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Introduction

In electrodynamics, as known, various physical phenomena can be
discussed by identical mathematical methods. By introducing scalar potential,
static electric and magnetic fields, and the stationary flow field are calculated
by solving the same differential equation. The knowledge of the suitable
boundary conditions is also mecessary for the solution. In simple cases
boundary conditions are Dirichlet or Neumann type. In various cases boundary
conditions are Dirichlet type on a part of the surface forming the boundary
of the examined region, and Neumann type on other parts of it. This kind
of boundary conditions is termed the mixed-type boundary condition. The
boundary condition of static fields is mixed type e.g. in the case that the
boundary of the examined region is formed by electrodes and by surfaces
parallel with electric lines of force.

In the case of stationary current flow the examination of a part of
the region of finite conductivity, bounded by electirode surfaces and ideal
insulation material, leads to similar boundary conditions.

For the case of homogeneous, isotropic media, variational methods
valid for various types of boundary conditions are found in the literature [3],
[4], [7]. In this paper the variational calculation will be applied for cases of
inhomogeneous, anisotropic, linear media where the boundary condition is
mixed type. Elements of the iensor characterizing the material depend on
space co-ordinates. On account of space dependence of material characteristics,
the partial differential equation of the potential function is not the usual
Laplace equation. The method to be described is suited also for the solution
of problems where the medium is homogeneous in subregions. In this case
the material characteristicis not a continuous function, This case is discussed
separately in this paper.

* Undergraduates of electrical engineering.
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The main point of the elaborated methed is that both the Maxwell
equaticns and the boundary conditions are satisfied in the case of the zero
variation of the functional, written in accordance with variation principles
for the potential function. connrected with the energy of the examined region,
or with dissipated power in the case of stationary flow field.

The numerical approximaticn method of Ritz and Galyerkin, permits
the use of a digital computer. Several nunierical and programming problems
arise in this conmection, the description of these, however, is not subject
of the present paper.

For demonstration purposes numerical examples are also presented.

Inhemoegeneous, anisotropic medium

The solution method is described for the electrostatic field, since this
can be formally applied. on the basis of known analogies, alse for static
magnetic and stationary flow fields.

The solution of Maxwell equations valid in electrostaties, by introducing
scalar potential @, results in solving the partial differential equation

div (e grad ¢) = 0. 1)

The boundary conditions are
#(S;) = @ (2)
nt egrad gfs, =0 (3)

where € is the permittivity tensor of the inhomogen
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the surface parts bounding the examined region where the potential value
corresponds to the prescribed function @s;. while S, those where the norma
component of the displacemment vector is zerc; n is the normeal unit vector

the transpose (¥ig. 1).

In the knowledge of scalar potential. intensity of electric field and
1

displacement vector can be calculated.
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Eq. (1) to be solved will be the usual Laplace equation in the case of
homogeneous isotropic medium (eis a scalar value independent of co-ordinates).
In the case of inhemogeneous, anisotropic medium (e is a temsor with co-
ordinates dependent elements), however, the first derivatives of potential
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also ocecur in the differential equation. Hence, the methods known for the
solution of the Laplace equation cannot be applied.

According to boundary conditions (2) and (3), on one part of the surface
bounding the examined region, the potential function is given, while on other
parts the normal component of the displacement vector must be zero. This
problem belongs to the group of mixed-type boundary conditions.

Sp /

1

Fy
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As known, if the Maxwell equations and the given boundary conditions
are satisfied, the energy of the electric or magnetic field has a minimum
value, by virtue of Thomson’s theorem. Therefore if a functional can be
found for the potential function which gives the energy of the examined
region if the boundary conditions are satisfied, at its minimum both the
Maxwell equations and the boundary conditions are satisfied. It can be
proved that the functional

Wg) = —%—JUA [grad ¢+ € grad ¢] dV - Uﬁ[(@sl — g)nt e grad q,’»] .48, (6)
v S

of energy character has these characteristics. Namely the first member of

layer which is arranged on surface S; and has the moment v = (D5 — @)e.
It should be noted that in the general interpretation, functional (6) has not
an extremal but a stationary function. Nevertheless, in the following the
expression of the extreme or minimum value of the functional will be used
in place of the stationary function. In the course of calculations, namely,
exclusively the fact that the first variation is zero will be used.
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It will be tried to find the minimum of functional (6) by using variational
calculation. It will be proven that an extreme (minimum) value can arise
only if Maxwell equations (1) and boundary conditions (2) and (3) are satisfied
simultaneously. According to variational calculation, the necessary condition
of the existence of a minimum is

