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1. Introductiou 

The study deals with the characteristic properties of such a feedback 
system of second order by its signal-transfer properties in which there is, 
in principle, a possibility for several equilibrium points to develop. The second­
order system is considered to consist of a 'controller' and of a 'controlled 
process', and it is assumed that in the signal transfer of both the controller 
and the process a signal delay is caused by some energy storage element. 
This approach largely simplifies the discussion and offers a possibility of 
using the concepts and terms of control engineering. 

2. Notations and Terms 

Symbols usual in mathematics will be used in the notation system. The physical 
variables denoted by small letters of the alphabet mean the generally arbitrary, single-valued 
functions of time t. x(t) stands for the time function of the physical variable and x(to) for the 
instantaneous value of the variable at the time t = to' The physical variable constant in 
time -will be noted -without any notation of the time: x is the value of the variable, constant 
(steady state) in time. The symbol .d ,dll be used to denote the change ,dth respect to the 
steady-state value: e.g . .dx(t) = x(t) - Xo is the time function of the change ,dth respect 
to the steady-state value Xo' For the denotation of vector variables a simple dash (-), and 
for the denotation of matrices the double dash (=) over the symbol -will be used. 

t 
x(t) 
y(t) 
a(t) 
z(t) 
q(t) = [x(t), y(t)]T 
u(t) = [a(t), z(t)]T 
g(x,y,ao) = 0 
!(x,y,zo) = 0 
Xb 
Xk 
tg {J 
tg 0: 

Xk = k(Xb)O 
Kh = tg 0: • tg (J 

= time 
= modified signal 
= controlled ;ignal 
= reference sig;;'al 

disturbance signal 
state vector 

= excitation vector 
static curve of the controller 
static curve of the process 
input signal of the opened loop 
output signal of the opened loop 
slope of the curve g(x,y,ao) = 0 
slope of the curve!(x,y,zo) = 0 
curve of the loop factor 

= loop factor 
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tg Y = tg et • tg {J 
A 

CP(') = eAt 

D(,1.) = det (,1.1 - .4') 
,1.i 
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slope of the curve Xk = k{Xb) 

= state matrix (Jacobi matrix) 
= coefficient matrix (J acobi matrix) 
= transfer matrix 

characteristic polynomial of A _ 
= root of the characteristic polynomial (eigenvalue of A) 

3. Structure of the System Examined 

The block diagram of the second-order feedback system examined is 
shown in Figure l. 

The state equations describing the dynamic properties of the system are 

In a shorter form: 

a (t) 

I 

x(t) = g[x(t), yet), aCt)] 

):(t) = f[x(t), yet), z(t)] 

q(t) = liTq(t), u(t)] 

x(t) 

z (t) 

X.g(x,y,a) r-- yof (x,y,z) 

(1) 

(2) 

y(t) 

Fig. 1. Block diagram of the single input-single output nonlinear second-order system 

For the function g and fin state equation (1) the follo"\ving assumptions 
are made: 

- the function g and f describe the signal transfer of the elements 
realizable also constructionally, 

- the controller and the process have self-regulation. In the present 
case this means that the process gives a constant response y to constant 
input signals x and z, and the controller gives a constant output response 
x to constant input signals y and a, 

the function g(x,y,a) = 0 and f(x,y,z) = 0 describing the steady­
state conditions of controller and process exhibit "usual behaviour" (they 
are single-valued, can be differentiated, etc.). 
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4. Stability of the Equilihrium Point 

Let us plot the characteristics related to the steady-state condition 

g(x,y, a) = 0 

f(x, y, z) = 0 
(3) 

of the controller and of the process in the state plane x r-.J y with constant 
input signals u = [co, zof (Fig. 2). The state vector qo = [xo,yo]T developing 
in the intersection point 0 of the characteristic curves will be the equilibrium 
position of the nonlinear system if, "with t -+ 00 , the solution q(t) of differential 
equation (2) satisfying the initial condition q(O) converges to q(oo) = qo, 
as it is ShO'W11 in the state trajecto:;:y of Fig. 3. 

