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Introduction 

The adaptive identification of systems ,."ith time-varying parameters 
and varying environment is often attributed to the extremization of func­
tional 

J*(c, t) = Mx{Q(x, c, t)} (1) 

where the distribution Px(x, t) of function Q(x, c, t) is not known. Here x 
changes according to a random process, c is the vector of unknown parameters 
and t means the time. Unfortunately the functional (1) cannot be used directly 
in most of identification procedures since it is not completely determined. That 
is why in many cases it is empirically estimated. 

Two, most often used approximations: 

1. 
t 

J*(c(t), t) = J w(t, r) Q(x(r), c(t), r) dr, 
o 

(2) 

where the parameter changes are taken into consideration by the weighting 
function w(t, r) [4], [5]. 

t 

2. J*(c(t), t) = J Q(x(r), c(h, r), r) dr, (3) 
o 

where c(h, T) is known except the case h = const [1], [2], [3], [6]. This paper 
is concerned with the determination of weighting function of functional (2). 

The necessity of weighting 

The on-line identification methods based on weighting permit to follow 
the changes of the system· and its environment by gradually changing the 
model parameters. The adaptation is concomitant to forgetting the previous 
data, since their information content is less than that of the actually measure­
ments. 
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To forget may be necessary in the following cases: 
1. If there is no difference between the structure of the system and the 

model, the parameters are constant in time, and the observations are only 
disturbed by random noise, then the weighting is used in order to improve the 
stochastic convergence of the estimation. It is known from the theory of clas­
sical stochastic approximation that in this case weighting series providing for 
stochastic convergence should be applied. 

2. If it is known a priori that the points in a given range are disturbed 
by a greater error then it is reasonable to assign them a lower weight. Here 
weighting means the unification of noise. Here also an a priori known weighting 
matrix may be applied. 

3. In case of time-varying parameters there is a moving target parameter 
vector which the estimated one has to be converged to, i.e. the stochastic con­
vergence becomes meaningless for infinite time. This really means a simple 
servo problem in its general sense. Forgetting means the transport of data 
through filter causing lag and damping in the parameter adaptation. The 
presence of a noise is against the fast adaptation, since in this case the noise 
would also be followed. The stochastic convergence must be provided dinami­
cally. Estimation of the trend of parameter change and of the correlation time 
of noise can be used to determine the speed of forgetting. Necessity of 
forgetting the previous data is seen by the loss of approximation. 

4. The difference of the system and model structure (e.g. in nonlinear 
systems the changes of workpoint) may impose to forget the data deriving 
from the previous environment. Rather than from the loss of approximation 
alone, the necessity of forgetting is also seen by the change of statistical char­
acteristics (expected values, standard deviation) of the input signals. This 
feed forward allows faster adaptation. 

Thus, the difference signal of the forgetting mechanism as an adaptive 
system can be formed according to the above considerations. 

Weighting strategies 

In discrete case the functional (2) is of the form: 

n 

J*(c[n], n) = ~ w(n, k) Q(x[k], ern], k), 
k=O 

(4) 

where w(n, k) is a suitably chosen weighting function. In stationary case 
weighting is made as: 

1 wen, k) =-. 
n 

(5) 
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In identifying time-varying pa,ameters w(n, k) is often chosen as 

n 

w(n, k) = Il d[i] (6) 
i=k+! 

and 

. w(n, n) = 1, 

where d[i] is forgetting {actor at a time i. Such a choice of the weighting func­
tion leads to functional 

J(c[n], n) -,.~J*(c[n], n) (7) 

instead of (4), but the extremums of these two functionals are identical within 
the parameter range. Using-the·forg.etting factor, functional (4) can be writ­
ten as: 

J(c[n], n) = d[n]J(c[n]~ n - 1) + Q(x[n], ern], n). (8) 

Fig. 1 

The exponential, linear, combined block by block weighting can be 
discussed as special cases of the above mentioned general one. 

