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variables of the cylindrical co-ordinate system 

period of the focusing system 
radius of the focusing cylinder 

size of the gap between the focusing electrodes 

electrode voltages 

normalized potential function 

normalized axial potential 

normalized average potential 

coefficient of the (2k + I)-order member of the normalized potential 
function 
first kind zero order modified Bessel function 
coefficient of the n-th member of the Fourier series 
potential function in the gap 
approximated potential function in the gap 

Periodic electrostatic focusing is a well-known method of focusing long 
cylindrical clectron beams "widely used in practice. Some difficulties arise in 
connection with the design of focusing systems since the boundary condition 
of Laplace's equation describing the field in the gap between the electrodes 
is not known. The published solutions [2, 3, 4, 5] all substitute some simple 
function - "comfortable" in computation for the field in the gap. These 
approximations are mostly rough and the arising errors ,.,,-ill tamper "with 
the potential distribution of the field. 

For the theoretical determination of focusing parameters, electron tra­
jectories have to be known for which the potential distribution of the focusing 
field must be given. In the case of thick beams it is indispensable to know 
the field far from the axis. The potential function in the gap between the 
electrodes must be such as to satisfy Laplace's equation both inside the 

* Short description of a research work made at the Department of Theoretical Electricity 
of the Technical University, Budapest with participation of the authors. 
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electrodes (r < ro) and in the filed outside the electrodes (r> ro). As the 
solution of the differential equation is searched for in form of an infinite series, 
meeting the former condition leads to lengthy mathematical computations. The 
problem can be solved by determining the value of the potential function in 
he gap in an experimental way by using a resistance network or electrolytic 
tank analogue. Then the obtained function is approximated. 

The aim of our work is to determine the field distribution of the focusing 
system assuming the potential function in 'the gap to be of order (2K + 1), 
approaching reality rather well. (By an appropriate adoption of the co-ordinate 
system the second-order symmetry can be made a good use of.) 

In Fig. 1 the scheme and the potential function of a simple cylindrical 

r 

z 

p 

x 

Fig. 1. 

periodic electrostatic focusing system are presented, permitting to write the 
normalized potential function of the boundary value: 

K 
~ Cf!Zk+1 ;t2k+1, if O<x<cc (la) 

Cf!(x, ro) - Cf!o = 
k=O cc2k+1 

1, if cc<x<:rr. (lb) 
~ ~ 2 

The condition (lb) is the consequence of the normalization of the potential 
function. For x = cc the conditions (la) and (lb) simultaneously hold. It 
follows that 

K 

~Cf!Zk+l = 1. (2) 
k=O 

Let the coefficients Cf!zk+1 now be regarded as known constants. Their definition 
will follow later. 
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To determine the maximum order of approximation, let us deal 'with 
the number of the points of measurement in the gap. In case of the geometrical 
arrangement shown in Fig. 1 (second and third-order symmetry) the order 
of the approximating function f(x) is limited by the number of measurement 
points available in the gap width c. If the number of measurement points 
is M in the interval c, the follmving relationship holds: 

M>K + 1, (3) 

where K is the superscript in (la). 
If the boundary value is known the solution of Laplace's equation in 

cylindrical co-ordinates is: 

cp(x, r) - CPo = ~ en sin (nx) Io(nr). (4) 
n=l 

The coefficients en are determined by equating the substitutive value of (4) 
at r = ro and the relations (la, b) and considering the orthogonality oftrigono­
metric functions, as well. Defining the en calues the potential distribution 
in the gap ~ill be 

4 = 
CP(x,ro) = fPo + - ~ A(n,K,:r.) sin (2n + 1) x, 

'Tt n=O 

(5) 

where: 

A _ cos (2n + 1)cc 
(n,K,ct)- " 1 

.;::.n + 
K k ( 1)1 
~ '9 ' (2k-L1)! ~ - X 

t=OfP_k .... l I ~ [2(k-/)+1]![(2n+1)ccJ2I+1 

X I sin(2n+1)cc-cccos(2n+1)cc. r 
2(k - I) -L 1 ] 

2n+ 1 
(5a) 

When defining the normalized potential function cp(x, r), getting its approximate 
value of a finite number of members is sufficient. 

After (5) is known the solution of the differential equation becomes: 

4 N Io[(2n + 1)~J 
cp(x, r) = CPo + - ~ A(n,K,,,) [ 9 P J sin (2n + 1) x. 

'Tt n=O 10 (2n + 1(nr
O 

- P 

(6) 

From expression (6) the normalized axial potential <P(x) = cp(x, 0) can be 
given considering 10(0) = 1. 

Expressions derived for a third-order approximation (K = 1) with 
N = 20 have been numerically investigated on a computer. The results have 
been plotted, for example in Fig. 2, showing a 1/4 period of the focusing 
6ystem. The curves in full line are measurement results determined by the 
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resistance network analogue model [11]. The results of linear approximation 
are presented in dash line [2], while the dotted line shows the results of the 
third-order approximation calculated by us. 
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Fig. 2. 

Let us now consider the determination of 'P2k+l' Let f(x) approximate 
F(x) to meet the condition 

J [f(x) - F(x)] dx = O. (7) 

(It is to be noted that f(x) is equivalent to expression (la).) Introducing the 
x 

variable transformation 
IX 

1 

Pl = - I + 4 J F (:J d (:1, (8) 

o 

P3 can be determined by using (2). 

Function F (:) has heen integrated hy Simpson's method. 

Discussion of the results 

The potential distribution of a rotation ally symmetric periodic electro­
static focusing system has been determined assuming an approximation of 
order (2K + 1) in the gap. The results of our computations for a given geo-
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metrical arrangement have been presented through an example. The approxi­
mation discussed is of a special importance if potential distribution is to be 
determined in a field far from the axis. 

The coefficients IPZk+l necessary for the approximation can be determined 
from measurement results using (2) and (8). 

Our computation results show that in the case of small electrode diam­
eter and large gap-size an approximation of higher order improves the 
computation accuracy. 

It should be pointed out that in the case where in expression (3) the 
equality holds, the substitution value of the approximate polynomial (la) 
adopted at the points of measurement equals the measured function value 
(lW-point Lagrange approximation). It is advisable to densify measurement 
points near the interval boundary (x ex). 

Summary 

The theoretical investigation of periodic electrostatic focusing systems has been called 
into existence by the development of microwave valves. The design of open focusing systems 
is hampered by lengthy unpractical mathematical computations needed for the exact solution 
of Laplace's equation describing the potential field. This problem may be eased by the combina­
tion of numerical and analytical methods as follows: first the potential distribution in the gap 
between the focusing electrodes is determined in an experimental way - by measurements -
and then it is approximated by a "well-fitting" n-order function using some approximation 
method. Finally, Laplace's equation is solved by the help of the resulting boundary condition. 
This method permits to determine the focusing conditions of thick electron beams. as it well 
describes the field even near the electrodes. 
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