5 Wig) = 0. (1)

where ¢ denotes the first variation. From the first variation of functional (6):

o W(p) =——fjj[ grad 1+ e grad ¢ + grad ¢t e grad 4] dV +

(8)
JJ[—;, ntegrad ¢ + (@5, — ¢) n* e grad ] dS = 0,

S;

where 7 is an arbitrary, continuously derivable function. Supposing that
tensor € is symmetrical (according to [5]), further using the relationship:

div (7 € grad ¢) = n div (e grad ¢) + grad ¢” egrad ¢ , 9

and applying the Gauss theorem, the first variation can be written in the
following form:

jjj [7 div (e grad ¢)] AV + §§ [7m* € grad ) dS +

+JS{— nn*egradg + (O5; — @) nt egrad g dS =0, (10)

where S denotes the closed surface bounding volume V. Taking into consid-
eration that:

§§ [nnt € grad ¢) S = J;,j [7m* e grad ¢] dS + (11)
4+ jf [nn+ e grad ¢] dS,
S
expression (10) can be reduced:
W(p) = — jjj[dn (e grad )] dV + jj [(@s, — ¢) n* € grad 5] dS +

12
—}—v{sé‘[nn“*egrad(p]dS:O. (12)

Since 7 and grad 7 are arbitrary functions which are not identically zero at
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the boundary of the region, therefore independently of funetion 7, (12) can
be zero if and only if the equations

div (e grad ) = 0, (13)
?(S) = Ps; » (14)

and
nt egrad gfss = 0 (15)

are satisfied. Among these, (13) is the differential equation to be solved,
(14) and (15) are boundary conditions. We have herewith proved that looking
for the extremal value of functional (6) is equivalent to solving the Maxwell
equations with the given boundary conditions.

Similar relationships can be obtained in the case of two-dimensional
problems, in place of the volume integral, however, the surface integral along
the planar section is figuring, further in place of the surface integral the
integral along the curve bounding the plane region. In this case the normal
vector is the normal of the curve, with positive direction indicating outwards.

Cousideratior of material characteristics continuous in subregions

In our calculations no restriction has so far been made regarding
continuity of functions. According to physical considerations, potential
function should be continuous, except where there is also a double layer
in the examined region. This case, however, will not be discussed. But tensor
€ may have a break in function of the place co-ordinates. A special case
is the medium having constant permittivity in subregions. It can be followed
up in the proof of the solution by the variational method that in such a case
the previous method can be applied, with the exclusion of break places.
Exclusion of break places means the decomposition of integrals to regions
where elements of tensor ¢ are continuous. It should be noted that in this
case, if potential function is looked for in the set of continuously derivable
functions, the solution will only be approximative since the derivative of
the potential has a break. Selecting a suitable approximation method, the
approximation is converging to the exact solution by ‘“rounding off” the
break point. It is advisable, however, to elaborate a method taking into
consideration also the break of the derivative of the potential function.

Suppose to exist in the examined region, either side of surface S; inho-
mogeneous anisotropic media of permittivities €,, and ¢, (Fig. 2).

In symbols of surfaces bounding the subregion, the first subscript
denotes the number of the subregion. The second subscript is 1 if it denotes
a surface along which potential has a prescribed value, and 2 for a surface
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Fig. 2

with zero displacement vector along. Try to find the solution of the Maxwell
equations in subregion 1 by using potential function ¢,, while in subregion
2 by using potential function ¢,. Functions ¢, and @, have to satisfy the
Maxwell equations and the boundary conditions. These are given as follows:

div (e; grad ¢y) = 0, (16)

div (ey grad g) = 0, (17

¢1(Sn) = Pspy- (18)

ilf €1 grad (Fl/Sx: =0 > (19)

ng € grad gofs,, = 0, (21)

#1(S5) = @a{S3) (22)

ny & grad gyfs, + n3 e grad gofs, = 0. (23)

(16) and (17) are partial differential equations originating from the Maxwell
equations. Conditions (18), (19), (20), (21) depend on whether the surface
bounding the subregion is electrode or force line. Condition (22) specifies
that the potential function is continuous along surface S;. (23) specifies the
continuity of the normal component of the displacement vector.

