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I. Symbols 

transfer function of a linear single input-single output system 
weight function of the system. This is the response to a 
unit impulse input as well as the inverse Laplace transform 
of the transfer function. 

step response of the system. This is the response to a unit 

step input, i.c. the integral of the weight function 

response to a unit ramp function used as input. 

Vn(t) = S .. ·S w (t)dt .. . dt response to the input x(t) given hy the folIo'wing 
o 0 -----_____ n 

n 

formula: 

o 
x(t) = 

t<O 

(n-I) ! 
and 

Note that 
x(t) = bet) 

Vo(t) = wet) 

V I (t) = vet) 

V2(t) = Vet) 

n = 1, 2, ... 

and thus Vn(t) may he termed as the n-th order generalized 
step function 

W(jw) = A(w)ej<P(m) frequency function of the system. Its amplitude and 
phase function are A(w) and <P(w), respectively. 
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n. Definition of the rise function 

We define the n-th order rise function IXn(t) for such linear single input
single output systems whose 
1 0 transfer function has zeros only in the left half plane 
20 transfer function has poles only in the left half plane and in the origin 

(s = 0) 
3° n-th order step response Vn(t) is posItIve for t > 0 and zero for t = O. 
The definition of the rise function is as follows: 

t 
IXn( t) = --'-V"-n -=-( t)-'-'- - (n -1 ) (1) 

Of course some k-th order step responses Vk(t) may not meet condition 3°, 
while Vk+l(t) does. In this case only rise functions of the order n 2': k + 1 
exist. 

A special but very important case is the first order rise function simply 
denoted as 

1X1(t) = lX(t) 

aCt) = t . Vo(t) = t . wet) 
VI(t) vet) 

(2) 

Let us introduce new variables viz. 

t > 0, (3) 

T.=lnt t>O (4) 

It is easy to shov;- (see App. I) that 

(5) 

In particular, for n = 1, 
UI = u = In v, 

the first order rise function can be expressed as 

du d In v 
IX =--=---. 

d.. dInt 
(6\ 
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m. Some features of the rise functions 

3.1 The rise function is a dimensionless quantity and does not depend on the 
steady state gain of the system. This statement follows directly from the 
definition (I) of the rise function. . 

3.2 If the system is a pure k-fold integrating element, i.e. its transfer function is 

W(S) = Kjsk , 

then the rise function of any n-th order is 

CXn (t) = k = const . 

Namely the n-th order step response of such a system is 

and 

Ktn+k - I 

Vn(t)=---
(n + k - I)! 

K . tn+k - 2 

V (t)=-----
n-I (n + k - 2) ! 

(7) 

(8) 

(9) 

Substituting (8) and (9) into the definition formula (I) of the rise function 
we get Eq. (7). 

3.3 Let the transfer function of the system be 

bmsm + bm- I sm-I + ... + I I i~O 
W(s) = 

j + j-I' 'I si 
j >0 (10) 

ar aj-Is 1"'1 O:::;;:'m < i j 

then the initial value of the rise function is 

CXn (0) = j + i-m (U) 
and the final value 

CXn (00) = i. (12) 

The proof of these statements is given in App. n. 

IV. Similarity between the rise function and the phase function of the frequency 
response 

There are some remarkable similarities between the rise function and 
phase function Q'>(ro) of the frequency response 

W(jro) = A(ro) ejC!>(w) 
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4.1 Both the phase function and the rise function are dimensionless quantities 
and do not depend on the steady state gain of the system. 

4.2 If the system is a pure k-fold integrating element, then the phase func
tion is 

n n 
(j)(w) = - - k = - -xn(t) = const . 

2 2 
(13) 

(Compare with Eq. (7)) 
4.3 If the transfer function of the system has the form of Eq. (10), then 

(14) 

and 

(j)(0) = (15) 

(Compare with Eqs (11) and (12)) 
4.4 According to the Bode theorem, the phase function of a minimal phase 

system can be evaluated from its amplitude function A(w) by the follo"l,ving 
relation: 

I -f: = {I da i 1 da I } I h 'I' Q " cl (' - --1- -- n ct -;- oL 
n , dQ. I dQ Q=Q ! ~ , 

(16) 

where 
a = In I W(jw) i = InA(w) 

Q = In w 
Wo 

The Bode theorem expresses the fact that, using the logarithmic scale for 
the frequency as well as for the amplitude A(w), the phase is approximately 
proportional to the slope of the amplitude function (see the first term of 
Eq. (16)). This approximation has to be corrected by the second term of 
Eq. (16) being an infinite limit integral. The integrand of the correcting term 
is the difference between the slope of the amplitude function at the actual 
frequency wand its slope at the frequency Wo' weighted by the function 
In cth I Qj21 . Due to this weighting function, the slope changes affect the 
correcting term about frequency Wo more then far from it. 