In the general case it is complicated to determine the stability con­
ditions, since stahility, due to the nonlinearity of the function g and f, depends 
also on the excitation signal ii(t) and on the initial condition q(O). With 
restriction to small changes, one can work, after transformation and lineari­
zation ofthe coordinate placed into point 0, also with the help of the linear 
approximatio21 

Liq(t) = .4 . ~q(t) B . ~u(t) (4) 

f(x,y, zo)-O 

g (x,y,Qo) = 0 

x 

Fig. 2. Equilibrium operating point of the feedback system in intersection;:; of the steady­
state curves 

_ _ [ .1 
u=u = a 7 I o O-OJ 

Q1(to ) Xo x-Ql 

Fig. 3. Motion of the state vector ij(t) in the state plane toward equilibrium pont O. The iuitial 
condition is ij(to) and the excitation !lo is constant 

4 



266 B. SZILAGYI 

corresponding to (1). This equation describes the motion conditions of the 
motion in the environment of the operating point 0 according to Eq. (1), 
and in this en,ironment 

[

Og I 

~ ox 1,0 A= 
of I 

-I 
ox 10 

13= 
o 

L 

"'a 1-, 2..1 I 
oy 10 I 

, is the state matrix of the system, 
of i i -I i oy OJ 

-, 

8; I I;, the ,oemdent ma',;, of the "d'a';o"" 

OZ 10J 

Solution of the state differential equations (4) is 

t 
Llq(t) = <P(t) . Llq(O) + S <P(t - T) . BLlu(T) dT 

o 
(5) 

If the motion is generated only by the initial conditions q(O) (i.e. Llu(t) = 0). 
then the systems come into equilibrium in the point qo if 

lim <P(t) Llq(O) = 0 (6) 
t~'" 

The equilihrium point marked hy the index 0 is then defined as a stable 
equilihrium point. To satisfy condition (6), the state matrix A must have 
eigenvalues 'Nith negative real parts (Re;'i < 0), since in this case - with 
t ~ = - exp()'i . t) -?> 0, and thus all the components of ct>(t) disappear. 

The eigenvalues of the state matrix are the solutions of the characteristics 
equation 

whose both roots contain a negative real part, if 

gx + fy < 0 
gxfv 

fxgy < 1 
fygx 

(7) 

(8) 
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To the analysis of conditions (8), on the basis of expression (4), let us 
draw the block diagram (Fig. 4) giving a linear approximation of the system. 

Since, according to our assumptions, both the controller and the process 
have separate self-regulation, this means that the feedback of the integrating 
elements can be only negative, for the case gx > 0 and fy 0 would exclude 
the possibility of self-regulation (Fig. 5). 

Fig. 4. Block diagram giving a linear approximation for the vicinity of the equilibrium point 
of a nonlinear system 

not self- regulating 

S ~r----':1 v(!lt) -q]T 

Fig. 5. Demonstration of self-regulation 

Hence follows that gx < 0 and fy < 0, and thus the first inequality 
condition of (8) is fulfilled automatically. The second condition of inequality 
imposes a restriction on the loop factor of the feedback system, since the 
quotient f"(gylfygx in it is the loop factor in compliance 'vith the expression 

(9) 

4* 
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vlritten on the basis of Figure 4. In addition, considering that 

af 
ax __ d)': ---'- = t"u Xo ; 
af; dXii 

8yo 

Ocr ! _°_1 
ay io 
ag i 
OX 10 

dx ! = --! = to' 130 
d : " y' 

(10) 

an expression will he ohtained for the stability condition of the working 
point 0 in accordance 'with 

K"o = tg Y.o • tg 130 < 1 (11) 

This expression is also geometrically easily interpretahle [1]. If, based 
on the characteristic curve of the process, the working point data of the 
feedback system 'were normalized to the value Y. = '7/4, the condition of 
stability could described also by the angle of the tangent ch'awn to the 
characteristic curve of the controller. Accordingly, the stability requires 
that the angle 13 lies in one of the intervals. 

o < 13 < nj2; nj2 < 13< :r 

It is expedient to distinguish between the cases shown in Fig. 6. 