1. In exponential weighting d[i] = d = const. In the functional. 

n 

J(c[n], n) = ~dn-kQ(x[k]~ ern], k) (9) 
k=! 

the weighting function is a geometric series which corresponds to an exponen­
tial function slope (Fig. 1). 

2. In linear weighting the absolute weight of the n-th and n - I-th 
observations is 

w(n, n) = 1 and 

2 Periodic. Polytechnic. El 20/1 

n+m-l 
w(n - 1, n - 1) = --'---­

n+m 
(10) 
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to be read directly from Fig. 2. Hence the forgetting factor d[n]: 

d[n] = w(n - 1, n -:- 1) 
w(n, n) 

n m-I 

n+m 
(11) 

3. The combined linear weighting is obtained by the recurrent change 
of parameter m of linear weighting (Fig. 3). 

W ,. ... 
1t--------~." 

Wn-1~----------~~ 

n-f n 

Fig. 2 

w 

Fig. 3 

Fig. 4 

4. The block by block weighting may be considered as a marginal case 
of the combined linear one; up to n1 d = 0, else d = 1, i.e. using the interval 
without weighting (Fig. 4). 

The most often applied strategy is the exponential weighting, since its 
algorithm is a very simple and efficient one. 
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Exponential weighting 

Certain estimation problems - assuming multiple input single output 
systems, linear in parameters can be reduced to the mathematical model 

y[n] = fT(x[n]}c[n] (12) 

where x is the input vector,y is the oti~put and c is the ti,me dependent pa­
rameter vector to be identified. The input and output signals of the syste~ can 
be measured with perturbances ; and rj, respectively. Fig. 5 shows the identi­
fication model. 

J 

Fig. 5 

In order to simplify the notations, a linear model is used and the sub­
scripts of vectors and matrices refer to time, e.g. f(x[n]) = xn • 

The functional (4) with exponential forgetting and loss function Qn = 

= (y - y)2 is used for identification. In matrix from 

(13) 

where Yn is an (n X 1) column vector, its components are yU], Xn is an (n X m) 
matrix with elements Xj" = x"U], W n is an (n X n) diagonal matrix with ele­
ments Wjj = dn

-
j
, where 0 < d < 1. The unknown vector Cn is obtained from 

the extremum of this functional: 

(14) 

The parameter vector can be evaluated recursively using the well-known 
identities of matrix partition 

(15) 

2* 
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where the convergence matrix, optimalin quadratic sense is: 

(16) 

In regression analysis the determination of parameter d may be difficult. 
In several systems the parameters change slowly. Hence the trend of 

coefficients in a given interval' can be considered 18 linear: 

Cn = ex + n!3 (17) 

where ex is the value of Cn at the start and !3 is the measure of parameter change. 
In case of linear trend, Eq. (14) becomes: 

according to notations in Fig. 5, where An is an (n X n) diagonal matrix "\\-ith 
elements ajj = j, En is an (nx m) matrix with ~jk = ~k[j] and 'tJn is an (n Xl) 
column vector, whose components are "I][j]. It is obvious that the goodness of 
the estimation particularly depends on the choice of parameter d. In order to 
determine the optimal d the influence of the forgetting factor on the statistical 
features of the estimation should be investigated. 

Further on let us consider the follo"\\-ing conditions: the output noise has 
zero mean (M{"IJ[jJ} = 0), finite variance (M{"IJ2UJ} = O"~ < 00) and is uncor­
related (1VI{"IJ[j] "I][kl) = 0). The same is true for the input noise, i.e. M{~p[j]} = 

= 0, M{~~rj]} = O"~;< 00, M{~~[jHp[k]} = O. In addition, the input signals 
are assumed to be independent with zero mean and finite. variance. 

