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Network models are generally used for the examination of steady-state
operational conditions of asynchronous machines. These models are known
as equivalent circuits [1], [2]. In some publications [1], [3], equivalent
circuits are indicated also for transient states of operation. In the followings
a network model of the three-phase asynchronous machine will be presented,
describing relationship both between currents and voltages and between
moment and angular velocity. Thus electromagnetic and mechanical processes
can be examined on a single model. Modelling mechanical processes involves
the so-called dynamical analogy between electric networks and certain mechan-
ical systems [4], [5], [6]. Models established on the basis of dynamical anal-
ogy have been published by MerseL [4] for direct current machines, and by
SeELY [5] for electromechanical converters.

Equations for three-phase asynchronous machines

Equations for symmetrical three-phase asynchronous machines of
structure (Fig. 1) apply the following symbols.
A, B, C subscripts for currents, voltages, and fluxes, of the stator coils;
a,b, ¢ Subscripts for currents, voltages, and fluxes, of the rotor coils;

® angular velocity of the rotor, with respect to a two-pole machine;

x angle included by the axes of coils on the stator and rotor, pertaining
to identical phases;

Po number of pairs of poles;

®, actual, geometric angular velocity of the rotor (cog == pi) H

L, self-induction coefficient of stator coils; ’

L, self-induction coefficient of rotor coils;

Ly mutual induction coefficient of stator coils;

L. mutual induction coefficient of rotor coils;

L, maximum value of the mutual induction coefficient of stator and
rotor coils;
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R, resistance of stator coils;

R, resistance of rotor coils;

J moment of inertia of the rotor;

K viscous friction coefficient of the rotor;

T, external moment acting on the rotor;

T, electric moment generated by the machine.

Starting a conditions for the equations are:

1. Magnetic nonlinearities due to saturation are negligible hence the
correlation between currents and fluxes is linear.

2. Friction moment braking the shaft of the machine is considered
to be proportional to angular velocity.

3. Both stator and rotor bear symmetrical structure three-phase winding
of providing a magnetic field of sinusoidal distribution in the air-gap of the
machine.

Basic equations of the asynchronous machine are obtained by writing
the Kirchhoff equations for stator and rotor coils, and the movement equation
for the rotation of the rotor, according to reference directions in Fig. 1.

Precise writing of equations can be found in several books om the
subject, therefore details are not discussed here.

Relationships in matrix form are:

u(t) = Ri(t) + ';?; W) . (1)

]. d K b
= 00 + el — Tolt) = T0) )
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Matrices in Eq. (1) are the following:

™ u4(2) ™ 2a(2) 7 ™ palt) ]
up(t) U ip(t) i | v5(?) Ps
uc(t) ic(t) ()
= == = s M) =] - = s (#) =] ——- =
R R Y5 AR Y
u,(t) U, i5() i | "/’b(t) v,
L u(t) L i(t) ~"/’c(t) -

_[R, O]_[R1 O ®
K ’"[o R,} [0 R,J’

where 1 denotes the unit matrix of third order, O the zero matrix. According
to condition, 1, fluxes are expressed in terms of currents as follows:

Ys = L i + L1,
(4)
Y= L i + Lsr* i .

where * denotes transposition, and

Ls Lks Lks Lr Lkr Lkr
LS = [Lks Ls Lks} ? Lf = [Lkr Lr Lkr} ?
Lks Lks L Lkr Lkr Lr

s

)

L,, cos « L, cos (120° -+ &) L, cos (120° — «)
L, =]L, cos (120° —«) L, cos« L, cos (120° 4+ )| -
L, cos (120° + «) L, cos (120° — ) Ly, cos o

It should be noted that in consequence of the rotational symmetry of the
structure of the machine, the self-induction and mutual induction coefficients
of the coils both on stator and rotor are independent of angle «, while the
coefficients of mutual induction of stator and rotor coils depend on «. These
latter factors are known to be proportional to the cosine of the angle included
by the coil axes [1]. Accordingly the elements of L, can be determined on

the basis of Fig. 1, where individual phase coils are represented by solenoids.
Using Eq. (4),

. d . d .
Ps = Ls E‘zs - ‘"Et‘ Lsr) i+ Lsr a& L
(6)
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For the derivative of L, with respect to time, the following relationship i-
obtained.

