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Introduction 

The graph theory method to be presented permits the analysis of net­
works in the steady state, which contain invariant linear two-poles and any 
kinds of invariant linear two-ports ,,,ith the exception of the nullor. Hence 
the calculation described in this paper lends itself for the examination of 
the steady state of circuits simulable by two-poles and two-ports, of electronic 
networks considered practically linear. 

Similar calculations are found in [1], to be commented later. To solve 
the given problem, the chain parameters of two-ports are used in [2]. In this 
way also a network containing nullor can be analysed except, if the network 
contains a two-port which cannot be characterized by chain parameters. 
The method described in [3] substitutes two-ports by the model formed 
of nullators and norators to analyse the resulting network. 

Transient phenomena may be examined by state equations of the net­
work, to be established according to [4]. 

Network equations 

The problem being one of analysis thus the structure of the tested 
network and the characteristic parameters of its elements are considered 
to be known. Two ports, ,,,ith the exception of the nullor, can be characterized 
by impedance, admittance, hybrid or inverse hybrid parameters, and on the 
basis of these the two-ports model containing controlled generators (Fig. 1) 
can be given. In our calculations two-ports are replaced by such equivalent 
circuits. The independent generators in the network are substituted by the 
Thevenin or Norton equivalent, and considered to consist of two branches, 
one containing an independent source, the other passive elements. Branches 
containing passive elements can be taken into consideration by their impedance 
or admittance. 



130 I. vAG6 

It --P- Z 11 Z22 <l- 12 

U'138"' o = ZI1 I, + Z,2 12 

U2 = Z2' I, + Z22 I2 

J,--,;> ~2 

U, + 11YII 

Y,2 U2 

+ 
1/!J22 ~ U2 

1, = Yf! U, + Y'2 UZ 

I2 '" Yz, U, + Ye2 lIZ 

11 hit 12 
--I> ~ 

u'G JU2 

lI, h'l I, + h,z Ut 

1h22 
I2 h21 I, + h2Z Uz 

I, 
k22 

<}--12 
--l> 

l/1 + E~} I, = k'f lI, + k 12 I2 
'Ikll 

lI2 = k2' lit + kZ2 12 

Fig. 1 

Branches of a graph of this network model are classified in four groups 
as follows. 
Branches of group 1: 

branches containing independent current source. 
Branches of group 2: 

branches containing controlled current generator, 
branches containing controlled current source, 
branches of control voltage, 
breaks, 
some branches consisting of passive elements. 

Branches of group 3: 
branches containing controlled voltage generator, 
branches containing controlled voltage source, 
branches of control current, 
short circuits, 
some branches consisting of passive elements. 

Branches of group 4: 
branches containing independent voltage sources. 

Passive two-poles should be ranged among branches of groups 2 or 3 so, 
that branches belonging to groups 1 and 2 are links, while those of groups 
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3 and 4 twigs. In the calculation passive branches in group 2 are taken into 
consideration by their admittance, those in group 3 by their impedance. 
The number of branches classified in groups are b1, b2, b3 , b4, resp. Branches 
of the network are numbered accordingly. 

In accordanc~ ",ith the aforesaid, the primary and secondary sides of 
a two-port characterized by admittance parameters belong to group 2, while 
the primary and secondary sides of a two-port characterized by the impedance 
parameter matrix to group 3 (Fig. 1). If the two-port is given by hybrid 
parameters, then the primary side belongs to group 3, the secondary side 
to group 2, while in the case of inverse hybrid parameters, the primary side 
belongs to group 2, the secondary side to group 3 (Fig. 1). 

It may happen that branches of the network cannot be grouped 
according to the preceding, since independent voltage sources, controlled 
voltage generators and short-circuits form a loop, or independent current 
sources, controlled current generators and breaks form a cut-set. In this case 
the tree is constructed by taking controlled generators by two branches, 
namely a controlled source and an impedance into consideration, and the 
impedance branch is placed in the other group. If nevertheless branches 
can not be grouped as required, then independent and controlled voltage 
sources form a loop, or independent and controlled current sources form a 
cut-set in the network, a contradictory. 

