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Summary 

The calculation of the warming of transformers aims at determining the place and 
value of the highest operational temperature ("hot-spot" temperature). 

The present study discusses an analytical method for the approximative determination 
of the two-dimensional temperature field in the discs of a given winding by means of matrix 
equations in the case of boundary conditions of the 3rd kind. 

Introduction 

The increasing power of transformer units makes the problems of 
operational safety and useful life more and more important. As a consequence, 
the calculation of the warming of transformers requires higher and higher 
accuracy. 

Large oil-transformers are built 'with layer-type or 'with disc-type 
,vindings. 

In recent years several papers of ALLEN and PREINIl'iGEROVA [1,2, 3] 
discussed analytical methods for the calculation of the warming of layer­
type ·windings. Similar prohlems have heen dealt 'with also hy PIVRNEC 

and HAVLICEK [4, 5]. 
A method for the calculation of the 'warming of disc-type 'windings 

has heen elaborated hy KISS [6]. 
The calculation of the warming of layer-type coils can be based par-

ticularly in the case of forced convective cooling (OF) - on from certain 
view-points simpler model conditions (known average oil-speed, laminar flow, 
constant heat flow density on the surface of the ;vinding). 

With disc-type coils, the modelling of the thermal ambiency of the 
winding discs raises a considerably harder problem, since the houndary 
conditions of the 2nd kind cannot be applied (i.e. there is no uniform heat 
flow density on the surface), further no uniform internal heat source intensity 
can be assumed, and also the heat transfer conditions on the vertical and 
horizontal heat transferring surfaces of the ,\inding discs are different [7]. 
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For the calculation of the steady-state warming of disc-type transformers 
the possibility of modelling hoth with distrihuted and lumped parameters 
has heen examined [8]. 

Our study discusses a two-dimensional calculation method hased on 
the description 1Vith distrihuted parameters. 

Hypotheses and model assumptions 

Ohject of the examination is the - usually uppermost hut one - winding 
disc. exposed to thermally critical loading. 

The term "1Vinding disc" means a part of the coil consisting of turns 
wound on each other and hounded hy oil channels. 

Fig. 1. The design of the winding disc and the main notations 

The examination is hased on the follo1Ving hypotheses: 
(1) The glohal material and energy halance relative to the whole trans­

former is not essentially influenced hy a single disc (e.g. the one at the critical 
place). 

(2) Follo1Ving from (1), in steady state the amhiency of the disc is 
invariant, and the forced mass flow 0 m around it can he regarded as a deter­
mined value. 

(3) The oil stream 0 m as well as the geometry and the operational 
parameters heing known, a mixed average "amhient" temperature tw = tom 

and a distrihution of the heat transfer coefficient can he considered to he 
determined (oc = oc(x,y)). 

The simplifying model conditions permitting an analytical description 
are as follows: 

a) The ohlong profile of the disc (Fig. 1) is regularly filled up hy the 
conductors and the insulation. 

b) The disc is of an inhomogeneous structure. In the directions of x 
and y, however. the general relationships allo'w the heat transfer coefficient 
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to be interpreted as constant and equivalent [9]. Therefore the disc is replaced 
by a homogeneous material -with the anisotropy corresponding to the values 

).x and )'Y' respectively. 
c) On the disc surfaces opposite to each other the heat transfer con­

ditions are identical in the directions of x and y, resp. 
d) As a first approximation, the internal heat source distribution fhb 

is assumed to be symmetrical to the centre-lines of the disc, and so the centre­
lines are at the same time the symmetry axes of the temperature distribution. 

!i' 
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Fig. 2. A quarter of the winding disc as a space part under examination, with the conditions 
of calculation 

e) From assumptions c) and d) follows that the temperature distribution 
is symmetrical in the disc, the maximum temperature arises at x = 0 and 
y = 0, and along the symmetry axes (x = 0 and y = 0) the boundary con­
dition of the Oth kind is valid: 

- = 0, (qx = 0); ( ot )' 
ox x=o 

and ( ot ) = 0, (qy = 0) . 
,ay y=o 

(1) 

(2) 

f) All this allows the examination to be restricted to one quarter of 
the "winding disc. In Fig. 2 the space part examined and the boundary con­
ditions mentioned are seen. 

The tasks to be solved are as follows: 
1. Determine the temperature [rnax = t (0, k) 

n. Determine the heat flux density distribution in the plane of y = 0 
1 2 

(or at least the values of the surface heat density at x = 0, x = - ,x = -
3 3 

at 
and x = 1), required to determine the surface distribution - in accordance 

ay 
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Procedure of the solution 

(3) 

The solution was built up on the superposition principle, going from 
simpler assumptions towards those satisfying more and more complicated 
assumptions. The main steps of the solution are as follows: 

In the case of fhl) = 0 and I. = I,x = J.y the differential equation to be 
solved is homogeneous: 

o (4 ) 

The second step consists in solving the homogeneous equation valid in the 

case ofAx = ;'y: 

(5) 

and in generalizing the solution. 
Further steps are the consideration of the internal heat source, the 

solution of the inhomogeneous equation, then the coupling of the homogeneous 
and inhomogeneous partial problems. 