— sina — sin(120° + %)  sin(120° —x)

d de d
b= —d°i — Lo=0Ly| sin(120° — ) — sina — 5in(120° +a) J
¢ e » — sin(120° +2)  sin(120° — )  —sinx

| )
In the following the notation

d
'E;Lsr = bI (8)

will be applied.
Supposing currents to be constant electric moment arising in the
machine can be determined from magnetic energy [8] as:

Coaw, 1 d d L d |

T, = T = po— |88 |— L | ¢+ &% |— L.| i, -+ 2i¥ -——L)i, . 9

g da POZ [s(dCz s] s( T .dOL | s(d“ sr» ] ()
Thatis: .

ngigMz',po. (10)

Substituting relationship (6) into starting equation (1), we obtain a common
form of the equations of the asynchronous machine:

d .
us(t) = R's'i's + Ls"&'t"is + C‘)M:ir - Ls,,%l, ’

(1)
. d . C . d
ur(t) = Rr zr 'Jl"' Lr_- l,- "L CQM*ZS "{"‘ Lsr——'ls 1
de de
PiEMi, = J do + Ko _ T, . (12)
po dt Po

The analytical solution of the above equations with respect to currents and
angular velocity is difficult on account of variable parameters and of the
nonlinearity. A suitable transformation permits to eliminate variable param-
eters. Transformations of this kind are discussed in most books on the
subject, at slight differences. In the following chapter, the most important
relationships for and fundamentals of co-ordinate transformations used in
the theory of electric machines will be recapitulated according to [9], [10],
[11], [12]. ' '
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Transformation of currents and voltages in three-phase machines

In the examination of three-phase machines, transformation is of use
both for reducing Egs. (11), and —it will be seen later—, for the introduction
of the network model. Determination of transformation correlations start
from the following conditions. Starting assumption in determining the trans-
formation relationships are:

1. Currents actually arising in the three-phase machine and currents
determined by transformation, produce identical magnetic fields in the air-gap
of the machine. - ‘

2. Currents and voltages determined by transformation supply a power
identical with that produced by actual currents and voltages of the three-phase
machine (power invariance). ,

The first condition permits to determine the transformation relationship
for currents permitting, in turn to determine voltage transformation utilizing
the second condition. ' ‘

Let 7 and u denote column vectors of currents and voltages, respectively,
in the original system, transformed quantities being denoted by a comma ().
Transformation matrices are denoted by C; for currents, and by C, for volt-
ages. Then ' ' '

i - Ci i’
(13)
B ‘ u=C0C,w ‘
On the basis of power invariance,
Fu=1"uw=0*CGCu, (14)
yielding one possible form of the transformation matrix of voltages:
C, =G (15)

Transformation of currents and voltages can be achieved by the same re-
lationship, i.e.

C,=0C=2¢C. (16)
Condition (15) for power invariance is given in this case by

€= (c*) an
That is,
C1=C*. (18)

In the following a transformation meeting condition (18) will be determined.
Magnetic field strength generated in the air-gap of the three-phase
machine is of the same distribution as magnetizing force supposed the width
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of air-gap to be constant, and rotor and stator to have infinite permeability.
In the following these conditions are supposed to be satisfied. In this case
it is sufficient to determine resultant magnetizing force generated by the
three-phase windling. In the reference system the complex space vector of
resultant magnetizing force generated by stator currents (Fig. 2) is:

6, = N[is + i cos 120° 4 i, cos (—120°) + jig sin 120° + (19
+ ji sin (—120°)] )
where IV, is the effective number of turns per phase in stator windling. Let
a = e/1%° (20)
we obtain
O, = N, (is + ipa + ica?) . (21)
In the calculations it is sufficient to use current space vector

I.= K,{i, + iga 4+ ica?) (22)

proportional to resultant magnetizing force. As known, for stator currents
forming a symmetrical three-phase system:

i,=1I,cosm4, ig = I, cos(wgt —120°), ip = I, cos (w,t + 120°), (23)

we have
3 )
I, = KOE—Im e/, (24)
A
bo
Qs'~[.s~ o =1 real
| X w,t
|
{
:
imaginary !
z c