I~ 
! 1- , 

I "'. 
I " 

1800 > (3 ) SOC 

tgd. . \g f3 < 0 
STAB:...E 

c 

t.X 

t9d,. t;;; ) 1 

LSO = 0: ) (j > 0 

G < t;~, . \g [j < 'I 
S~AB~E 

c. 

(12) 

Fig. 6. Possible tangents of the stable and unstable equilibrium points (Fig. a: negative: 
Figs band c: positive feedback) 

Working point stability, feedhack types and loop factor values in 
various cases 

.B Kh 
Stability of equi~ I, 

Feedback type Figure librium point I 
I 

;r/2 < i3 < ;r Kh < 0 stable negative 6/a 

;rj4 < (3 < ;r/2 Kn > 1 unstable positive 6(b 
I 

0< /3 < ;r/4 0< Kh < 11 stable positive 6/c 
I 
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The cases{3 = 'J"lj2 (Kh = co); {3 = 'J"l;4 (Kh = 1); (3 = 'J"l(Kh = 0); {3 = 0 
(Kh = 0) define special modes of operation, which 'will not be examined 
in the present paper. The root distribution of the characteristic equation 
for changes - = < K" < DO of the loop factor are given in Fig. 7 with the 
assumption of gx = fy = -l. 

The condition Kh < 1 of the working point stability can easily be read 
off from here, too: if this condition is satisfied, then both roots of (7) ",ill 
have a negative real point. 

ill 

I iJ 

IKhL""j ~~,o:~~;:VKh 
tbJ 2 

-1 

rm Im ~ 
-'2 -1 10 

-1 
I 

E?J L2 
~! 

I 
Fig. 7. Description of transient phenomena in the vicinity of the operating point with the 

help of the root locus plot 

5. Characteristic Curve of the Loop Factor 

Let the feedback system be opened in the signal path of x. Then xb is the 
input signal of the open loop, influencing the process itself. The signal 
appearing at the output of the controller is the output signal Xk of the open 
loop (Figure 8). 

n, 

b, 
Fig. 8. Interpretation of the loop factor curve Xk = k(xb) 
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In this case the function describing the steady-state conditions of the 
controller and the controlled process are 

g(Xk'Yk, uo) = 0 

f(Xb'Yk' zo) = 0 
(13) 

Expressing Yk = f*(Xb' zo) from. the second equation and substituting 
it into the first equation describing the controller's properties, one obtains 

(14) 

This equation defines the relation between the signals X k and xO' Supposing 
that Xk can be transformed into an explicit form, we get: 

(15) 

A graphical plotting of relation (15) in the coordinate system Xk '"'"' Xb 

will result in the characteristic curve of the loop factor (Fig. 8/b). This has 
the characteristic property that it intersects the straight x" = Xb at the input 
signal Xb = X O' and thus the output signal, too, ,,,ill be here x" = xo' The 
intersection point determines the coordinates corresponding to the equilibrium 
point marked by the index 0 of the feedback system, since - cloeing the 
system with such an input signal, one may obtain equilibrium state. 

The slope of the tangent drawn to the intersection point of X k = k(xb)O 
- and x" = xb is the operating point value of the loop factor: 

= tgyo 
10 

(16) 

If x = k(xb)(j decreases monotonically (K" < 0), the feedhack is negative 
and if it increases monotonically (i.e. Kh > 0), the feedback is positive. 

The stability of the working point can be descrihed also with the use 
of the angle )'0: the equilihrium point is stahle if Yo is not n/4 < Yo < n;2. 

If Yo > n/2, the feedhack is negative (Kl]o < 0), and if 0 < Yo < n i 4 the 
feedhack is stable positive (0 < K" < 1; See Fig. 9). 
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y 

Xo I----~ 

Xo x 

o. Negative feedbacK 

Y xk 

Zo 

Xol----~ 

x 

b. Unstable positive feedback 

y 

Zo 

x 

c Stcble pcsitive feedback 

Xk=Xb 

STABLE; ~ <0 
1BOo) 0'0> 90° 

k(xb) 