Compare Eq. (16) >vith the expression of the first order rise function 
given by Eq. (6). The first term of the Bode theorem is similar to Eq. (6). 

a(w) = In A(w) corresponds to In v(t), and Q = In w/wo to In t. Remark 
that the factor nj2 appears in Eqs (13), (14) and (15) as well. Up to this 
time we could find no equivalent to the second (correcting) term of Eq. (16). 
(Perhaps it does not exist at all.) 
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To find other similarities, the rise functions of various structures have 
been plotted in Figs 1a-k. To visualize the relations, they are plotted in 
the same co-ordinate system. The scales of the ordinate axis are chosen so 

n 
as to make value cP coincide ,vith the value - -IX. 

2 
On the other hand, the different arguments of the phase and rise 

functions are related by 
n 

t=-. (17) 
w 

The reciprocal relation between t and w is obvious. The constant n in Eq. (17) 
has been found intuitively, although in a time to angular frequency 
relationship, n is natural to occur. In order to compare the rise function 
v,ith the phase function in Figs 1a-k, the logarithmic scale has been used 
for both arguments (wand t). This results that the phase function is exactly 
the commonly used phase plot of the Bode diagram, but with co-ordinate 
axes directed oppositely than usual. By virtue of this and other examples 
not demonstrated here - some further properties of the rise functions can 
be recognized. 

1 0 If a closed loop control system is structurally (by any value of the 
loop gain) stable, then the value of the rise function of the open loop does 
not exceed 2. (Remember that in this case CP(w) > - n.) 

2 0 If a closed loop control system is structurally (for every value of 
the loop gain) unstable, then the value of the rise functions of the open loop 
is everyw"here greater than 2. (Remember that in this case CP(w) :::;;: -n.) 

Note: Properties 10 and 2 0 are not exclusive, but contradictions have 
only been found in few cases, ~ith no practical significance for the process 
control. 

To demonstrate one case of contradiction, in Figs 2 the first-order rise 
function and the phase function of a system having the transfer f1,lnction 

W(s) = ~ I 1 + Si )2 
s \.1 + sT" 

(18) 

have been plotted with various values of TIT. The ph:l3~ plots show" tlnt the 
system is structurally stable, if Tit> 0,172, else it is conditionally stable 
(A system is said to be conditionally stable if the closed loop is unstable 
only when the loop gain lies between two finite values, K krit 1 and Kkrit 2 

i.e.: K krit 1 < K < Kkrit 2' The phase function of a conditionally stable 
system intersects the line cP = -n twice.) On the other hand, the first order 
rise function intersects the line IX = 2 for Tit> 0,137. Thus, concluding to 
the stability from the rise function may cause a mistake: i.e. for 0,137 < 
< Tit> 0,172, the system is regarded as structurally stable, although it 
may be unstable even near the stability limit. 

8 Periodic. Polytechnic. EL 20/2 
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3 ° In the region of w -+ 0 the phase function fits to the j-th order rise 
function a j for which 

j = 3 -i (19) 

(The meaning of i can be found in Eq. (10» 
4° In the region of w -+ = the phase function fits to the p-th order 

rise function, ex p ,. for which 

p = 5 - k = 5 - (n + i m) (20) 

(The meaning of n, i and m can be found in Eq. (10)). Note: Properties 3° 
and 4° can be prove exactly. For the sake of conciseness, the proof will be, 
however, omitted here. 

5° If the phase function is a monotonic one, then it lies mainly in the 
bundle limited by the rise functions of the j-th and p-th order. (The meanings 
of j and p are defined by Eqs (19) and (20»). 

6° If the poles of the transfer function do not lie close to each other, 
then the slope of the phase plot is relatively small, and this is valid for the 
rise functions, too. In this case the phase plot runs uniformly through the 
bundle of the rise functions described in statement 5 0. 

7° If there are more poles close to each other which can be recognized 
by the steeper slope of the phase function, then the slope of the rise functions 
is also steeper. In this case the phase plot runs less uniformly thorugh the 
bundle of the rise functions. It removes faster from the rise function to which 
it fits on the right hand side (t -+ oo) (see Figs 4 or 9). 