The solution of Eqs. (16) to (23) will be proven to be equivalent to
the minimization of the functionals W,(g,.0,) and Wy(p.p,) with respect to
functions @, and g,, respectively.

i 1 - . o A
Wilgss 02 = 5 || | laxed o ey grad ] 4V | | [P -
T “Sa (24)
— @) ny g grad ¢, - dS + % Jj [(@2 — ;) 0] €; grad g, + 07 € grad @, dS:

s
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1 ,
Wo@:: @) = 5 Hf [grad @5 €, grad @,] dV

j J [(@su — 92) ni € grad ;] dS + (25)

s!l

1 .
+ Y H[(% — @2) 15 € grad @, + poni € grad ;) dS.

W, and W, are energies of subregions 1 and 2, respectively. This is understood
for W, as follows. A double layer of moment ¢(@g, — ¢,) is arranged on
surface S;;, and that of moment €@, — @) on surface S;. Beyond this, a
surface charge of nje, grad @, occurs on surface S;. Functional W, contains
surface energy, the energy of the supposed double layer and of the surface
charge. Energy of subregion 2 can be interpreted similarly. Since in sub-
region 1 function ¢, is the potential function and the solution] should be
satisfied in the case of various functions ¢,, therefore the necessary condition
of 2 minimum of W, is that its first variation with respect to @, should be
zero, independent of ¢,. Similarly in subregion 2, the first variation of
functional W, should be zero, independently of ¢,. Accordingly the necessary
condition of the minimum is given by

Wipupe) = 0, (26)
S Wo(prspa) = 0, (27)

where §; denotes the first variation with respect to ¢;, and 6, that with respect
to @,. Form these variations:

SW, = H[grad n* € grad g,] AV + ﬁ —nie, grad o, +
sll
(@Su — @) n{ € grad n)dS +

| . | 28
+77H[“nnf e grad ¢, + (g2 — @) ni € grad 1 + =)
+ nj € grad ¢;)dS = 0,
85, Wy = J j [grad £+ ¢, grad p,] dV -
+ [[tnt cgraapras+ J J(@sx— g e grad £] a5 + |
Su 5. (29)
1
—+ ?Jj [—&n; e grad ¢, (¢, — @) nf € grad £ +
Ss

+ én+ e grad ¢,1dS = 0,

3 Periodica Polytechnica EL 20/2
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where 7 and ¢ are arbitrary, continuously derivable functions. Performing
the suitable transformations and reductions, necessary conditions of the
existence of the minimum are:

5, = — f f [ div(e, grad @)] AV +
V'l

n f j [(@sn — ¢2) nf & grad 7] dS + f [1m €, grad g, dS] +
Sll slﬂ

(30)
1 ,
-+ —2-—H [(p2 — @) n{ € grad 5 +
Sz
-+ n(n¥ e, grad ¢, + n* e; grad g,)] dS = 0,
5,y — — J J J [ div (e, grad g,)]dV +
Vs
+ ij(@sm—~ g2)nf € grad ¢ dS +H [tn; & grad g, dS +
Su S (31)

1 +
— f f [(pr — o) 1t e grad £ + E(nf € grad gy +
Ss

+ n e grad )] dS = 0.

For arbitrary functions 7 and &, conditions (30) and (31) can be satisfied only
for integrands of zero value, independently of 7 and £, that is, if conditions

div (e; grad ;) = 0, (32)

D(Su) = ¢x(Sy) » (33)

ri € grad ¢ /S, =0, (34)

91(S5) = @a(Ss) » (35)

ni €, grad ¢/S; + nJ €, grad ¢,/S; = 0, (36)
are satisfied for all functions ¢,, and conditions

div (e, grad ¢,) = 0, (37)

Do = @2(Sy) (38)

ni e, grad g5/S, = 0, (39)

P4S) = #(S9) (40)

ni € grad ¢,/S; + ng €, grad @p/S; = 0, (41)

are satisfied for all functions ¢,. These are identical with Eqs (16) to (26).
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Accordingly, in the case of a dielectric medium continuous in subregions,
potential function ¢, valid for subregion 1 is obtained by minimizing functional
W, with respect to ¢;, and potential function @, valid for subregion 2 by
minimizing functional W, with respect to @,. The two minimum conditions
should be satisfied simultaneously.

Numerical approximations

The solution, that is, the potential function where functional W(g) is
minimal, is determined by the numerical approximation method of Ritz and
Galyerkin. The method is described in details in [2] and [3], therefore only
the train of thought underlying the solution and the results are described here.