Fig. 2
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a rotating magnetific field characterized by a current vector of constant
magnitude, of angular velocity w,. Definition (22) is valid also for currents
with arbitrary time function, but here both magnitude and angular velocity
of I are functions of time. Remind that some books [12], [13] refer to the
current space vector as with Park vector on. Evidently current space vector
is unequivocally given by two perpendicular components, what is simpler
than by phase currents, similarly characterizing space vector I unequivocally.
Thus e.g. in system (x,5) Fig. 2. in the case of symmetrical currents

i,, = I;cos oyt ,

. (25)

iss

For the sake of generality, employ in place of system of co-ordinates {x, )

will be replaced by (u, v) (Fig. 3) rotating at an arbitrary angular velocity
with respect to system (x, §) pertaining to the stator. Using formula

Is (g, v) — Is e~ ot ’ (26)

= I, sin wgt .

and relationship (22) after separation of real and imaginary parts the current
space vector is given in the system (u, v) by relationships

g, = Ky[is cos ot -+ ip cos(owyt —120°) - iz cos(w,t +120°)] @)
ig = Ko[—14 sin wit — ip sin(w,t —120°) — i, sin (@, + 120°)] .
In final accent current transformation essentially corresponds to indicating
space vector I, by means of its components in a system of rectangular co-
ordinates, rather then in a system of “‘phase” co-ordinates (4, B, C). For

Ao
A
N w/ff/"
N -
/ Loy ~
"dki’ F T
1.7 ™\ .t N
S/ b .
SO e N
RNV \
i N
[ N \
< - ! < }
B8 tsg | P
Loy
C
B
v

Fig. 3
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the general case, this system of co-ordinates is called the system (u, v). Physi-
cally, transformation is interpreted as the substitution of three-phase currents
and three-phase coiling by two-phase currents and coils producing an execi-
tation identical with that by the three-phase system [12]. In the preceding,
only the vector of stator currents has been given, but evidently, interpretation
of the space vector of rotor currents is analogous. In the following, deter-
-mwination of phase currents in case of a given value of the space vector in
system of co-ordinates (u, v) will be considered. For the unequivocal deter-
mination of the three-phase currents two equations (27) are not sufficient,
another relationship linearly independent of these is needed.
Rearranging (26) we obtain:

Re I, e = Re I

Re Iy, a? e/ = Re a® I, (28)
Re Iy a e/ = Real, .

Substituting expression (22) for the current space vector and taking the real
parts, we have:

. .. P . 3 . 1. . .
Tg, €08 Wl — Loy SIN WL = I\o[u“‘g (is + lc)} =K, [”2“ 1y — ‘2—(‘,4 + lB‘HC)]

g €08 (Wt — 120°) — i sin (@, — 120°) = KO[%— ig — —;—(iA 4 i 4+ ic):l (29)

. . 3. 1, . .

igy €08 (wyt -+ 120°) — i, sin (0,2 -+ 120°) = K, [~2— ic — —;(LA “+ig -+ zc)]

with the sum of phase currents in the left-hand side. According to considera-
tions in [10], i4 -+ iz -+ i, cannot be expressed as linear combination of
is, and i, hence

b =+ ) (30)
is linearly independent of (27). Substituting zero-order current iy into (29),
we obtain, after arranging, for phase currents:
., 1 - . 1 1 ., 7
ig cos ot — sin wt e su
1

in |= K| cos (ot —120°)  — sin (w2 — 120°) (31)

(=

e

' t - 120° — si 120°
i e g LCOS (wh [ ) sin (a)kt + ) 1/3—1%— 50
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the inverse of transformatien (31), supplied jointly by (27) and (30), being:

7, I ¢os wt cos (ot — 120°)  cos (ot -+ 120°) 11 i,
2
i = — sin @yt — sin(w;2 — 120°) — sin (w,t -+ 120° i
5o 3K, it (o0 ) (ogt + ) B (32)
iy B kB K, ic
i ] L 2 2 2 g _