At last we examine the possihility of taking into consideration the 
internal heat source excess arising as an effect of the stray flux. 

Solution of the homogeneous equation 

Examine the solution of Eq. (4) for the space part according to Fig. 2, 
,·tith the de'dation in the boundary conditions that in the plane of )" = 0 
the heat distribution is provisorily regarded as given (boundary condition 
of the 1st kind). Let the distribution he given through the temperatures 
of the follo"\V-ing foul' points: 

t (0, 0) = t1, 

t l ~ 1, 0) = t2 , 

t ( ~ 1,0) = t3 , 

(6) 

t (1, 0) = t4 

At any intermediate place x the temperature is calculated from the ahove 
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four values by an interpolation polynome of the 4th degree: 

(7) 

In the polynome there is no member of the first degree since, according to (1), 

(::L=o = O. 

Write the linear relationship between the constants Cl" ,c4 and the 
temperatures t l •• • t4 by using the matrix equation: 

t = Xc (8) 
where 

In c= l ;~ ] (9), (10) 

are formal vectors, while matrix X is as follows: 

[ f 

ry xr 
xl ] 

Xi 
9 

x~ X4 x= Xii 2 

X2 x~ x: 3 

X~ ~ X4 
4 

(11) 

Since the determinant of matrix X (the so-called Wandermonde type deter­
minant) is non-zero, the equation 

c=X-lt (12) 

is well-defined, and c can be produced a linear combination of the co-ordinates 
of t. The required temperature t(O,k) and the derivatives can, as a first step 
be expressed by means of the components of c. 

The solution of Eq. (4) for the space part considered, with the boundary 
conditions discussed, will be as follows [10]: 

= 2 [ ( ~.5 r p~ J cos ,3nx . ch(Jn (k- y) 
t(x,)') = .:2 -~-----=---

ll=l Up;, + ( ~.5 n . l + ~.5 } • ch ,3nk 

I r t (x,O) cos p"x d x 
ii 

(13) 

where the values for ,3n (n = 1,2, ... ) will be given by the positive roots 
of the trigonometric equation 

G(;-
13 tg pl = -::- . (14) 

i. 

2 Periodica Polytechcica EL ~0/2 
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After substituting the function t(x,O) from relationship (7), then per­
forming the integration and arranging the result according to the components 
of vector c one obtains the following equation: 

t(x,y) = ~ 
n=l 

{(Sin 

2 [ (-T r + p~J cos Pnx . ch Pn (k-y) 

Pn {[p~ + ( ;5 fJ I + ~} ch Pn k 

+ (12P~ - 2 sin Pn1 21 cos Pn1) C2 + P~ Pn (15) 

+ n sin R I + . n cos R 1 - C I 
(

0 zap2 _ 61 3Z2p2 - 6 6 ) 
P~ Vn P~ Vn P~ s T 

+ ( 14P~ - 12Z2p~ + 24 . RI -L 4zap~ - 24 R z) } 
P~ sm Vn: P~ cos Vn c4 

The substitutions x = ° and Y = k from the solution (15) will give 
at 

the temperature at the point required. From (15) the values of - are formed 
ay 

to determine the heat flow densities arising at the points of temperature 

'1' .. . t4 • 

The derivatives in the direction Y are produced from four temperatures 
each, by deriving the interpolation polynomes ,."ith variable Y fitted to the 
temperature, - essentially as a fixed combination of the four temperatures. 
The basic points for the polynome of the temperature change of direction 
Y have been chosen in all places x as points with the co-ordinatesYl = 0, 
Y2 = 0,1 k, Ya = 0, 2 k and Y4 = k. 

Using the interpolar polynome of Lagrange, a third degree polynome 
can be fitted to the four basic points: 

(y - Yz) (y - Ys) (y - Y4) 
t(x,y) = t(x, Yl) + 

(Yl - Yz) (Yl - Ys) (Yl - Y4) 

+ (y - Yl) (y - Ys) (y - Y4) t(x, Y2) + 
(Y2 - Y1) (yz - Ya) (Y2 - Y4) 

+ (y - Yl) (y - Y2) (y Y4) t(x,ys) + 
(Ys - Y1) (ys - Y2) (Ys - Y4) 

+ (y - Yl)(Y - Y2) (y - Ys) t(X'Y4)' 
(Y4 Y1) (Y4 - Y2) (Y4 - Ya) 

(16) 
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The derivative of this function at Y = 0 will be: 

( 
at(x, Y») = ~ [_ 16 t(X'Yl) + 22,2 t(X'Y2) -

ay y=O k 

- 6,25 t(X'Y3) + 0,027 t(X'Y4)] . 
(17) 

By substituting the values of t(x,y) calculated from Eq. (15) into (17) 
one can determine the partial derivative of the surface, further, according 
to (3), the required heat flow densities of the surface. 

