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I. General remarks 

The problem of modelling can be defined as follows: 
Given a physical system S. Find or construct another physical system 

:M which substitutes for S in some sense. M is termed as the model of the 
system S. It is important to note that the behaviour of M does not correspond 
to that of S in every respect. Thus a real physical system may have several 
models, which substitute for different properties of the system. 

Of course, it is often not needed to construct the model as a real physical 
system, it is sufficient to describe the substituted properties of S by some 
mathematical function or algorithm. 

In this paper a modelling procedure is presented for single variable 
open control loops. The structure of the model should be as simple as possible. 
In this case the numher of parameters to be determined is small, and due 
to this the computing time of modelling is like"wise small. This is a reasonable 
advantage in real time applications. 

The structure of an adequate model depends on the nature of the system. 
To demonstrate the modelling procedure, let us take into account those 
systems which occur most frequently in process control. The open loops of 
such control systems are proportional or integrating, their step response is 
a time function, mostly positive definite monotonic or increasing damped 
oscillation. Although these systems may be nonlinear, after linearization 
their frequency characteristic exists. A peculiarity of the Bode plot is that the 
amplitude as well as the phase plot tend to decrease. This statement does 
not exclude a short increasing part of these plots, the phase plot, however, 
intersects the value rp = - n only once. This means that in the following 
no conditionally stable system will be taken into consideration. 

By synthetizing control loops from such systems a 1 to 1.5 decade 
portion of the frequency characteristic plays a decisive role on the transient 
response of the closed loop. This portion lies around that frequency Wc for 
which the phase angle is -no This is the middle frequency portion (M. F. P.) 
of the frequency characteristic (Fig. 1). 
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Fig. 1. :M = model; S = system; M. F. P. = middle frequency portion 
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Transfer function of the model W m(5) 5(1 + 2 . 0.71 . 4.65 + 4.6~s~) 

1 + 105 
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It appears practical to choose a model, the frequency characteristic 
of which can be matched 'vith the characteristic of the system at least in 
this region. This means that the slope of the amplitude plot of the model 
has to vary at least between -20 dB/decade and -60 dB/decade and, 
accordingly, the phase plot between -n/2 and 3nj2. The simplest structure 
which fulfils this requirement is 

Q ~[dBjR 

20 

Wm(S) = T (T2 2 Am 
mS mS 2CmT mS + 1) 

Q [dB] 

20 

- 4 !-----+---+----+.........::>'<F---i-- 2 ~~--~~~~~~~~2 
log w 

-20

1 
_LQ 1 

J 

logw 

-20) 

-40 t 
I 

-60f 

6 

l 
1 .... 0,3 
2 .... 0.5 
3 .... 0.71 
4 .... 1 
5 .... 1.45 
6 .... 3.61 

@ 

lFfl -3 -2 -1 0 1 
I I 

'----'0-2 

-eJ 
1Ws wrn! log LV 

I 
X I , 

I 

tp 'oj -3 -2 -1 o 
b 
logw 

-80 

-160 
---1 -180 L 

Ta 

-2J -2t;D 
I 
I 

I 
-320 

1 

-
320r ~ 

® @) 
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The middle frequency portion of the Bode plot of such a model can be matched 
well v.ith that of the system if not more than three poles of the latter lie 
close to each other. (If this condition does not hold, then the phase plot may 
be so steep that only a less simple model can be used. An example ""ill be 
presented in Sec. 4.) The simple model structure according to Eq. (1) has the 
advantage that the shape of its Bode diagram depends only on the damping 
fector 'm. The gain Am affects only the vertical position of the amplitude 
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Fig. 3. The transfer functions of 1\{ and S are the same as in Fig. 1. 
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plot of the Bode diagram, and has no effect on the phase plot. Changing 
the time constant T m' only the horizontal position of the amplitnde and phase 
plots are shifted, but their shape is not modified at all. 

Fig. 2/d demonstrates that the slope of the phase plot of such a model 
structure is approximately constant in the vicinity of lIT m' and its value 
increases if the damping factor 'm decreases. 

Each of the three model parameters can be determined in three separ­
ated steps. 

First, the damping factor 'm is selected so that the average slope of 
the phase function of the system be equal to that of the model in the middle 
frequency region (Fig. 2/b). Thus the phase plot of the system is approxi­
mately parallel to the phase plot of the model in this region. By proper selection 
of T m it is, therefore, possible to fit the two phase plots close to each other 
(Fig. 3). 