Condition (18) for power invariance is satisfied if

K, = V g : (33)

In this case, transformation matrix in (31) becomes:

— . 1 -1
cos Wl — sin Wyt

= ’/ —z— cos (et — 120°)  — sin (w,t — 120°)

cos (ot + 120°)  — sin (w2 +120°)  —
5 i t -V—z‘—
Transformation of rotor currents of the three-phase machine is analogous
1o that of stator currents. Remind in transformation that axes of stator and
rotor coils do not coincide on account of the rotation of the rotor but, they
include an angle o (Fig. 1). Thus, transformation matrix of rotor currents:

N

(34)

ot Nﬁllr—a

[ cos (3t — ) in (0 — 2) ]
cos (it — « — sin (0 — & —_—
7z
C, —[2 cos (wxt — o — 120°)  — sin (wyt — ¢ — 120°) L . (35)
3 V2
cos (@t — « -+ 120°) sin (ot — a - 120°) L
I ‘ § Ve

Rotor currents are transformed, as shown above, into a co-ordinate system
common with stator currents, causing transformed currents to vary identically
with time e.g. in steady state we obtain sinusoidally varying currents of
angular frequency w,—w, on both stator and rotor. By virtue of (16), trans-
formation being identical for currents and voltages, what has been said so
far is valid also for voltages of the three-phase machine.
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We note that Eqs. (28) geometrically mean to determine the projection
of the space vector on the axis of phase coils. For the sake of illustrativeness,
the projection of the space vector on the axis of phase coils can be said to
give phase currents Fig. 4, [1], [10], evidently, however this relationship
is only correct for i, = 0. Accordingly phase currents are unequivocally
determined by current space vector only together with zero order current.

This fact will be express by referring to system (u, v) as system (u, v, o)
in the following.

Loy €0S W), t

120°

gy sinwy

Fig. 4

It is advisible the choose the value of angular velocity w, of system
(u, v, 0) in dependence of the character of the problem. The most frequent
cases are the following.

1. w, = 0. In this case system (u,v,0) is transformed into system
(x, B, 6) where currents and voltages have an angular frequency w,.

2. o, = w. In this case the system of co-ordinates is (d, g, 0), for a
rotor of assymetrical structure advisably used. Transformation by (34) and
(35) results the so-called Park— Gorew transformation.

3. For w, = w,, we obtain the system (x,y, 0), characterized by an
angular frequency w, — w, = 0 for all currents and voltages.

Transformation of equations of the three-phase ansynchronous machine

Applying the transformation introduced above for currents and
voltages of the asynchoronous machine yields:

w,= Cul and i, = Ci, (36)
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where
, Usy d . Lsy
Us =1 ug, an b =1ig|>
Uso tso
further
u, = G u, and i =C. 1,
where

, Ury . tru
U=y, and =i,
Uro tro

Substituting transformed currents and voltages into Egs. (11) and (12):

u, = C*RCi} + c*LS-(‘li_t

uf = GRC! + L~ (Gi) + WO + CLg - (C)
t t

pircMes —J 92 K g

po dt Po

m -

Coefficient matrices in (40) become:

C*R.C = R,,
C*L, sz (€i) = C*L,C -:%- i + C*L, ( Tld? c) i
where
L, — Ly, 0 0
C*LSC :[ 0 Ls — Lks 0 }
0 0 L, + 2L,
and
q 0 -1 0
C*LSE{C = wi{L; — Lks)[1 0 o}.
0 0 0
Further
3 0 —1 0
wC*MC, = — oL, | 1 0 01,
2 { 0 0 0 :‘

d . d . d .,
C*Lsr_d—t‘ (Cr’l,-) = C*Lsrcr‘a?lr + C*Lsr {"‘é;’ CrJ ¢,

(Ci)) + wC*MC,i. + C*L,, _(;‘L (C,3)
t

167

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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where
3 1 0 07
€*L,.C, = ?LS, 0 1 01, (48)
| 0 0]
. d 3 i —1 07
C Lsr“’" Cr = (wk - w) Lsr 1 0 (4’9)
dt 2 :
| 0 0 ]