Under these conditions the expected value of the parameters can be 
described as: 

(19) 

where O"x" is the variance of the p-th input variable. 
Eq. (19) shows that in general case the estimation will be biased. The 

bias depends on the input noise and the trend of parameters. The decrease of 
variance of input noise reduces the estimation error. The error caused by the 
trend of parameter depends in particular on the rate of parameter change and 
on the forgetting factor. If there is no input noise and d = 1, then the bias of 
parameters is: -fJp(n - 1)/2. If the forgetting factor tends to zero, then the 
expected parameter value converges to the true value. 
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But the expectation is not the only feature of the estimation. Its quality 
may be suitably described by the minimization of the trace of the covariance 
matrix: 

(20) 

Unfortunately its simplification for practical use comes up against difficulties 
even in linear case. This is why computer. simulation is applied to determine 
the optimum value of the weighting factor d. 

Results of the simulation investigations 

The on-line least-squares algorithm combined with exponential weighting, 
discussed in the pre"ious section, has been investigated for a complete second­
order form. The algorithm was programmed for digital computer and examined 
for various parameter changes. The program realized the relationships (15) 
and (16). A few examples will be presented to illustrate the result. The initial 
values were Ro = 1000 I and Co = O. 

The following sums of square errors served as measure for the goodness 
of identification: 

for the parameters: 

(21) 

for the goodness of estimation of y in the i-th period: 

(22) 

and for the average deviation: 

(23-) 

n being the number of steps in one period and p the number of periods. 
In the investigations presented here the number of iterations was 400. 

In linear case the length of a running up or down took 100 steps. In the figures 
and tables the type of parameter change, their minimum and maximum values 
separated by -7- are also indicated. 

The simulations show the estimation to depend on the rise of parameter 
change, the noise level, the variance of the input vector, the number of input 
variables and observations. 
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Fig. 7 
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ij = 3D - 2D exp (-n/50)+ 4x + x2 
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Figs 6 and 7 show the results of parameter adaptation performed with 
exponential weighting and without weighting. Tests showed the quality func­
tion to have an extremum as a function of forgetting factor (Figs 8 and 9). 
The convergence of the estimation depends on the size of parameter change. 
Increasing the size, for linear and sine parameter change Figs 10 and 11 show 
the value of optimum forgetting factor to necrease. In Table I the values Sy 

Table I 

T 8y 8<0 

100 64.2 2.87 

200 2.47 0.200 

400 0.442 0.0527 

800 0.238 0.00484 
I 

Y = 20-10 cos (0.0314t) -+ 4x -i- x2 
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are presented as a function of period time for sine-varying parameters and 
d = 0.6. Fig. 12 shows the function Sy{d) for parameter changes of various 
types. Increasing the output noise, the optimal forgetting factor increases 
(Table H). Goodness of the estimation also depends on the variance of the input 
vector (Table HI). Increasing the number of parameters, the optimal forgetting 
factor increases. These facts are easy to explain because the decrease of for­
getting factor means to "reduce" the number of data used in the estimation. 
Thus, for a forgetting factor d = 0.2 the weight of the 5-th observation is 
0.24 = 0.0016. 

Table 11 

~dl 
ON -----I 0.4 0.6 0.8 

I 

0 
I 

0.412 0.478 0.924 

I 
1.012 8.129 18.51 

10 
I 

551.3 155.9 4968 

Y = 10 + (4";-64)x + x% 
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Table fiI 

~I 0.4 0.6 

1 

10 

0.412 

569 

0.478 

749 

y = 10 + (4-;'-64)x + x 2 

0.8 

0.924 

1861 

The increase of dynamic sum of squares indicates the parameter change. 
This fact is also of use for determining the optimal forgetting strategy where 
the increase of the functional without weighting can he used as a difference 
signal. 

Summary 

The identification of systems with time-varying parameters is often attributed to the 
extremization of functional 

t 
J(c(t), t) .r w(!, 7") Q(X(T), cC!), T) dT , 

o 

where the weighting function wet, T) taken into account the parameter changes. This paper 
deals with the choice of weighting function wet, T), and ,~ith the statistical investigation of 
the estimation and shows the efficieney of the exponential weighting by computer simulation. 
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