STABLE: Kh < 1 
0< 1;,< 45° 

'Fig. 9. Typical steady-state and loop factor curves of various systems 

6. The Feedback System ha"Ving l\'Iore than one Equilihrimn Point 
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Nevertheless, the functions g(x,y,ao) = 0 and !(x,y,zo) = 0 are both 
single-valued, and they satisfy the conditions mentioned in Part 3, the 
characteristic curves of the controller and process may intersect each other 
in several points (Fig. 10). In this case, evidently, also the characteristic 
curve of the loop factor Xk = k(Xb) '\vill intersect the straight X" = xb in 
several points, and the intersection points correspond to the possible equilib­
rium positions of the feedback system in the state plane X, y (Fig. 11). The 
stability conditions of the individual equilibrium points can easily be deter­
mined from the state matrix of the differential equation system giving a 
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linear approximation, or from the angles 0'.;0 and {JiO of the tangents drawn 
to the operating points or from the angles i'ia of the characteristic curve 
of the loop factor. 

When the stability conditions of one of the equilihrium points have 
been decided, the other points do not require any detailed analysis for stab­
ility, since it becomes e-vident that the equilibrium points follow each other 

y 

Fig. 10. Steady.state curves of controller and process 

x ' k 

Fig. 11. Loop factor curve 

in the order: .. , stable. unstable, stable, unstable etc. This simply follows 
from the cun-e of the loop factor Xi( = k(Xb)(j (Fig. 12) from which it can be 
read that two subsequent points with identical stability condition would be 
possible in multivalued functions, a case excluded from our considerations. 

The positive or negative feedback of a full feedback system with several 
equilibrium points cannot be spoken of in the usual sense. In the stable 
point S, in the system ,dth the equilibrium points ......... SLSL ....... . 
the loop factor is negative (1(h < 0; point SN), or, in the interval (0.1) a 
positive value (0 < 1(11 < 1; point SP). The block diagram of the environment 
of the operating point then exhibits a negative or positive, resp., feedback. 
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s 

ss/PP d SS/Pt,~ 

e. LLJPP 
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Fig. 12. lI1u1tivalued loop factor curves of systems having two equilibrium points of iuentica] 
type concerning stability 

In the points L the loop factor is larger than unity (Kh > 1, point LP), 
the unstable point can be only a result of positive feedback. 

Figure 13 shows the two possible plots of the characteristic curve 
xk = k(xb)o' In Fig. 13/a the stable points are related to positive, in Fig. 13/b 
to negative feedback in the em.ironment of the operating point. While the 
curve of the loop factor in Fig. 13/a increases monotonically and thus the 
positive feedback is decisive here, the monotonicity vanishes in Fig. 13;b 
and the positive and negative feedback appear alternatively. In the latter 
case the system as a whole has neither positive nor negative feedback. 
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Q. Points S hC1\!.e P feedback 

b Points S hcve N feedback 

Fig. 13. Loop factor curves of systems having more than one equilibrium point 

A similar observation can he made already in the case when at least 
one point of the set of equilibrium points is an equilibrium point of SN type. 
The curves of four characteristic loop factors of a system having SLSL-type 
equilibrium points can be seen in Fig. 14. 

7. Classification of the Feedback System according to First and Last 
Equilibrium Points 

The curve x" = k(xb)O of a feedback system having n equilibrium 
positions intersects the straight of unity slope in n points. The first and last 
points of this series of points may define a position of either stable (5) or 
unstable (L) equilibrium. The theoretically possible loop factor curves corre­
sponding to these positions are shown in Fig. 15. According to the properties 
of the extremal points of the series of equilibrium points, feedback systems 
can be classified as follow: 

a) SS-type (stable) systems. 
The first and last points are points defining a stable position with 
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u 

b. 

c. 

d. 

1" 2: '3 r 
S L S L 
P P P P 

1" 2: '3 T, 
S L S L 

P P N P 

l' '2 '3 '4 
S L S L 

N P N P 

:; 2: '3 7; 

S L S L 

N P P P 

Fig. 14. Possible loop factor curves of a system having four equilibrium points 

275 
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a a1. a2. 03. a4. 

be ., 
b bi. 

~. I jLl ",' I ',', P ~:.. l . 

s! i p 
i I 

cl c2. 

I/~ ~p 
i 

cl d2. 