Similar operations in the voltage equation of the rotor lead to the following
coefficients: '

~ CRC =R, (50)
da ... a . . d ..,
CFL, - (64) = LG, i + L, (—d; c,) i, (51)
where
L, — Ly, 0 0
C*L,C, =[ 0 L —1L, 0 ] ) (52)
0 0 L, + 2L,
and
' 4 O —1 07
CL,—C, = (0, — o)(L, — Ly) |1 0 0. (53)
d: . :
A 0 0]
Further
: 3 F 0 1 0]
wCM*C = -5 Lyw| -1 0 0l. (54)
L 0 0 0l
CrLz, 2 (i) = CLEC S i+ L, (i C} i (55)
» de B d: de
where
, 10 0
CLIC = —2—LS, 0 1 OJ (56)
0 0
4 3 0 —1 0
CrLE, (7.1— C} =5 @ds|1 0 o] . (57)
. ¢ o 0 o0
Introducing:
3
Ly = Ls + 2Ly, , Ly =L, + 2L, . My, = '{Lsr » (58)

L1=L5—Lk59 L2=Lr—"Lkr'
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Substituting these and the transformed coefficients into (40) and (41), we
obtain: S

(59) exhibits constant induction coefficients. Therefore the system of
equations is simpler to solve that (11), and the network model can be established
from network elements with invariant parameters.

It should be noted that in certain cases it is advisable to write the above
equations by replacing current and voltage space vectors in place of their com-
ponents. Accordingly, the equations for the asynchronous machine become:

S d . d )
U, R, 4 Ly—— + jo, L, My e+ oo M, I,
dt dt
- a . . d . _
U, My, — + jlop—w)M,, R, + L, + jlo, — @)L, I |
" - L de de [
(61)
— - B d 1
U R+ Ly— 0 l 1’50‘1
dt
n d
Uso 0 R, + Lo, _-J ro l
... - . dt |
poMypIm(I, [y =L 42 K 7 (62)
Po dt Po

(Symbol ~ denotes the conjugate.)

o

iro

B d d T 7.
Rl — —wd, 0 M, oM, 0
ds de :
d d
oL, RAL-> 0 0 My My — 0
dt dt
0 0 R+L L o 0 0
s 0 dr d
- dt
M, d — (o, —w) M, 0 R,+L2—(—1— —(@w—w)L, 0
dt dat
d d
(0p— )My My —— 0 (o), R+l 0
t t
0 0 0 0 0 R, Loz—d—
d L ' de 4 o
(59)
.. . . J dw K '
POML‘Z(lsvlru - lsu"rv) e el Tm (60)
Po dt Po
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The correctness of the above relationships is simple to prove by
substituting space vector components.

Establishment of the network model

To establish a linear network model for the three-phase asynchronous
machine according to relationships (59) and (60), the involved mechanical
quantities are substituted by analogous electric magnitudes and the equations
linearized. For the method of substituting mechanical quantities let us refer
to {7].

Linearization will be made by assuming currents and voltages in (59), as
well as mechanical variables to be:

u=Us+us. &= 1I+1,
w=U+w, i=I+7%, (63)
w=02+a, T,=Ty -+ ty

where capitals denote steady values, dashes above deviations there from.
These relationships substituted into (59) and (60), and neglecting second-
order deviations, we obtain the Eq. (64) (see p. 171) for the deviation from
steady state, if voltage u;, corresponds to external mechanical moment
and current i, to angular velocity of the rotor.

It should be noted, that after having substituted mechanical by electrie
quantities the mechanical equation and the circuit equations are considered
as a single system of equations. Inductivity and resistance values introduced
in (64), as well as voltage corresponding to moment are given by:

J o _K _ T,

Lj=-—2= k="—2'= u'rm=UTm+uTm=—“" (65)
Po Po Po

The network model constructed on the basis of relationship (64) is shown
in Fig. 5. The realization is easy to verify by decomposing coefficient matrix
(64) to three terms, being the symmetrical part of the coefficient matrix,
the second the antisymmetrical part, while the third contains all the other.
The first term can be realized by resistance and inductivities, the second
by gyrators, while the third by controlled sources. Suitably connected, these
yield the circuit shown in Fig. 5.

