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List of symbols

2z
x= —g— and r variables of the cylindrical co-ordinate system
P period of the focusing system
o radius of the focusing cylinder
9
o= :; size of the gap between the focusing electrodes
Up and U; electrode voltages
2U(x, 1) . . .
e = oo normalized potential function
F— %

Dy = Px,0) normalized axial potential

Ug +~U - .
Py = —UTF—-—T_f normalized average potential

—
@apesq d coefficient of the (2k -+ 1)-order member of the normalized potential
function

I(x) first kind zero order modified Bessel function
Cy coefficient of the n-th member of the Fourier series
F(x) potential function in the gap
f(x) approximated potential function in the gap

Periodic electrostatic focusing is a well-known method of focusing long
cylindrical electron beams widely used in practice. Some difficulties arise in
connection with the design of focusing systems since the boundary condition
of Laplace’s equation describing the field in the gap between the electrodes
is not known. The published solutions [2, 3, 4, 5] all substitute some simple
function — “comfortable” in computation — for the field in the gap. These
approximations are mostly rough and the arising errors will tamper with
the potential distribution of the field.

For the theoretical determination of focusing parameters, electron tra-
jectories have to be known for which the potential distribution of the focusing
field must be given. In the case of thick beams it is indispensable to know
the field far from the axis. The potential function in the gap between the
electrodes must be such as to satisfy Laplace’s equation both inside the

* Short description of a research work made at the Department of Theoretical Electricity
of the Technical University, Budapest with participation of the authors.
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electrodes (r < ry) and in the filed outside the electrodes (r > r,). As the
solution of the differential equation is searched for in form of an infinite series,
meeting the former condition leads to lengthy mathematical computations. The
problem can be solved by determining the value of the potential function in
he gap in an experimental way by using a resistance network or electrolytic
tank analogue. Then the obtained function is approximated.

The aim of our work is to determine the field distribution of the focusing
system assuming the potential function in the gap to be of order (2K -+ 1),
approaching reality rather well. (By an appropriate adoption of the co-ordinate
system the second-order symmetry can be made a good use of.)

In Fig. 1 the scheme and the potential function of a simple cylindrical
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Fig. 1.

periodic electrostatic focusing system are presented, permitting to write the
normalized potential function of the boundary value:

5‘;021{%-1 L1 f 0<x<« (1a)
e = gkt ’ -
D\X, Tg) — Py =

1, if o< (1b)

IN
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The condition (1b) is the consequence of the normalization of the potential

function. For x = ¢ the conditions (la) and (1b) simultaneously hold. It
follows that

K
2 Por+1=1. (2)
k=0

Let the coefficients g, ,, now be regarded as known constants. Their definition
will follow later.
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To determine the maximum order of approximation, let us deal with
the number of the points of measurement in the gap. In case of the geometrical
arrangement shown in Fig. 1 (second and third-order symmetry) the order
of the approximating function f(x) is limited by the number of measurement
points available in the gap width ¢. If the number of measurement points
is M in the interval ¢, the following relationship holds:

M>K+1, (3)

where K is the superscript in (1a).
If the boundary value is known the solution of Laplace’s equation in
cylindrical co-ordinates is:

#lx 1) — pp = 2 C, sin (nx) I(nr). )

The coefficients C, are determined by equating the substitutive value of (4)
at 1 = r, and the relations (1a, b) and considering the orthogonality of trigono-
metric functions, as well. Defining the C, calues the potential distribution
in the gap will be

4 2 o -
Plx,re) = Fo T 2 Az sin (2n 4 1) x, (5)
T n=0
where:
A= 28n+ Dz ZK; (2k+1 'j (=1) X
T 2n +1 =0 =2k —D+11(2n + 1))+
X [E%—Z_j?—iﬂ sin (2n + 1)o — o cos (2n + 1) oc] . (5a)

When defining the normalized potential function ¢(x, r), getting its approximate
value of a finite number of members is sufficient.
After (5) is known the solution of the differential equation becomes:

IO[(Zn +1) 2"’"]

4 N
1) =g¢+— 3 Ak 2£r sin (2n -+ 1) x. (6)
= IJ@n+&) OJ
- P

From expression (6) the normalized axial potential ®(x) = @(x, 0) can be
given considering I,(0) = 1.

Expressions derived for a third-order approximation (K = 1) with
N = 20 have been numerically investigated on a computer. The results have
been plotted, for example in Fig. 2, showing a 1/4 period of the focusing
system. The curves in full line are measurement results determined by the
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resistance network analogue model [11]. The results of linear approximation
are presented in dash line [2], while the dotted line shows the results of the
third-order approximation calculated by us.
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Let us now consider the determination of @,..,. Let f(x) approximate
F(x) to meet the condition

f [f(x) — F(x)] dx = 0. (M

(It is to be noted that f(x) is equivalent to expression (la).) Introducing the

x
variable transformation—:
x

1

¢l=_1+4JF

0

p; can be determined by using (2).

X

Function F ( ) has been integrated by Simpson’s method.

24

Discussion of the results

The potential distribution of a rotationally symmetric periodic electro-
static focusing system has been determined assuming an approximation of
order (2K -+ 1) in the gap. The results of our computations for a given geo-
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metrical arrangement have been presented through an example. The approxi-
mation discussed is of a special importance if potential distribution is to be
determined in a field far from the axis.

The coefficients g, , necessary for the approximation can be determined
from measurement results using (2) and (8).

Our computation results show that in the case of small electrode diam-
eter and large gap-size an approximation of higher order improves the
computation accuracy.

It should be pointed out that in the case where in expression (3) the
equality holds, the substitution value of the approximate polynomial (1a)
adopted at the points of measurement equals the measured function value
(M-point Lagrange approximation). It is advisable to densify measurement
points near the interval boundary (x — o).

Summary

The theoretical investigation of periodic electrostatic focusing systems has been called
into existence by the development of microwave valves. The design of open focusing systems
is hampered by lengthy unpractical mathematical computations needed for the exact solution
of Laplace’s equation describing the potential field. This problem may be eased by the combina-
tion of numerical and analytical methods as follows: first the potential distribution in the gap
between the focusing electrodes is determined in an experimental way — by measurements —
and then it is approximated by a “well-fitting” n-order function using some approximation
method. Finally, Laplace’s equation is solved by the help of the resulting boundary condition.
This method permits to determine the focusing conditions of thick electron beams. as it well
describes the field even near the electrodes.
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