To determine the third model parameter Am' a comparison of the 
amplitude plots of the system and the model, respectively, is needed (Fig. 2ja). 

The question arises: in what respect can the system be replaced by 
such a model. However, the question will not be answered here. A similar 
modelling procedure will be presented directly in the time domain with the 
help of the rise function [1], and discussed will be the validity of the procedure. 

2. ~:[odelling procedure in the time domain, nsing the simplest model 

In [1] the first- order rise function of a linear single-input 
output system is defined as 

cx(t) = t· dv/dt 
v 

where 1: = v(t) is the step response of the system. 

single-

Suppose that the first- order rise function cxs(t) of a system is given. 
For this system we try to choose a model having a transfer function according 
to Eq. (1). The modelling is based upon the fitting of the rise function 'Y.m(t) 
of the model to that of the system <Xs(t) in a suitable time domain. 

In Fig. 4 the rise functions of the model are plotted. Two properties 
of the rise functions are to be observed: 

F The value 'Y.m{t) = 2 is reached approximately at t ~ 2.6 T m' 

2c Using the logarithmic scale for the time variable, the middle portions 
of the rise functions are approximately linear and their slope increases 
when the damping factor Cm decreases. 

Fig. 5 demonstrates how the average slope of the middle portion of the 
rise function mm depends on the damping factor 'm. mm is the slope of the 
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chord betwef"n the values rt. = 1.6 and rt. = 2. These values have proved to 
be adequate for modelling a \\ide class of control loops. 

Remark the main advantage of the model according to Eq. (1): namely 
m depends only on Cm. If T m changes, then the plot of the rise function 
is only shifted horizontally without changing its shape. 

Let t(xl denote that moment in which the value of the first-order ri~e 
function is exactly rt.(t(x») = x. It is obvious that the ratio t(xl/Tm depends 
only on Cm. 

For instance, the relation 

(2) 

is demonstrated in Fig. 6. If the functions 

(3) 
and 

t~'8) = !(Cm ) 

m 

( 4) 

are stored numerically in a digital computer, then the two parameters of 
the model can be computed very fast. For this reason one has to know the 
middle portion of the rise function of the system to be modelled (Fig. 7). 
Then the average slope in this region lns of the rise function (i.e. the slope 
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of the chord intersecting the rise function at the values c!.s = 1.6 and c!.s = 2) 
will he calculated 

Lla: 0,4 
m - --- - ---'---

S - Llln t - In [t(2)/t(1,6)1 
(5) 

The damping factor of the model must he chosen so that the average slope 
of the rise function of the model he equal to that of the system: 

0:=1,6 

LIOC=O,4 

~~=2~----~-----~~---~~-lnt 
lnt(1.'6) 

Fig. 7 

Thus the damping factor can he determined hy the function demonstrated 
in Fig 5. 

The next step is the determination of Tm' According to Eq. (2) and 
the precalculated functionf('m) (see Fig. 6) 

T = t(1,S) 

m !('m) 
(6) 

This procedure fits the rise function of the system to that of the model in 
the interval where both rise functions satisfy the inequality 

2 > et:(t) 1.6 

Rememher the following property of the rise function (Ref. [I]) 

a= 
cl In v(t) 

cl In t 

where v(t) is the step response. Consequently 

cl In t dIn t 
(7) 

'wherevm and Vs are the step responses of the model and of the system, 
respectively. 
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By integrating Eq. (7) from tU.6) to t(2) with respect to In t we get 

Thus 

where 

k= 
v s(t(1,6») 

eCvm(t(1,6») 

229 

(9) 

Eq. (9) expresses the fact that the step response of the system differs from 
that of the model only hy a constant factor. Therefore, hy appropriate choice 
of the model gain Am' the step response of the model can approximately he 
fitted to the step response of the system. In order to do this, a single value 
of the step response of the model has to he made equal to that of the system. 
Tests have shown that setting 

Vm(t(l,S») = VS(t(l,S») (10) 
gives good results. 