Examine case w, = 0, where the asynchronous machine is examined
in system («, §, 0) pertaining to the stator. The network model for this case
is shown in Fig. 6. Since zero-order circuits are not connected to the other
circuits, they can be examined in themselves. For the sake of simplicity,
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N

0

— (0~ 2) My,

d
M, N

—Myl,,

d

RA-Ly— —(w,—2)L,
dt
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these will be omitted. Since in most practical cases i, = 0, phenomena in
zero order circuits need in general, not be examined. Remind that the net-
work in Fig. 6 is of the same construction as that for the direct-current basic
machine in [7] equations of three-phase machines in the system (x, 8, 0)
being known to be essentially identical with those of the direct current basic
machine. Provided the angular velocity of the rotor is constant, i. e. i, = 0,
the network model in Fig. 7 can be established on the basis of Fig. 6, valid
for the full range of currents and voltages (i.e. not only for the deviations).
Provided w = constant, and there are no zero-order currents, it is
sufficient to examine the part of Eq. (61) relating to space vectors, by means
of a model where space vectors are directly considered as variables, such
as that in Fig. 8, or the similar equivalent network in [1]. It should be noted,
hewever, that this model cannot be generalized so as to contain mechanical
variables too, of the mechanical equation in form (62) including space vectors
cannot be made to a model like as against relationship (60).

Performing the transformation of currents and voltages, of the previ-
ous models according to matrices (34) or (35), we obtain currents and
voltages actually arising in the machine. The above models can be replaced

‘e

B B, 88
i |
: i USB
“Sar L ! I3 ; %
- 3
a2 -2, e
;}} 4 3 R Ml2 :
ST , o LS °
A Ly i /1 Ly
“ro (\'i Yrg
Rr | Rp
o — , — o
e B ——d Q*—
(e My s 3 trg
Fig. 7
JWl e JWy ﬁ///; Z S w)i; s Jlw, il 1, -
I, e i Kl I
P A, RS ﬁ‘p R
© ) g N 2
Y N N .
iz i
2 e |2 ;
Ug / ; 3 / 5 i:’ /
O ~
Fig. 8
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by there permitting to determined actual stator currents. In the followings
the construction of a model of this kind will be shown. Let us assume the
angular velocity of the rotor to be constant and examined currents of the
asynchronous machine in a system of co-ordinates pertaining to the stator,
ie. 0= Q and w, = 0. In this case Eq. (64) becomes:

For the sake of conciseness, (66) will be written by means of hypermatrices.
Hypermatrices in (66) are separated by dotted lines. Thus, (66) in hyper-

matrix form:
u; Z,, Z, O s
[u; Hz,s . a} H @
Urp, Z7, o* R, Ig

Transformation currents and voltages of the stator into the system of “phase”
co-ordinates:

fu, 7 [C 0 07 [ ul]
w =0 1 ol |wu/l, (68)
77 1 lo= o 1) Lupy, J '
[ i ] [C 0 0] [ i
i 1=10 1 0 i (69)
L I, ] 0 0* 1] I,

- 7o d | d A or, T

Uy, R, LIE; 0 0 MRE; 0 0 0 g
d d .

usﬁ 0 Rs‘-l,"Ll'&';' O O Mm‘&’ 0 O Lsﬁ
d .

Ug, 0 0 R,+ Ly — 0 0 00 is0

dt |

_ a | d .

U, My, — QM,, 0 R, + Ly— QL, 00 i,

dt dt
d d

ufﬁ —Q M12 12"d_t" 0 _QLz RF+L2—&? O O ifﬁ
0 0 0 0 0 R L d 0 ;

U, : T + 02 ’é‘t‘ (2
—— ‘ ——
LuTm__] i Mmirﬁ — 127:,“ 0 5 0 0 0 RK... y IO 3

(66)
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where C is the transformation matrix according to (34) forw, == 0. Substi-
tuting (68) and (69) into (67):

u, CZ.C* CZ, O is
[u;]=[zrs€‘* er 0] [i; }’ (70)
Urm Z:.C* 0* Ryl LI
where
CZSSC*=RS+LS-‘-1—-, (71)
dz
-1 0 0]
3.4 1 3
s l 27 & 2 2
1 _]/:’:. 0
L 2 2 _
(4 1d 3, 14 3,]
dt 2 dt 2 2 At 2
3 3d 1 3d 1
ZC* =L, -0 Z—t+=0Q - 1+ Q0 72
¢ 92 ¥ 2dt+2 2d:+2 (72)
0 0 0 g