‘With the method Ritz and Galyerkin, the exact potential function
is approximated by the linear combination of the first n elements of the
complete system of functions, where n is a finite number:

n

¢~ gn= 3 afy> (42)

k=1

where f, is the k-th element of the complete system of functions, a, is the
coefficient to be determined. Coefficients a, to the required approximate
potential function ¢, are determined from the condition of the minimum
of functional W(gp,). Accordingly

—E’—W(a)zo; E=1,2, ...n, (43)

aak

where a is a column matrix of n elements consisting of the required coefficients.
The way of writing the system of equations for determining the coefficients
of the system of equation is discussed separately for the inhomogeneous
dielectric medium and for a dielectric continuous by subregions.

a) Inhomogeneous dielectric medium

In the case of an inhomogeneous dielectric medium, functional (6) is
to be minimized. The approximate function system is, according to (42):

Pn = jakfk . (44)

From condition (43) for the minimum we obtain a linear system of equations

33
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for coefficients a,, written in matrix form as
Aa=b, (45)
where A is a quadratic matrix of n-th order and its j-th elementin the i-throw

being:
A= A4;,; = ‘ij‘{ [grad fif e grad f;] dV —

(46)
o ‘L‘S‘ [n+ € grad (flf])] dS -
b is a column matrix of n elements, its i-th element being:
by = — jsj [Dsn+ € grad f;] 4S . (47)
The required coefficients are
a=A"1bh. (48)

The approximate function system has to be chosen to that the zero of the
function system is outside the examined region, with the exeception of the
case where this point coincides with a prescribed point of zero potential.
A better approximation is obtained by transforming the function so that a
point of the region with prescribed potential is zero and this point is exactly
the zero of the function system. Accordingly, introduce the transformed
potential function ¢, defined as

Pn=9n — Dy (49)
where

Dy = Pgy(P) (50)

and @g,(P) is the potential of an arbitrary point P of the surface of prescribed
potential. Hence:
on(P) = 0. (51)

In the course of solution, by substituting function ¢, + @, for ¢, in functional
(6), function ¢, is approximated according to (42):

n
on = > arfr. (52)
k=1

An approximating function system will be selected so that the zero is at
P, thus potential function satisfies the boundary condition at one point.
Determination of the coefficients for the transformed function system differs
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from the preceding only by the elements of b':
b= — (] [@s ~ Ogn+ e grad ] 4. (53)
The coefficients of the transformed function system are:
a’ = A"1h, (54)

b) Dielectric medium of continuous permittivity in subregions

In the case of a dielectric medium of continuous permittivity in sub-
regions, functional W, (24) and W, (25) are to be minimized with respect
to ¢, @, respectively. Solution refers to the following transformed function:

(pl,.n = @1n — ®01; ¢én = Gop — @02 : (55)

where @, and @, are the prescribed potentials of arbitrary points P, P,
of surfaces Sy; and Sy, respectively. The transformed functions are approxi-
mated by the function system:

n m
Pin = >0 frxs Fom= > bk &k> (56)
k=1 k=1

where f, and g, are the k-th elements of a complete function system
(fi = 8, and n = m being possible), further the zeros of ¢;, and g@;, are
at points P, and P, respectively. The necessary condition of the existence
of a minimum is given by

W, _g, 8Py, (57)
oa’ ob’

Performing the operations results a linear system of equations for coefficients
e’ and b’, given in the matrix form as:

Aa-Chb=ce, (58)
Da--Bb=h. (59

The j-th element of the i-th row of quadratic matrices A and B, of the n-th
and m-th order are respectively:

A=A, = j j [erad f}+ €, grad f]] AV +
V.

- Jj‘ [——nf €, grad (fz,fjl)] ds + —;—-jf [—nf €, grad (fl’f;)] ds, (©0)
S:

Su
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and

By;= B, = If [grad g;* €, grad gj] AV +
Va

Sll

The j-th element of the i-th row of matrix C of nxm order is:

1 / 4 / 7
Gy = f j [g)ni & grad f; + fing e grad g)) dS ,
S:
The j-th element of the i-th row of matrix D of man order is:
1 - PP ,
I)i’j~~_~:—2—j’j‘[fjn2 € grad g; - ging elgradfj] ds,
S

e is a column vector of n elements, where the i-th element is:

& = — fj[(®8u — Dy) ni g gradf:-] ds —
Su

1 7

=5 | [@n — Owni ¢ grad fias .

&

S

bk is a column vector of m elements, where the i-th element is:

hi = — JJH[((DSn — D) ni €, grad g:] ds —

sn

- [[(@0— 90 ni ergraagi] as
S

The required coefficients are:

MR

’ 1 : L4
+ fj[*"g e, grad (gigs)] 4S + E—ff[—ng* e, grad (gig))] dS.
S

(61)

(62)

(63)

(64)

(65)

(66)
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Relationships necessary to determine the coefficients can be written in any
system of co-ordinates. In the case of a planar problem, the relationships
can be applied formally, taking into consideration the remarks made previ-
ously.