It is therefore suitahle to precalculate the values of Vm(t(l,S») , But hy 
fixed Cm every value of vm is proportional to the gain Am' and thus the ratio 
vm(t1,s»)/Am depends only on Cm. Making use of the precalculated function 

Vm(t(l S») (~) 
-""''-'--''::'':'~=g!'m 

Am 
(11) 

which is plotted in Fig. 8, we can find the gain Am: 

(12) 

l..,-----\~o__--_---_ .tm 
0.1 0,5 1 10 

Fig. 8 
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Let us summarize the modelling procedure: 
Three data of the system to he modelled are needed 
IS the average slope of its rise function ms in the interval 1.6 < ::!.s(t) < 2, 
2C the time t(1'8) at which the value of the step response of the system 

is ::!.s = 1.8, 
3: the value of the step response of the system at this moment 

L's(1,8) = v S(t(1,8»)' 

The three constants (~m' T nl' A m) of the model of the structure according 
to Eq. (1) can be obtained in three separated steps. In each step one of the 
three precalculated functions demonstrated in Figs 5, 6 and 8 is needed. 

IS Using Eq. (3) and setting mm = ms' the damping factor:m can be 
obtained (Fig. 5). 

2;:: Next, Tm ,~ill be calculated by Eq. (6) (Fig. 6). 
3: Finally, the gain Am ,,,ill be obtained from Eq. (12) (Fig. 8). 
One advantage of this modelling procedure is, that only that part of 

the rise function of the model is needed for which ':I.s > 1.6. 
Of course, the time function of the model does not substitute for the 

end part of the transient of the system. Nevertheless, tests have shown that 
selecting the simple model structure according to Eq. (1) and fitting its rise 
function and step response, in the time domain where 2 > ':I.(t) > 1.6 holds, 
an adequate model can he constructed for a wide class of system structures. 

For other systems a more general model structure is needed and one 
has to fit the rise functions through a wider time interval. However, the 
constants of the model can be determined by a similar procedure. The use 
of a more general model ,~ill be discussed in Sec. 4. 

3. The validity of the simplest model 

It is to be noted that the signal transfer properties of the model differ 
from those of the system. It is important to choose some numerical "figure 
of merit" characterizing the goodness of the model. 

The main object of the modelling procedure is to analyze and synthetize 
the transient of the closed loop containing the system. In this respect the 
estimation of the model could be based upon the comparison of the transient 
hehaviour of the closed loops built up from the model and system, respectively. 

The comparison can be done by several usual criteria (maximum over­
shoot, settling time, various integral criteria, etc.). These criteria are not 
equivalent. 

Therefore, as a first step, we shall use a fairly simple method to estimate 
the "goodness" of modelling: it is evident that by changing the gain of the 
system, the gain of its model changes proportionally. Let the gain of the 
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system be set so that the closed loop of the system be on the limit of stability 
(this is the "critical gain" of the closed loop system). Of course, the model 
of this system will not be on the limit of stahility, except if the structure 
of the system is exactly the same as the structure of the model. 

In general, the gain of the model has to be multiplied by a factor c to 
get the closed loop on the stability limit. Ob\iously, it is a necessary (but 
not sufficient) condition of the goodness of a model that the value of c be 
near unity. 

Therefore, c is a possible estimate of the goodness of the modelling. 
To test the modelling procedure, a general structure of systems has been 
modelled. The transfer function of the system was 

i = 0 or 1 

One pair of the time constants T j might be conjugate complex. 
In this case 

> 

K"r II (1 + sr,,) 
W ( ) 1<=0 sS = --------3 ----

si(I + 2CTs + T 2s2) If (1 + sTJ 
j=l 

(l3a) 

(I3/b) 

The constants ofthese systems have heen varied widely. The gain was 
set to its critical value, by \vhich the closed loop of the system was on the 
limit of stahility. Approximately 300 tests were carried out \vith various 
structures and system constants. 

The parameters of their model of structure 

were evaluated. In addition, the value of c was determined. 
The data of some tests are tahulated in Tahle 1 for demonstration. 

As a first guess we exclude from the models considered "good" those for 
which the inequality 

0.8 < c < 1.2 (14) 
does not hold. 