. s, 1. 3. 1. l/ 3 .
1sC =V§“Lsrl:lrﬁ —"2—1’#‘3— "2"lra —‘—2"lrﬁ+ “z_z'rx] .

The above matrix products were obtained by means of relationships intro-
duced in (58).

Relationships obtained by transformation show that the correlaion
between currents and voltages of the stator can be modeled by a coil system
connected according to basic equation (11), the stator and rotor are connected
by a coupling which can be described by an inductive, conirolled source,
while the mechanical circuit and the electric eircuits are connected by a
nonlinear coupling. The zero-order circuit is seen — similarly to the above —
not be to coupled with the other circuits in the case of the roter, thus it is
open to examination independent.

For the sake of intelligibility stator coils in Fig. 9, are shown in star
connection and substituted by uncoupled coils [14] while the mutual induction
coefficients of stator and rotor coils are determined by the relationship

L= l/tthsr cos ¥ , (73)

7=
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[} <—U/’_a’ [;* 3 LS/"_()
T lm; Ho=7F 7z
., Ui | |Rr Ja= -3 210
g
o $frﬁ< et =§Lr
) T c :31_2 Hpg= 72 7z

where ¥ is the angle included between axes of the examined coils. It deserves
mentioning that a relationship essentially identical to (70) was given by
Tshaban for asynchronous machines, using the transformation elaborated
in [15].

Models partially different from those given above can be constructed
for the asynchronous machine by applying dynamical analogy so that voltage
u,, corresponds to angular velocity, and current i, to moment. In this case
the linearized form of the transformed equations of the asynchronous machine
is the Eq. (73) (see p. 177).

In Eq. (73), mechanical parameters are replaced by conductance and
capacity:

K J
Gk =-— and C; = 0 (74)
Po Ps

respectively. Fig. 10 shows a network corresponding to (73) differing from
that in Fig. 5, by the ideal transformer applied for coupling the mechanical
circuit and the rotor circuits, in place of gyrator. Zero-order circuits are
not indicated in Fig. 10, since these can be examined in themselves.
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Applications

Application of models given in the preceding chapter, reduce exam-
ination of asynchronous machines to the analysis of electric networks
containing, in addition to passive two-poles, also two-ports. For the
calculation of similar networks, suitable methods are described in [16],
[17], [18], Since the description of these methods and their application
would go considerably beyond the scope of the present paper, the use of
the given models will be demonstrated on two simple examples, which can
be discussed also in other ways.

1. Examine the possibility of transforming the model in Fig. 7, for
steady state and a symmetrical three-phase voltage system supplying the
stator. Obviously on account of symmetric excitation and machine symmetry,
currents arising in the network of Fig. 7 form a symmetrical two-phase
system, hence, complex time functions are:

iy, = Lel™ i = Isej(mot B .2->= —Ji

sz (75)

. k1
N J(mut - _..)
* _— [ . — 2 o .
i, = Iel™ ig=le = — Ji,,
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Comnsidering (75), it is sufficient to examine e.g. the components «, and the
respective circuits. Transforming the circuit in Fig. 7 accordingly, and
considering (75), we obtain the network shown in Fig. 1l/a, with a non-
reciprocal coupling between stator and rotor circuits. Fig. 11/a took into
consideration that the rotor winding of the asynchronous machine is short-
circuited, hence u,, = 0. Expressing parameters of rotor circuit elements
by slip:

s @0—Q (16)

@o
We obtain:
(0o — Q)Lp = swL,

()
(g — DM, = sw My, .