Accuracy of solution improves by increasing the number of elements
in the approximate function system. On a digital computer, improved accuracy
primarily means an increase in running time and only a lesser increase of
storage capacity requirement.

Examples

In the following, application of the two methods will be demonstrated
on the example of plane condenser with laminated dielectric medium.

Data of the laminated plane condenser shown in Fig. 3:
di=2cm; g, =1; da=1cem; &g =2; 1=1 em.

Voltage between the two electrodes U, = 1 V. Calculations involve:

2 —0.
dy

a) First the dielectric medium is considered to be inhomogeneous.
Approximate the potential function by two terms. Zero the potential of the
electrode in plane x = 0, thus:

P = aify + arfs

where
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‘Relationships (46) and (47) are applied for a two-dimensional problem,
.considering that tensor € is diagonal, a discontinuous function. Taking these
into consideration, the value of e.g. 4, is calculated as follows:

d, 12
Ay = f J [afl af"ded f J [8f1 J dy dx —
ox ~ Ox ox
x=0 y==-1f2 x=d, y=-1/2
]dy ,
x=d,+d;

where ¢, and & denote the scalar permittivities of the layers. Performing
the operations:
Ap=¢2+24+0—-2:2:3]= —8¢.

12 2

- [ma%(f%);x:ﬂ]dy— f [

Omitting further calculations we obtain:
A— _ 8 40 i
40 1,5467.102

, 2
b= — ;
]

. 4,7058 - 10— ]
—4,4120 - 101 J ’

The coefficients are:

Table 1 contains exact and approximate potential values ¢, and ¢, respectively
further percentage errors for various x values. Fig. 4 shows functions g,
and @, vs. x.

k24 _FE h=TET P 100

X

om { v v o5

0.0 0.00 0.00 0.00
0.2 0.08 0.09 12.50
0.4 0.16 0.18 12.50
0.6 0.24 0.27 12.50
0.8 0.32 0.35 9.38
1.0 0.40 0.43 1.50
1.2 0.48 0.50 4.17
1.4 0.56 0.57 1.79
1.6 0.64 0.64 0.00
1.8 0.72 0.70 —2.78
2.0 0.80 0.76 —5.00
2.2 0.84 0.82 —2.38
2.4 0.88 0.88 —0.00
2.6 0.92 0.93 1.09
2.8 0.96 0.97 1.04
3.0 1.00 1.01 1.00

Table 1.
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[
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Fig. 4

b) Hereafter the dielectric medium is considered to be homogeneous
by subregions. For the transformation choose the values:

@01::0 and @02:1 .

Hence, approximate functions ¢;, and g,, are zero at x = 0 and x = d; + d,.
Approximate both functions by one term. In this case

1= afi: @ =bhg
where
fi=2x: ga=@E—d—dy).
Relationships (60) to (65), yield coefficients a,, b;. Expressing e.g. Ay.

Ap=de; —2¢ - O_—;_al'?'dlzo.

Other coefficients are calculated similarly, hence:

rog, 1 r 1 -1 1 3
. 0 - '_f):'(d182 + dyey) I - 5"81
a 1 1|
e -+ dge 0 ——F
b, L P (die + doey) b D) 2__1

{Zﬂ: d182"::°d281 [;]
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The potential functions are:

’ > .
=qfi=—"—x if 0<x<d
41 1 F f 1

Pr=bgi + Py = 1 (x —dydy) + 1,ifd; < x < dy - dy,

die; + dse,

equal to the exact potential given by the elementary method.

Approximation has led to the exact solution, due to the approximation
of a linear function by a linear function and applying function transformation.
This simple problem evidences the improvement of the solution upon taking
the break in the potential function into consideration, instead of considering
the break in the permittivity function as a general inhomogeneity.

Summary

Calculation of the static and stationary electromagnetic field in linear, inhomogeneous,
anisotropic media is discussed in the case of mixed-type boundary conditions. By applying
variational calculation, both Maxwell equations and boundary conditions are satisfied at
the zero variation of the suitable functional written for the potential function. The solution
is the stationary function of such a functional, to be determined by the Ritz— Galyerkin
numerical approximation method. The way of taking into consideration the break of the
derivatives of the potential function, in the case of a medium continuous in sabregions is
described. Two numerical examples are presented as an illustration.
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