This means that we do not accept a model of a system heing on the 
limit of stahility if the gain of the model differs from its own critical value 
hy more than 20%. 
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Table I 

I \ i-I O 
i- 0 
1- 0 , 0 

1= ~ 
. - 1 
1-

0.5 : 
0.5 I' 2 
0.5 -

I 

1 
o 
o 
o 

I 

1.81 I 0.86 
0.58 0.20 
0.53 0.49 
0.30 0.01 
0.37 0.60 
0.07 0.19 
0.14 0.73 
0.09 0.62 
1.37 0.53 
1.35 0.59 
0.42 0.53 

I =! I ~ ~:~i I 

1

-1- 0 0.47 I 

0.74 
0.09 
0.54 
0.73 
0.51 

- - 11 0.39 
- - I 1 0.058 

0.92 I 
0.95 
2.01 
0.46 
4.80 
8.15 

11.04 
14.28 
0.67 
0.78 
2.89 

I 2.48 1 

11.40 , 
2.42 I 

3.98
1 

20.13 

I I 
Am.b-

mm=m, C=-::t,;" 

1.87 
0.42 
0.49 
0.04 
0.25 
0.05 
0.13 
0.09 
1.58 
1.51 
0.37 

Amkr 

0.60 
2.02 
0.45 . 
0.37 I 

0.050 I 

I 
0.79 11.03 
1.76 0.71+ 
1.20 0.92 
2.42 i 0.15+ 
1.04 1

10

.99 
1.79 0.65+ 
0.90 0.93 
1.02 10.91 
1.14 11.16 
1.06 i 1.12 
1.13 ! 0.86 

i 
0.89 i 0.97 
2.07 l0.49.-;-
1.12 10.95 
0.90 10.95 
1.17 10.87 

Of course, further investigations are needed to decide whether these 
models are really "good". Putting this investigation off, we presume that 
models satisfying condition (14) are "good". But this condition has no 
practical sense, because the critical gain of the system to be modelled is not 
known, and thus the value of c cannot be determined. 

Since the modelling procedure is done in the time domain, practical 
significance comes to such a typical performance index 'which can be deter­
mined directly from some time function of the system. The average slope ms 
of the rise function of the system in the region 1.6 ::;;: rxs ::;;: 2 (which is given 
in Eq. (5» was found to be such an appropriate index. Remember that the 
damping factor Cm of the model has been determined from ms with the aid 
of the precalculated function given in Fig. 5. 

In Table 1 the values of ms are tabulated, too. On the strength of the 
tests it has been recognized that the value of c generally satisfies inequality 
(14) if the slope does not exceed 1.2-1.25: 

Llrx 
ms = --< 1.2 -:- 1.25 

Llln t 
(15) 

Since the existence of the above condition can be established easily 
from the time function of the system, the applicability of a model of a 
structure according to Eq. (1) '\vill be decided through the value of ms' 

The goodness of the modelling procedure was proved by the following 
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co.nsideratio.n: Three term (PID) co.ntrollers were selected to. vario.us systems, 
and the transient reSPo.nse of the closed loop was plotted by an analo.gue 
co.mputer. The co.nstants o.f the contro.ller were set to make the response to. a 
step change of the reference input satisfacto.ry (in our case the rise time 
should be a minimum, and the first o.vershoo.t 10%). The same contro.ller 
was applied in the closed contro.lloop o.f the mo.del, and its transient response 
was compared with that of the system. 

Some examples are shown in Figs 9-16. On diagram a) the open 
Io.o.P step reSPo.nses of the system (S) and model (M) are plotted. The gain 
of the system was set on its critical value. On diagram b) three curves are 
plotted. S and M deno.te the step reSPo.nse o.f the closed loop of the system 
and that of the mo.del, respectively. C is the step response of the controller 
used to co.mpensate the contro.lloop of the system as well as that of the mo.del. 

From these plots it can be co.ncluded that the initial parts of the transients, 
including the first half perio.d, run clo.se to. each o.ther. Of course, the end part 
o.f the transients may differ, mainly if the system is a proportional one 
(co.ntaining no integrating element). This is o.bvious, because the model itself 
is integrating. 

Let us summarize the main Po.ints o.f our investigations. The time 
interval where the value of the rise function of a system lies between approx­
imately 2 and l.6 designates an impo.rtant part of the step response. Namely, 
this part has the main influence on the rise time as well as on the first o.ver­
shoot of the transient of the closed co.ntrol loop. Thus it is reasonable to 
term it as the "decisive time interval" of the step reSPo.nse. The decisive 
time interval is analogous to the middle frequency portion of the frequency 
response, i.e. this is the Po.rtio.n which influences the ahove-mentioned features 
of the transient response of the clo.sed loop. Therefo.re, if a mo.del is cho.sen 
in the way that its step resPo.nse be clo.se to. the step resPo.nse o.f the system 
in the decisive time interval, then the initial part o.f the transient response 
of the clo.sed 10o.P can be synthetized by means of this model. 

