
A NEW METHOD FOR TRANSFORMATION OF DISCRETE 
TRANSFER FUNCTIONS TO CONTINUOUS ONE 

By 

L. KEVICZKY 

Department of Automation, Technical University, Budapest 

Received September 14, 1976 

Presented by Prof. Dr. F. CSAKI 

1. Introduction 

Nowadays, most computerized id~ntification methods apply discrete 
technique. These methods determine the continuous system parameters in 
two steps. In the first step the parameters of a discrete-time model are esti
mated which ensure a good fit to the input and output signals of the process 
at the sampling instants. In the second step the equivalent continuous system 
has to be computed from the discrete model obtained. In this paper this second 
transformation step is considered for linear time-invariant systems. This 
problem has already been treated by several authors 'with different approaches: 
S~nTH [1], HAYKIN [2], HSIA [3], SINHA [4]. Most of the proposed methods 
involve decomposition into subsystems and the case of multiple poles is out 
of consideration. JEZEK [5] pointed out that the relationships of the equiva
lent transformation are simple to obtain by direct integration of the state 
equations. Following this course, 'well computerizable algorithms of the unit 
step and ramp response transformations are given here by using state descrip
tion forms. These methods can also be applied in case of multiple poles with 
no extra difficulty and there is no need to decompose the discrete-transfer 
function to be transformed into partial-fraction subsystems. 

2. State space approach 

Let us consider a state space description of a single-input single-output 
linear continuous system of the form 

i(t) = Ax(t) + bu(t) 

y(t) = cT x(t) + f3 ou(t) 

(1) 

(2) 

(Here T means the transposition). The solution of the continuous state space 
equations on the sampling interval kh ::;: t -< (k + l)h is 

(k+l)h 

x«k + l)h) = eMx(kh) + S eA«k+l)h-')bu(-r) d-r 
kh 

(3) 



304 L. KEVICZKY 

hence, the integro-difference equation of an equivalent discrete system is 

(k+I)h 

Xk+1 = eAhXk+S eA«k+l);'-T)u(r)drh =eAhXk + Q[u(t),A,h]h. (4) 
kh 

Comparing this latter equation ,dth the state space equations of a discrete
time linear system 

Xk+1 = FXk + gUk 

Yk = cTXk + boulc 

and evaluating the input integral 

(Ic+l)h h 

Q[u( r), A, h] S eA«k+l)h-·)u( T) dT = S e-4.(h-fj)u(kh + {}) d{} 
~ 0 

(5) 

(6) 

(7) 

for a given approximation of the input signal u(t) in the interval kh = t -< 

-< (k + l)h, unambiguous relationships are obtained between the continuous 
and the discrete state space equations by comparing the coefficient matrices, 
assuming the applied approximation to be time-invariant. 

If suitable canonic equations are chosen for comparison then the appli
cation of common notations in the output equations is legitimate. (In this case 
c usually contains no system parameter and the coefficients of u(t) and u!; 
are the same.) Othenvise the change to such a form can be performed by simple 
transformations [6], [7]. 

Comparing (4) and (5) the transformation rule of F is seen to be 

1 
A = -In (F) 

h 
(8) 

independent of the approximation of the input signal. In (F) means a matrix 
function [8] which - among others - can be defined by its matrix power
series and there are relevant computer routines available. The necessary condi
tion of the existence of A is that F has all its eigenvalues inside the unit circle 
(provided negative real roots A cannot he computed). Let us investigate the 
input integral for two kinds of approximations of the input u(t). First let u(t) 
he constant during the whole sampling interval u(kh + {}) "'-J u(kh) = Ulc' this 
assumption being required by the step response equivalent transformation 
[2]. Then 

h 

Q[U(T), A, h] = S e-4.(h-f)ulcd{} 
o 

h 

= u" S eA(h-fj)d{} 
o 

(9) 
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considering eO = I [9]. 
Eq. (4) becomes 

(10) 

and comparing with (5) we get 

1 
h = -In (F) (F - I) -1 g 

h 
(ll) 

Now 
(12) 