Write first the relationship for current and voltage, respectively, for 
branches in groups 2 and 3. Current in branch i in group 2 (Fig. 2): 

(1) 

where Yii = Y i is the admittance in the branch, U2i the voltage of the branch, 
Yij U2j the source current of the voltage controlled current source in the 
branch, U2j its control voltage, Y.-ikI3k the source current of the current control­
led current source in the branch, while 13k is the control current. U2j is 
the voltage of branch j belonging to group 2, 13k the current of branch k 
belonging to group 3. If branch i is passive, i.e. containing only admittance, 
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Fig. 2 
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then Yij = 0 and 'Xik = O. If branch i contains only a voltage controlled 
current generator, then X ik = 0, and finally, if it contaim only a current 
controlled current generator, then Yik = O. On the basis of Eq. (1), column 
matrix ~ formed of currents of branches belonging to group 2: 

(2) 

where U2 and la are column matrices formed of voltages of branches in group 
2, and of currents of branches in group 3, resp., Y2 is a quadratic matrix 
of order b2 , Yij being the j-th element in the i-th row, the number of rows 
in matrix K.is b2, that of columns ba, the k-th element of the i-th row is 'X ik • 

I 
Fig. 3 

Column matrix Ua formed of voltages of branches in group 3 can be 
written similarly. Voltage of the branch j (Fig. 3) is namely 

(3) 

where Zjj = Zj is the impedance in the branch, ISj is the current of the branch, 
Zjm lam is the source voltage of the current controlled voltage source in the 
branch, lam is its control current, {tjn U2n is the source voltage of the voltage 
controlled voltage source in the branch. lam is the current of branch m 
belonging to group 3, U2n is the voltage of branch n belonging to group 2. 
On the basis of (3): 

(4) 

where Za is a quadratic matrix of order ba' where Zjm is the m-th element in 
the j-th row, the number of rows of matrix lU is ba' that of columns b2• the 
n-th element of the j-th row is {tjn' 
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Relationships (2) and (4) are involved in ·writing the Kirchhoff equations 
of the network. The corresponding equations in [I] contain further terms, too. 
These are, however, useless calculations needing exclusively the models in Fig. 1. 

With loop matrix B of the fundamental loop system generated hy the 
tree selected according to the aforesaid, the :linearly independent loop 
equations of the network are comprised in the ~atrix equation 

o 
1 

(5) 

where loop matrix B and column vector U of hranch volt ages are partitioned 
according to the four groups of hranches. With a view on U4 = Ug, column 
matrix of source voltages of independent voltage sources, (5) can he written as: 

(6) 

(7) 

Similarly, the linearly independent cut-set equations of the network are: 

-Fii 1 
-F~ 0 

(8) 

where Q is the cut-set matrix, I is the column matrix of hranch currents, 
and + designates the transpose of the matrix. By applying the designation 
11 = I g, (8) can he written in two equations, as 

(9) 

(10) 

Substituting (2) into (9), further (4) into (7), united in a single equation 

(U) 

Herehy voltages of hranches helonging to group 2, and currents of hranches 
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in group 3 have been expressed in terms of known quantItieS, determinable 
from Eqs (2) and (4), respectively. Their knowledge permits to calculate 
voltages of independent current sources from (6), currents of independent 
voltage sources from (10). 

It should be mentioned that independent sources of networks are often 
exlusively voltage sources. In this case Fll is inexistent (with zero rows), 
the second matrix in the right-hand side of Eq. (11) contains, however, a 
block 0 'with as many columns as in F22 , and as many rows as there are branches 
in group 3. Similarly, if there is no voltage source in the network, then FH 
is inexistent (with zero columns), and the second matrix in the right-hand 
side of (11) contains a block 0 with as many columns as in Fl1' and as many 
rows as there are branches in group 2. Accordingly, Eq. (11) has a simpler 
form in the mentioned cases. 

The equations can be ordered so that the unknown values can be 
determined by inverting a matrix of lower order than before ([1], with error). 
To achieve this, branches are classified into six groups, namely 

1. independent current sources; 
2. controlled current generators; 

controlled current sources; 
branches of control voltage; 

3. finite admittances; 
4. finite impedances; 
5. controlled voltage generators; 

controlled voltage sources; 
branches of control current; 

6. independent voltage source. 
Branches are ranged into groups 3 and 4 in such a way that branches 

belonging to groups 1, 2, 3 are links, while those belonging to groups 4, 5, 6, 
t"\\'igs. The number of branches in each group are bI , b2 , ••• , bo' Branches 
are numbered accordingly. 

In this case column matrices 12 and Us formed of currents of branches 
in group 2, and of voltages of branches in group 5, can be written in terms 
of column matrices U2 and Is of branch voltages in group 2, and branch 
currents of groups 5, respectively, similarly to (2) and (4): 

(12) 
and 

U- = M U9 -I' Z- T_ iJ _ il ---s (13) 

Here the order of Y 2' the number of rows in K and of columns in M is b2• 

while the order of Zs' the number of columns in K and that of rows in M is ba• 



STEADY STATE LINEAR NETWORKS 135 

Branch currents and hranch volt ages in group 3 and 4, respectively, 
are related hy Ohm's law: 

13 = Y3 U3 

U4 = Z4 14 

(14) 

(15) 

where Y 3 is the admittance matrix of hranches in group 3, and Z" the impedance 
matrix of hranches in group 4. 