It is to be no.ted that the model o.f structure (1) is applicable only if 
the average slope of the rise function of the system in the decisive time 
interval is not greater than l.2-1.25. In this case the damping factor of 
this most simple model is not less than Sm = 0.45-0.5. Else Cm would be 
smaller, but a strongly o.scillating model cannot stand for a system having 
no oscillating properties. Thus, in this case a more general structure is needed. 
If the model of structure (1) is applicable, then the proportional gain and 
derivative (rate) time of the control loop can be determined with its aid. 
However, this model cannot be used for setting the integration time. 

A method of setting the controller parameters and the extension of 
the model structure, when the simplest one - according to Eq. (1) - is not 
applicable, ,~ill be discussed later. 

2 
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4. A more general model 

If inequality (15) does not hold, then the time delay of the system 
is of such a character that the control loop cannot easily be compensated 
with a PID controller. Therefore, a more general model is needed. In this 
case the following model structure turned out to be appropriate: 

(16) 

The rise function of such a model can be steep enough ",ithout choosing 
a very small damping factor. 

The shape of the rise function is influenced by two parameters {{3 and 
Cm}. By changing T m' only the position of the rise function is shifted hori­
zontally. The parameters of this model can he determined by the same method 
as that used before. 

The only difference is that the shape of the rise function of the simpler 
model depends only on the single parameter Cm. Thus, the average slope of 
the rise function of the model in the domain 2 > :x > 1.6 could be related 
to Cm by a single variable function (Fig. 4). 

To determine both parameters (Cm and (3) of the more general model, 
two slope values are required. Therefore, instead of a single variable function, 
a vector-vector function 

in = m(p) 
is to be precalculated, where 

is the parameter vector, and 

the vector of two average slopes. 

and 

From numerical iDvestigations it appeared advisable to choose 

0,4 
m 1 = ---'---

In [t(2/t(1,6)] 

0,3 
In2 =-----

In [t(l,6)/t(l,3)] 

(17) 

(18) 

(19) 

(20) 

(21) 

Thus nil and 1112 are the chords of the rise function between the values 
rx = 2 ... 1.6 and :x = 1.6 ... 1.3, respectively (Fig. 17). 

The vector-vector function (18) has been precalculated and tabulated. 
The parameters have been varied between the limits 0.2:::;;: Cm ::;;: 0.7 and 
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o ::;: {J < 2.6. The function in = m(p) is presented in Fig. 18. The precalcu­
lated points are connected by straight lines. 

With the help of the precalculated function an individual parameter 
vector ({J, Cm) can be related to every value of the vector (~, m 2) of the 
average slopes. Only a linear interpolation is needed on the basis of three 
precalculated values of the function lying in the environment of this vector. 

The steps of the modelling procedure are as follows: 
i) Measuring or calculating the rise function of the system, the average 

slopes m1 and m 2 according to Fig. 17, have to be determined. 
ii) Regarding ~ and m 2 as the corresponding characteristics of the 

model itself, from the precalculated and tabulated function m = mCjj), the 
parameters {J and Cm of the model are calculated, using linear interpolation. 

ill) It is evident that for any 7. the ratio t(~)/T m depends only on {J 
and 'm. (Remember that t(e,,) was previously defined by the follo"\ving relation: 
(1. = (1.(t(,,)). Selecting for 0: an appropriate value - in our case 7. = 1.6 
turned out to be such - the function 

t~'6) = fl({J, Cm) 
m 

(22) 

has been precalculated. Then we have to determine tu,6) from the rise function 
of the system and substitute it into Eq. (22). Thus 

(23) 

This results that the point (1. = 1.6 of the rise function curve of the system 
coincides with that of the model. But in the previous steps the slopes ~ and 
m 2 of the rise function of the system and the model, respectively, have been 
made equal. The chords having the slope ~ and m 2 intersect each other 
just at the point 0: = 1.6 (Fig. 17). Therefore, the points (1. = 1.3 and (1. = 2 
of the rise functions of the system and the model coincide as well. The 
coincidence of three points of the rise function makes it certain that the 
rise function of the model fits to that of the system in a "\vider region. 

iv) In the above region the step response of the model having an 
arbitrary gain Am differs from the step response of the system by a constant 
factor: 

(24) 

Am is to be determined so that c = 1. Taking into consideration that the 
ratio vm(t(~»)/Am depends only on {J and Cm' it is reasonable to precalculate 
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and tabulate the function. 
f)m(t(Gt») 

Am 

Setting f)3(t(Gt» = f)m(t(Gt» Am can be calculated from this function. 