Let us approximate the input signal according to a linear interpolation in the 
sampling interval wi.th 

u(klt +fJ) (13) 

which corresponds to the ramp equivalent transformation [2]. No\\'- the input 
integral is 

h 

Q[ u(-r), A, It] ~ S eA(h-/}) [ u" + ---'-''-'--''-l-~ -"- {} 1 d{} 

o 

h h 

= u" S eA(h-l)d{} + Uk+I J: u" S eA(h-/})d{} 

o 0 

After not too complicated calculations we get 

Q[u(r), A, h] ~ A -I(eAh - I) 
I h [A -2(eAil - I) - hA-l]Uk + 

(14) 

, I [A-2( Ah I) I A-I] - Q 'Q (I;) -;- h e - - ~ u"+I - 1 Uk -;- ZU"+I· '-' 

Thus, the integro-difference equation for (3) gives the state equation 

(16) 

Introducing a new state vector 

(17) 
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the Eqs (3) and (4) become 

Xk+1 = FXk + (FQ2 + Ql) bUk 

Yk = cTXk + (CTQ2h + (30) Uk' 

The transformation equation (8) is valid further on, but (11) becomes: 

and 

(18) 

(19) 

(20) 

Both of the above state space transformation methods map the static gain of 
the system 'without error, This can easily be checked by the equation 

3. Computational algorithm 

On the basis of the above state space transformation methods the discrete 
transfer function 

B(_-I) b'b _-1 I I b _-n 
G(z-l) = '" = 0 T 1'" T, " T n'" 

A(_-I) 1 I -1 I I _-n 
J:I. '" T a1z T, " ,. an'" 

(23) 

can be transformed into the equivalent continuous system 

(24) 

according to the folio,ving algorithm: 
1. Let us construct the coefficient matrices of the discrete state equations 

(5), (6), on the basis of coefficients in (23) in the f(\Tm 

-a1 1 0 

-a2 0 1 

F= 

-an- 1 0 0 

-an 0 0 

g= [b 1 - boa!, ' , " bn - boanY 
and 

c = [1, 0, ' , " OY • 

0 

0 

1 

0 

-, 

(25) 

(26) 

(27) 
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2. The change to the continuous state equations is made according to the 
following formulae 

and 

and 

A = ~ln (F) 
h 

b ~ F In(F)(F - I)-'g 

l~ [In (F)]2 (F - I) -2 g 

(step equivalent) 

(ramp equivalent) 

(step equivalent) 

(ramp equivalent) 

(28) 

(29) 

(30) 

3. Then the continuous system given by A and h is transformed into phase 
variable canonic form A * and h* by any standard procedure [6], [7], e.g. by 
the transformation matrix 

[ 

cT 1 cTA 

T= . 

~T An-1 
In the canonic form 

A* = l ~~J-.] 
where 

is the canonic vector. The vector k is given by 

[6], [7], furthermore 
h* = Th. 

(31) 

(32) 

(33) 

(34) 

(35) 

The denominator of H(s) being already available, its numerator is obtained by 

q = [1'1,1'2' •.. , YnF = Ph* = PTh (36) 
where 

[ 1 

0 

n 
CC1 1 000 

P= . (37) 

~n-1 CCn_ 2 
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The coefficients of the numerator of H(s) are 

P; = Yi + PolX;; i = 1, ... , n (38) 

where /3 0 corresponds to (30). 

4. Conclusions 

This study was conducted to determine a state space transformation 
algorithm for computing the step and ramp response equivalent continuous 
system models of identified discrete transfer functions. The suggested trans
formation equations need only the use of a matrix functions and simple matrix 
operations. This approach fits better the state space methods and the trans
formation equations do not depend on the multiplicity of poles. Subroutines 
computing the equivalent continuous system models by this "\vay may be useful 
elements of identification program libraries. 

Summary 

A state space transformation method is given to determine both the step and ramp 
equivalent continuous plant models to a discrete transfer function. The method does not 
require decomposition of the system to partial-fraction subsystems and it suits cases of 
multiple poles. It needs only matrix operations simple to computerize and the method fits 
practical identification tasks. 
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