4€ M is an arbitrary operator, then 7%(x,) is a solution
of the problem in a weaker sense, and works as a sequentially continuous (in II.-type
convergence — see [3]) operator function.

We are going to find the solution of CP in a special class of the operator
functions.
4.1. Definition. y(2) belongs to the class B(M) if y(2)€ C ([0, ==])M and there exist
JeC®, f#0 and g€ C® such that

A9 0= gl (220, 8>0)
for i=0, 1, ... n. (Here fand g may depend on y(2), but are independent of Q).
Obviously, if k<, then BW(M)< B(M). We have defined the class B*(M),

since it is desired to use the method of the Laplace transformation.
4.2, Lemnma. If y(u)€ BO(M), then

L(y, v)=J e y(u)du
0

exists, for Re(v)=g,>0 and L(y, v)=0 implies y(11)=0.
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Proof. By the definition of B(M) we have

oo -

i | o
lg | e =| e Rew ~ o
;ig [e () du“-q:J.e e gy(u)] o dusg (i) :

% b
therefore the above integral exists. If L(y, v)=0, then

o o

‘ gy(e ™" du={ J y(u, He™ "' du}zO,
] §
hence y(u, 1)=0 for almost all » with fixed ¢, which implies y(u, =0 for fixed 1,
and therefore y(u, 1)=0 for all u, 1=0.
For further investigation we need the following assertion:

4.3. Lenuna. Let U be a linear operator transformation with domain D(U), closed in
A, D(U) is dense in the linear subspace 4 of M. Moreover U can be extended from
D(U) to 4, ie.; for any x€ 4, if we take x,€D(U), x,~x and then U(x,)~U(x)
independently of the choice of the sequence x,. Let us assume that y(u)¢ D(U) (for

z=u=f and a= — o, = oo are possible) and
J () duc 4
then =
(y(zz) due D(U)
and s
(4.1) { Uy(u)) du= U( [ (1) du).

The proof immediately follows from the definition above and the properties
of the Stieltjes integral of operator functions ([1], [7]).

Now CP; will be examined. IB'D(U) stands for the set of all operators which
are in the form

ECE
(v== <o is also possible), where u=0, y(2)¢ D(U)N BM(M) for z=0.
4.4, Theoremm. Let U be a linear operator transformation on D(U), extendable from
D(U) onto IB'D(U) and closed in IB'D(U). Moreover, assume that o(I/) contains a
right halfplane, i.e. there is gy=0 such that {Re(z)=0,>0}co(U). Then in BV(M)
there is at most one solution of CP, related to the equation
(4.2) Y(@=U(x2)
with the initial condition y,€ D(U).
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Proof. 1t is sufficient to show that the theorem holds in the case of y,=0, and then
¥(2)=0. Assume that p(z)€ B)(M), y,=0, and satisfies equation (4.2). The integrals
[ e y(z) dz

u

and

¥

[ “PU((2) dz

u

exist. By virtue of (4.2) and lemma 4.3

¥

[ e Py(2) dz=J e FEU(y(2)) dz= U( J e "y(z) dz) .
Integrating on the left hand side by part,
e "y()—e Pyt +p [ e Fy(z) dz

o
i

follows. Hence, in limit relation, by 4.3 and y(z)¢ BY(M):

U(L(y, p))=pL(y, p)

for all Re(p)=0,>=0. Since {Re(p)=o,>0}co(U) it follows L(y, p)=0. Lemma 4.2
concludes the proof.

One can easily see that the semi-group theory of transformations and CP are
closely related. It is obvious that, when y,€.D(4,) and 4, is the infinitesimal generator
of the semi-group, then T,(yo)=¥(z, yo)=y(2) is a solution of CP,. Comparing this
with 4.4, we obtain:

4.5. Theorem. T.(y,) is the unique solution of CP; related to (4.2) in B(A), if U
is the infinitesimal generator of the strongly continuous semi-group {7./z=0} and
satisfies the conditions of theorem 4.4.

There is a natural way to generalize CP=CP! in a higher order n. Given a U
linear operator transformation with D(U)c M, R(U)C M and yg, yi, ¥2s - - ¥u_1€D
(U). Find the operator function y(2)=y(z, ¥ - .., ¥,—1) Which satisfies:

(D) y(@€C (0, =)M;
(i) yP(2)€ DU F), U=+ P(2))€C((0, <)M
for k=0,1, ... (n—1) and

(43)  W()=U"(y() forz=>0;
(iii) y®(2)—~y* if z—0.

The third condition gives the possibility of defining, as already mentioned, different
kinds of CP"s : CP}, CP} and CPj.
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We could define IB"D(U) similarly to IBD(U) by replacing B((M) by
B™(M), and using the same Laplace method as in theorem 4.4 we obtain:

4.6. Theorem. If U is a linear operator transformation on D(U), extendable from
D(U) onto IB"D(U), closed in IB*D(U), and p(U) contains a right half plane, then the
CP; related to (4.3) with initial conditions yq, ..., y,_,€D(U") has at most one
solution in B™(M).