) y , Z
legr Rs JWel, Jlwe=12)L, Ry rac
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©
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jCUo M}z gy DU ¢
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R B
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Fig. 11
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Current in the rotor circuit

Irg — ]stA-ImISQ . (78)
Rr ":" ]stLZ
Dividing both numerator and denominator by the slip yields:
o M.,
I o = J®Pq '[1‘..15(! . (79)
Rr/s + ]wOLZ

That is, changing rotor circuit parameters according to relationship (79),
current remains unaltered. By such a modification, the coupling of stator
and rotor circuits becomes reciprocal, hence it can be modelled by
coupled coils according to Fig. 11/b. Introducing the equivalent T cireuit
for coupled circuits [14], and since for w; = 0, iy, = 0, and u, = 0, trans-
formation according to (34) yields:

iA = is:z s Uy = Ug, - (80)

The network shown in Fig. 11/c is obtained giving directly the phase current
of the stator of the asynchronous machine. It should be noted that the circuit
in Fig. 11/c is identical to the single-phase equivalent circuit of the asyn-
chronous machine.

2. As a second example, determine currents arising in starting an
asynchronous motor, with an impedance Z inserted in series with the
phase coil in one phase. Assuming the three-phase network supplying the
motor to be symmetrical and stator coils to be star connected. The problem
is advisable solved by using the model in Fig. 9. where impedance Z can be
directly inserted. The network used in further calculations is shown in Fig. 12,
where Z has been inserted into phase B and steady state, as well as motionless
rotor, i.e. w = 0 assumed. Unknown phase currents have been determined
by the method of loop currents, using the independent loop system in Fig. 12.
Thus the equations for loop currents are:

22, + 7 Z, -+ Z L 5 Z., Ji Uus
Z,+7Z 2Z,+Z 0 13z, J — Ugc
3 = ,» (81)
~ Zn 0 Z, 0 Js 0
3 _
Bz sz, o z, || 0
L 2 - i - - -




MODELLING ASYNCHRONOUS MACHINES 181

where
Zs = Rs + ijLI 2

Ly = jo, I/ %Lsr > (82)

Z, =R, + joolL,,

taking into consideration that the coefficient of mutual induction of rotor

and stator can be determined by (72). By solving Eqs (81) for loop currents,
— omitting derivations — we obtained:

rJ; - 2Z,,4-2 —Zy—2Z AT Uas
Ja ~Zye—2Z 2Zy+Z ~Uspe
1
 Z(3Z,+22) . 5
7 — 5 Y 222w+ 2) Y 2,22+ 2) (83)
V3 I3 |
J4 5 YerZ - Yer(SZbe s Z)
| S -4 b - .
lﬁ%‘ ’ ’Rr
m)’ L,
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with notations:

z, (84)
Zy=Z,— 1,5 V.22,

Accordingly, the complex effective values of stator phase currents and of
rotor currents are, respectively:

I,=J = Usg — Uca _ UcaZ
Y 3z,4 27 Z,(3Z,, + 2Z)
IB—.:.——Jl—Jzz—QEE’——U-Ai,
3Z,, + 2Z
IC — J2 — UCA - UBC + UCAZ (85)
3Z,, - 27 Z,(3Zp, + 2Z)
Y, Z ( 3 3Z |
L,=Jy= ——12m 30,5+ = Ups — Ucal
3 3Zbe+2z AB T 9 BC P e CAJ
Y,Z V3 V3 z
I ey J TR e r—m _— 3 U - U k)
8 4 37, + 27 ( 5 Bc + > Z, ca

permitting all the necessary calculations.

Summary

The presented models are characterized by their suitability for the simultaneous
examination of mechanical and electromagnetic processes in asynchronous machines, under
the discussed conditions. Models refer to asynchronous machines of symmetrical structure
alone but are likely to be generalized for asymmetrical cases with the exception of the one
shown in Fig. 8. Calculations based on these models correspond to the analysis of electrie
networks consisting of two-poles and of two-ports containing controlled sources. An other
than (u,v,0) co-ordinate transformation may lead to somewhat different models for the
asynchronous machine. The transient or steady state of systems consisting of several asyn-
chronous machines and two-poles can be examined by means of the electric network formed
by suitably connecting the given models, the use of a computer needing, however, because
of the involved extensive calculations.
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