The solution of Eq. (5). 

The difference between heat transfer coefficients in directions x and Y 
(Ax # Ay) is taken into consideration in Eq. (5). By the introduction of 
generalized (dimensionless) variable8 the equation can be reduced to the 
form (4). 

By introducing the transformation 

x = Cl (18) 

and repeatedly applying the rules of differentiation, Eq. (5) will have the 
following form: 

(19) 

Let the notion of the Carlslow number (Ca) be introduced in honour 
of the author of reference work [10]: 

By this, Eq. (19) transforms into (4): 

in which 0 :S C < 1 

o :S Ca :S - ~ = Cao . kV-
1 Ay 

(20) 

(21) 

(22) 

(23) 

On the heat-insulated borders as well as on the borders characterized 

2* 
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CC. 

I 
8t _,/'I 

aCa -v 

J 

~ b~~ J=3 o~: C" 
)=2 g 1 Cao , 
)=1 

1/3 2/3 1,0 
;.-

D " 
H £-2 1=3 i= !r-

Cl tz 4J ~ !... 

Cl, 92 iJs g~ 

Fig. 3. Formulation of the task with the introduction of dimensionless variables 

by the temperature function, the transformation does not cause any change. 
On the lateral face of x = 1 the houndary condition of the 3rd kind 

can be written, considering (18), also in the form 

ex-I 
where Bi = -t . 

x 

-~= Bi. t. ac 

(24) 

(25) 

With the respective boundary conditions (Fig. 3), and taking the 
transformations into account, the solution of Eq. (21), >v-ith due regard 
to (15), is to be 'YTitten by means of the follo,~-ing vector equation: 

where the elements of the serial Yector a X are: 

sin (27) 

(28) 

;~). (29) 

- 24 cos f3n'). (30) 
I~~ . 
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In the relationships 

(31) 

and the values of f3n (n = 1,2, ... ) are the positive roots of the trigonometric 
equation 

/:1 tg f3 = Bi . (32) 

The temperature vector valid in the symmetry plane of Ca = Cao (the 
first element being the maximum temperature to be found): 

(33) 

The elements of matrix A are formed by the co-ordinates of the serial 
vector aX interpreted in Eq. (26): 

A= 

(34) 

Since on the houndary surface Ca = 0, the superficial temperature 
vectOl" (6) has been considered to he known it will be expedient to go over 
from vector c to the vectOl" of the sm·face temperature 

!= 

(35) 

By going over from vector c to vector t one can determine the temper­
ature vectol' t SUP (supremum) in the symmetry plane Ca = Cao: 

tSUP = 

r t(:l' Ca o) 

1 

= A 1;-1 . t 

t(~2' Cao) (36) 

l t(C3, Ca 0) 
t(~.l' Cao) 
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where ~ is the equivalent of matrix X according to (11), with the proper 

substitution of Xi = 'I . 
Let henceforth the matrix H mean the sequence A ~-l: 

H = A~-l. (37) 

Express now the vector of the surface heat flow density by means of 
vector t, using Eqs. (17) and (8) (details of the operation are omitted): 

(38) 

where matrix TQ serving for the calculation of vector q, on the basis of vector 
t, can be interpreted according to (17): 

1 . 
TQ = - (-16 E + 22,2 D 6,25 C + 0,027 P) 

Cao 
(39) 

in which 
E= (40ja) 

D= 
(40jb) 

C= 
(40/c) 

:8= 
(40/d) 

Considering Eqs. (40/a), (26) and (12), it becomes evident that the identity 

t = Et (41) 

must hold true, i.e. E is necessarily a unit matrix. 
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During the numerical calculations these facts make it possible to get 
evidence about the quality of the choice of the summing limit marked M 
in Equ. (27) ... (31), i.e. to conclude to the relative error of the convergence 
on the basis of the individual deviation of the elements E from the elements 
of the unit matrix. 