Matrices partitioned according to the six groups of hranches, are used 
for writing Kirchhoff's equations for the fundamental loop and cut-set system 
generated hy the selected tree. Designating U6 = Ug and 11 = Ig : 

[ 1 0 0 Fu F12 F13 
0 1 0 F21 F22 F23 

0 0 1 F&l F32 F33 

whence: 

] 
r U '=0 1 

Uz 
U3 

U" 
U-, 

L Ug ..J 

r Ig , = 0 

12 
13 
I~ 
15 

L 16 ..J 

From these equations U3, 13, or U4, I" can he eliminated. 
Eliminating U3 and 13 leads to an equation of the form 

N, [r; r N, [ ~: 1 
" 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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where 

(25) 

(26) 

(24) yields U2, 14 , Is and these, combined with relationships (18) to (23), 
express all the required branch currents and branch voltages of the network. 

Here 

The calculation is similar if U4 and 14 are eliminated, leading to: 

Fi2Y 3 

F 21Z4FiiY3 

1 + F3IZ4FtlYa 

(27) 

(28) 

(29) 

Thus U2, Ua, and Is can be calculated from (27), currents' and voltages of the 
other branches, from (18) to (23). 

Eliminating U3, la, or U4, 14, the problem can be solved by inverting 
a matrix of lower order than in case of Eq. (ll). Among branch voltages 
and branch currents in groups 3 and 4 it is advisable to eliminate those, 
useless for the given problem, or in which the number of branches is higher. 

Example 

The latter calculation is demonstrated on a problem. Determine the 
complex voltage transfer coefficient U5/Ug of the circuit shown in Fig. 4, 
if the voltage Ug has the angular frequency w. Resistances RI' 14., Ra, R4, Rs, 
Rg. capacitances Cs and Cg, and the hybrid parameters of the two transistors 
h (l) h(l) 0 h(l) h(l) d h(2) h(2) ""--' 0 h(2) h(2) • I 'd d 11' 12 ~ • 21' 22' an ll' 12 '""" , 21' 22' respective y, are consl ere 
as being given. 
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On the basis of Fig. 1, the equivalent circuit of the transistors containing 
current controlled current generators, considering the direct voltage generator 
as being short-circuited, yields the network model in Fig. 5, ,,,ith graph shown 
in Fig. 6. . 

For the calculation branches are classified into six groups. No branch 
of the circuit is in group 1. Branches 1, 2 belong to group 2, branches 3, 4 
to group 3, branches 5, 6 to group 4, branches 7, 8 to group 5, branch 9 to 
group 6. This means at the same time that the tree consisting of branches 
5, 6, 7, 8, 9 of the graph is selected for the calculation. 

fig ~ 
~ lIsJs

! --!> 

19 

I 
Fig. 4. 

Fig. 5. 

{6l 

Fig. 6. 
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Matrices necessary for the calculation: 

7 8 

K = I [hW 
2 0 ~)] 

M=O 

Zs = [hill 
0 h~J 

Ya = [I I - C R'Jw g 
g 

o 

The matrix of the fundamental loop system generated by the selected tree is: 

B = II 0 i 0 0 : I 0 0 -1 i 0 ] o 1 I 0 0 i -1 -1 0 0 I 0 
·-O--O-!-Y-o--r--O--·_-·_··-O·- -----T------(j-!=y--

I I I o 0: 0 1 I -I 0 -I 0 I 0 

This means that 

li'n = 0 ; li'12 = 0 ; 

F21 = [ 1 
-1 

0] ; -I li'22 = [~ 

F31 = [ 0 -I or F32 = [ I 
o -1 

From these, on the basis of (25) and (26) 
(Continuation on Supplement) 

F13 = 0; 

-~1; Fas = [~]; 

~1 ; Fas = [ -~ 1 
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That is, (24), involving Ug = Vg, yields: 

[U'r ru, -
14 V2 
Is 15 

16 
17 

LIs 

r 
1 0 14 0 0 -hW. 

-1 0 

-R2 -[ R4 X (Rs + jW~J] 
0 

0 1 0 0 
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1 
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(Continuation on p. 139) 
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From this Is can be calculated and IsRs/Ug is the required complex voltage 
transfer coefficient. 

Summary 

The described method is snited for the analysis of a linear invariant network containing 
two-poles and two-ports. The active and extreme parameter two-ports of the network are 
taken into consideration by a model containing controlled sources. To write the Kirchhoff's 
equations, the concepts of graph theory are used. Two possibilities of reducing the number 
of unknown values are presented. Application is demonstrated on an example. 
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