The CP" also has relation with the semi-group theory in the case of n=>1.
While in the case of n=1 U should be an infinitesimal generator if n=>1,

UunU, ...,n"U

should be infinitesimal generators, where n=-exp (27i/n).

The operator transformation U is said to be bounded on B(U)c D(U) when
for each geB(U) there exist p€C® g€C° (g50) such that | gU @) o= Pl o
(n=1,2,...).
4.7. Theorem. If U satisfies the conditions of theorem 4.6 and is bounded on B(U)c
< D(U), then for any initial system yq, ..., ¥,_1€B(U) the CP} related to (4.3) has
only one solution in B(U) and can be represented by

n—1 == -k

(4.4) UEAS N }’n—;)=k§0 ngo G l)T U™(yy)-

The proof immediately follows from 4.6, and y(z)¢ B™(M) implies the con-
vergence of (4.4).

We remark if U= F,:x—~kx and k is a locally integrable function, then B(U)=
= M. Now we present a theorem which gives an other type sufficient condition for
solving CPY{.

4.8. Theorem. If n*U is the infinitesimal generator of some strongly continuous semi-
group for each k(k=0, 1, ... (n—1)) where n=-exp (27i/n) and

Yo& DU, € DIUHN R, ..., YeDUMHNRU"), ...
for k=1, 2,..., (n—1), then CP{ can be uniquely solved in B™(M) and

n—1

4.5) y(2)= ZO S(z, n'U)ay,

where S(z, 7'U) is the semi-group generated by 'U and g, is the solution of the system
n—1

(4.6) S n*a=c, (k=0,1, ... (n—1)),

i=0
where ¢, =U(y).
Proof. Since 1 #n’ if i=j, det| #/*| =0 and (4.6) can be solved. The CP} can be
solved with initial conditions at=#*U*(a) (k=0, 1, ... (n—1)), and (2.11) shows

that the solution is S(z, n'U)(a,). Therefore

n—

1
4.7 8(z, n'U)a)=y(z)

i=0Q)
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is a solution of CP{ whenever {a;} are choiced sufficiently. Taking the derivative of
(4.7) and substituting z=0 we get

n—1
(4.8) U* (zzo n”“a,.)z Vi (k=0,1, ... (n—1)).

Since y,.€ D(U")N R(U*), there is a ¢, € D(U*) such that ¢,= U*(y,); hence the solu-
tion of (4.7) is a solution of (4.8). By the assumption, S(z, n'U) is strongly continuous,
¥(2)€ B™(M), which completes the proof.

Finally let us mention the case, when there are /’s, that 'U does not generate
a semi-group. p is said to be the degree of freedom of CP" if there are exactly p trans-
formations among 7'U (=0, 1, ..., (n—1)) which generate semi-groups. It is ob-
vious that p the number of initial conditions which can be given “arbitrarily”.
4.9. Theorem. Let p be the degree of freedom of CP}. If

.ylED(U")nR(U’) (l= Os 13 MR | (P”‘ 1))9 y(z)eB(P’(AJ), y(k)(o):yk

(k=0, 1, ..., (p—1)) and y(z) 1s a solution of CP{ with initial values yy, ..., y,_j,
v.vs Yay and U satisfies the conditions of theorem 4.6, then it is sufficient and
necessary for y(z)€ B®W(M) that

p . s
(4.9) yi=U (kzl gl 'k’a/\) (j=p, ..., (n=1)),
where {a,} is the solution of the system
£ ri
(4.10) y,= Ur<kzl 7 “ak> (r=0,1, ...,(p—1)),
where 7= exp (27i/n) and 7™*U generates a semi-group for k=1, ... p. Proof. Since

U satisfies the conditions of theorem 4.6, there is only one solution in B(M). If n*
7™'U generates a semi-group, then y,(z)=S(z, 1" U)a,) is the solution of CP} with

initial values vy (0)=17"U(a,). If

it

By

™

)= 2 Sz, n"U)a)

Py

is a solution of CP¥, then (4.9) and (4.10) follow from (4.6). Conversely, if (4.9) and
(4.10) are fulfilled, then y(2) is a solution of CP", Since the solution of CP*is unique
the solution of CP" is, too.

We remark that in the case n=2, if U and — U generate semi-groups, then U
actually generates a group and the solution with initial values v, ¥, will be

¥ (S(e, U)ot 2+ 8(— 7 UNyg— )

where U(x)=y,. (The solution is independent of the choice of x.)
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Summary

In a previous paper [in (2)] we gave a method to construct new type of operator transforma-

tions with domain M, the whole operator field. This paper deals with another version to deal with
operator transformations that have domain possibly only a proper subset of the operator field. Here

the

main idea of the semi-group theory of transformations, due to Hille, Yosida and Phillips, will be

adapted to the set of linear operator transformations.
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