Solution of the inhomogeneous problem 

In the winding disc there is an internal heat source of intensity fhb' 
With adaptation to the above mentioned calculating method, and to simplify 
the calculation, the intensity of the internal heat source is given by a step 
function. A safety error will arise if the higher temperature is taken into 
account along every step: 

fhb(t) = I fhO(l + f30 tiUP), if Xl :::;;: X ::;;: x.z• 
fhO(l + f30 t~UP), if X 2 < X ::;;: x3• 

fhO(l + f30 t~UP), if X3 < X ::;;: X4 

(42) 

where Po is the temperature coefficient of the specific electrical resistance, 
and fhO the intensity of the internal heat source at temperature two The tem­
peratures tSUP in the relationship mean those arising in the plane of y = k 
of the winding disc. Thus the temperature changes of direction y will be 
disregarded, the partial problem will be of one dimension, the equation to 
be solved will be: 

(43) 

and the boundary condition will be according to (24). 
The differential equation is linear, and the internal heat source described 

by the step function can be given by a vector according to (42). Consequently, 
there must exist such a linear operator which produces the vector I of the 
steady state temperature from the known heat source vector. Using Equ. (42), 
writing the known solution of differential equation (43), with the use of 
transformation according to (18) and the notations of (25jb), after arranging, 
and omitting the details of calculation, one obtains the following matrix 
equation: 

(44) 
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('3 - C2) 11 

C9)~ 
- Bi 

(1 - C3) (1 - C3 1 J' 

2 Bi 

-. o 

(1 C3) (1 C3 + ~l 0 
,2 Bi) 

(1 C3) (1 2 C
3 + ~J 0 

(1 - C3 ) ~i 0 -l 

and rI° means the temperature generated by the internal source part belonging 
to the temperature 0 QC: 

10 i' [2 r 1 1 
t = J IlO • -}- -B. co 

.X L L. 

1 1 

1 

Bi 

1 

LBi 

2 

-. 
I 
i 

r2 

I "'2 

Discussion of the partial solutions 

(46) 

The solution of the whole problem will be produced by joining the 
homogeneous and inhomogeneous partial prohlems, in the first step for the 
case oftw = O. Expressing the vectOT of the surface temperature from Eq. (38): 

--- (TQ)-l . q (47) 

adding to it, as the solution of the homogeneous problem, the temperature 
vector given by (44) as the solution of the inhomogeneous problem, and 
denoting the sum again hy t, the following relationship "will he obtained: 

1 , "0 t = - (TQ)-l q -L i' 9 FT tSUP -'- tJ • 

1/) , I J 01 0 I 
'X J.y 

(48) 

The above equation yields a relationship bet"ween the unknown values 
of the surface temperature vector t, the heat density vector q, the temperature 
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vector t SUP of the symmetry plane and a kno,vil characteristic: the temperature 
vector tl° calculated by the use of an internal heat source belonging to the 
constant temperature. 

The three unknown Tequire two further equations. One of the two ,vill 
be obtained by "writing the boundary condition of the 3rd kind given on 
the plane of the equation :y = 0 (see Fig. 2). Considering that tIV = 0, the 
superficial heat flow density and the temperature vector can be related by 
the matrix equation: 

o 

o 
o 

o 
o 
!X3 

o 

o 
o 
o 

(49) 

At last the relationship required between the vectors of the superficial 
temperature and of the maximum temperature is given by Eq. (36). 

Substituting Equ. (36) and (49) into (4.8) and expressing the vector 
tSliP of the unknown maximum temperature, one gets 

t SUP = R . A . l;-l tlO (50) 
where 

(51) 

The maximum coil-temperature requiTed will he obtained as the first 
co-ordinate of the temper2..ture vector t SuP . If t .' 0, then the value of tIV 

must be added to the temperatures obtained fTom Equ. (50). 

Accounting the excess of the internal heat source arising on the effect of stray fluxes 

The heat source excess a:rising upon the effect of st:ray fluxes is not 
uniformly distributed and not symmetrical to the centre line of the 'winding, 
but it is stronger near the dispersion channel. As a consequence, conditions 
d) and c) of our describing model are not fulfilled for the heat source excess 
arising from the dispersed flux. 

Giving up the symmetrical pi.ctme of distribution, a fair approximative 
solution can be deduced by the application of superposition, though the 
mathematical description of the problem is considerably more complicated [8]. 
To ohviate the difficulties of the mathematical description one can use the 
simplification of evenly dividing the heat flo"w, arising from the internal 
heat somce as an effect of the stray flux, to the original heat source distri­
bution in the disc, i.e. the value of fho ,\ill be proportionally increased. This 
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way the model descrihed can he used without any change. The error made 
with this method is the residuum of two opposite effects: the transfer of a 
part of the excess heat source into the centre plane of the disc presumahly 
increases the value of tmax, hut the uniform distrihution of the excess source 
decreases it. Considering that in the winding disc, according to our principles, 
the unevenness in the distribution of the internal heat source is within 6 
per cent of the average value [6], the mentioned error of approximation in 
t wax usually amounts to a few per cent. 
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