8 0 The monotonic phase function intersects the first-order rise function 
exl(t) in the region 3 > exl > 2. If phase function fits to exit) on the left-hand 
side, then <f;(t) leaves exl(t) in the above region. 

9° The phase function intersects the second-order rise function o:.it) in 
the region 2 > CX:l(t) > 1. 

V. Conclusion 

The rIse function gives a full description of the dynamics of a linear 
system in the time domain. Except for the gain, the information content 
of rise functions is equivalent to that of step responses. 

If a logarithmic scale is used for the argument t of the rise function 
then the shape of the rise function plot has sevcral similarities to the phase 
curve of the Bode plot. 

The rise functions may be of use for control system analysis and synthesis 
as well as process identification methods. Some examples will be presented 
in subsequent papers. 
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Appendix i 

Vn 
/In = In ,n-1 

• = Int 

dUn dUn dt 
(IT=dt'dT 

dUn =~ln~= ,n-1 
dt dt ,n-1 Vn 

dt 

V n_ 1·,n-1 - (n-1) t"- 2 V" 
t2(n 1) 

-=t 
dT 

From the above three equations: 

dUn = t Vn- 1 _ (n-1) . 
d. Vn 

Appendix IT 

The transfer function of the system is 

W(s) = bm8
m ~ ••• + b1s 11 . .-!,. 
ajsJ + ... a1s I 1 SI 

Q. E. D. 

(21) 

By long division we can expand this function to an infinite power series with respect to lis: 

k=j+i-m 

(22) 

(23) 

(22) is the Laurent series of the transfer function which approximates the latter in the vicinity 
of s -+ 00. The corresponding step response is 

(24) 

According to the final value theorem this is a Taylor series of the step response of the system, 
which approximates the latter in the vicinity of t-+O • 

The power series of the generalized n-th and (n-l)-th order step response are 

(25) 

and 

V ( ) Ck tk+n-2 + Ck+l k+n-l + n-l t = (t t ••• (k + 11. -2)! k + n - 1). 
(26) 

Substituting (25) and (26) into the expression of the rise function 

Ck k+n-l + Ck+l k+n + 
(k+n-2)! t (k+n-l)! t ... 

Ck k+n-l + Ck+1 .k+n + 
(k + n - 1)1 t (k + n)l • .. . 

- (n -1) (27) 
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Since if t -+- 0, the second and further terms of the numerator and denominator can be neglected: 

--;-;-----;-_C-'k:!.·--;~ tk+n- 1 

IXn(t) = --,-(k_+-'--o;~;-,~---,2),-! __ _ 
t -0 -;-;---:----'n"--~7 tk + n-l 

(k + n-l)! 

(n 1) = (k + n - 1) - (n - 1) = k = j + i-m (28) 

Q. E. D. 

Eq. (15) can be proven similarly: Now the transfer function (21) will be expanded in power 
series in the vicinity of s = O. For this reason a long division is needed by writing both the 
numerator and the denominator according to increasing power: 

W( ) _ 1 + b1 s + bzs
2 + .. . 

s - si + a1si+1 + a 2s iH + .. . 
The result of the long division is a power series of the following form: 

W( ) 1 d(-i+l) I I d d 
s =-:-+~T"'T 0+ I S + ... 

5-0 Si Si 
(29) 

The corresponding series of the step response approximates it at t-= . 

Ilj d(-i+l) t i - 1
, . 

v(t) = -:-r- + C _ 1)1 T· •• T do + .1(/) 
l. l • 

(30) 

.1(t) denotes the sum of the first and higher order impulse (Dirac) functions corresponding 
to the positive power members of Eq. (29). 

Due to t ..... 00 , on the one hand, .1t can be omitted, and on the other hand, the first 
tlJi! term maiorizes the other terms. So for sufficiently high t values, the system can be 
regarded as an i-fold integrating element and therefore, according to Eq. (7), also Eq. (12) 
holds. 

Note that no series expansion can be done if the system has no poles in the right half 
plane, because in this case the Laplace transform does not converge at s = O. This fact 
restricts the validity of Eq. (12) to system having no poles in the right half plane. 

Summary 

A new function named "rise function" is defined. 
The rise function gives a full description of the dynamics of a linear system in the time 

domain. Except for the gain, the information content of rise functions is equivalent to that 
of step responses. 

If a logaritmic scale is used for the argument t of the rise function, then the shape 
of the rise function plot has several silnilarities to the phase curve of the Bode plot. 
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