@ 

Fig. 19. Wm1 = 8(1 + 2 . 0.18
0
:
3
{.48s + 1.48282) ; 

0.46 
Wm2=--~~~~~~~~~~~~~~~ s(1 + 0.27s) (1 + 2 . 0.31 . 1.33s + 1.332s2) 

5.02 
(1 + 2s)(1 + 4s)(1 + 2,0.78 +82) 

W _ (..L 1 I 8' 1.45 ) 
c - 0.5 1 I 4.558 I 1 + 0.148 

241 

(25) 

The goodness of this model can be tested by the method used previously. 
Table 2 presents some illustrative examples. Systems have been modelled 
by the model-structure according to Eq. (16). The slope lli-1 defined by Eq. (20) 
does not satisfy inequality (15), therefore the simplest model structure 
according to Eq. (1) cannot be applied. However, for a comparison, the 
factors Cl related to this improper model have been calculated. It can be 
seen that their values are far from unity. Using the more general model 
structure according to Eq. (16), a much better figure of merit (expressed 
by the factor c2) has been achieved. This model gives good results even for 
those systems which are difficult to compensate (for instance, a system having 
five equal poles). Among the examples there are two systems having the same 
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Table 2 

I 

i 

I I 
WB (s) '"' Am AmKB I Trn {J Cm Cl c. 

.2.885 
2.42 0.391 0.397 11.072 [ 0.597 1-0.209 I 0.15 1.013 

(1 + 8)5 
I I i I 

4.052 I i 

(1 + s)' (1 + 48) 
2.08 0.354 0.364 1.46 ! 0.637 i 0.289 '0.35 1.028 

I i 
: I 

10,698 i i 

(1 + 5)' (1 + 165) 
1.52 0.423 0.419 1.868 i 0.538 ! 0.466 0.75 0.991 

i I 5,784 
1.65 0.268 0.265 0.73 0.988 

(1 + 5)3 (1 + 45) (1 -i- 165) 
2.55 I 0.479 ! 0.376 

i I 
4.5 

2.13 0.451 0.423 1.189 0.454 
1

0.
271 0.33 

(1 + 5 + 52) (1 + 25) (1 + 48) 
0.938 

5.021 , 
i 

(1 + 1.415 + 82) (1 + 25) (1 + 45) 
1.79 0.463 0.439 1.382 0.27 i 0.319 0.63 0.948 

0.75 
1.58 0.75 0.75 1.003 1.051 0.5 0.63 1.0 

5(1 + 8 + 52) (1 + s) 

0.21 
1.44 0.212 0.216 3.944 1.073 [0.515 0.79 1.017 

s(1 + 45 + 1652
) (1 + 5) 

0.186 
1.67 0.188 0.192 3.786 2.746 ,0.46 0.61 1.021 

8(1 + 45 + 168)2 (1 + 5)2 

structure as the model (Nos 7 and 8). It is remarkable that the method 
reproduces the system parameters as the corresponding parameters of the 
model'with high accuracy. 

In Fig. 19 the step responses of a system and those of their models 
are compared. S denotes the step response of the system lli1, and lVI 2 those 
of the models according to Eq. (1) and Eg. (16), respectively. It can be 
recognized that the .Iv! 2-S fit better to S. Of course, one may choose other 
model structures, too, but the modelling procedure can be done in a similar 
manner. 

Summary 

A mod~lling procedure is presented for linear single input-single output systems. 
The modelling is based on the step response of the syste:rr, which is expressed by the "rise 
function", a new function in the time domain containing the full information of the system 
dynamics. 

The model has a fairly simple structure. The modelling is carried out by fitting the rise 
function of the system to that of the model in an appropriate time domain, which has the 
greatest influence on the transient response of the closed control loop. 

For testing the procedure, a comparison is made between the transients of the closed 
control loops of the systems and those of their models compensated by the same controller. 
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