Fig. 15. Classification of feedback systems, based on their loop factor curves. a: stable (type 
SS); b: unstable (type LL); c: unstable at the top (type SL) and d: unstable at the 

bottom (type LS) 

positive or negative feedback (systems of SS/PP, SS/PN, SSjNP, 
and SSNN, see Fig. I5/a). 

b) LS-type system (unstable at the bottom). 
The fiTst point is an unstable equilibrium point with positive feed­
hack, the last point is a stable equilibrium point 'with either positive 
or negative feedback (LSjPP, SL/NP Fig. I5/d). 

c) SL-type system (unstable at the top). 
The fh-st point is a stable equilihrium point with either posltl'Ve 
cf negative feedback, the last point is an unstable equilibrium 
point ,vith positive feedback (SVPP and SL/NP systems, see Fig. 
I5/c). 

d) LL-type (unstable) system. 
The first and last points are unstable equilibrium points with positive 
feedback (LLjPP system, see Fig. I5/b). 
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y 
y 

x 

~ x ! :._)_,2.2 h-
I I 

Go -= 5.69 
20 = 6.69 

Fig. 16. Trajectories of state and time responses of an LSLS-type nonli21ear syst~!ll. 
(Results obtained by measurement) 

Experiments carried out by analog and digital simulation have de­
monstrated that the trajectory ([(t) starting from any point ([(0) of the state 
plane of an SS-type stable system ·with t -->- = and constant excitation u(t) =u'J 
- tends into one of the stable equilibrium points ([0' The state planes of the 
partly unstable (LS and SL) or unstable (LL) systems, on the other hand, 
have such a domain from which the state vector of motions tends toward 
the infinite. 

Separation of the state plane into stable and unstahle domains involves 
considerable difficulties. Therefore, instead of calculating the separating 
curves analytically, it appeared more practical to divide the state plane 
x r-v y by a "raster network" and to start a trajectory from each of its corner 
points as the points defining the initial conditions. The network obtained 
in this way demonstrates the stability conditions of the equilibrium points 
and the separating curves of the stability domains. 
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8. An example 

Let the differential equations of the controller and of the process be 

x(t) = -X(t) - f(t) a(t) 

y(t) = -y(t) + X2(t) + Z(t) 

In this case the steady-state characteristic curve and the curve of the loop 
factor '\\<ill be obtained in accordance with Figs. 10 and 11. After having 
performed the examination in an analog and digital computer, the trajectories 
of Figs. 16 and 17 '\\<ill be obtained as measuring results on the analog 
computer and as numerical solutions on the digital computer. 

0 0 = 6.69 
Zo = 6.69 

Fig. 17. Trajectories of state and time responses of an LSLS-type nonlinear system. 
(Results obtained by measurement) 
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9. Summary 

The equilibrium points in a second-order, self-regulating feedback system conslstmg 
of "process" and "controller" and subjected to constant excitation lie in the intersection 
points of the static curves plotted in the state plane of the process and the controller. In the 
case of single-valued steady-state curves the successive equilibrium points of either curve 
follow each other in the order of stable (5), unstable (L), stable (5), etc. 

Depending on the stable or unstable character of the first and last points of the series 
of equilibrium points, the feedback system is stable (type 55), partly unstable (type 5L or 
L5) or unstable (LL). The stable system alone has the property that, if t - 00, the trajectory 
started from any point of the state plane ends in a point of stable equilibrium. In the state 
plane of a partly unstable or unstable system there is a domain, from which the trajectory 
tends to the infinite. 

The curve of the loop factor Xk = k(Xb'h; intersects the line of unity slope generally 
several times. The number of the intersections is equal to the number of the equilibrium 
points. If the curve increases monotonically, then all equilibrium points relate to the positive 
feedback. The system as a whole then operates in positive feedback. If in a series of equilibrium 
points consisting of several points there is a stable eqnilibrium point in the vicinity of which 
the loop factor is negative, the mcnotonicity of the curve Xk = k(Xbru vanishes, and then 
neither the positive nor the negative feedback of the system as a whole can be interpreted. 

The stable equilibrium points characterize a behaviour around the operating point 
corresponding either to the negative (Ko < 0) or to the positive (0 < Kh < 1) feedback, 
while the unstable points correspond exclusively to the positive feedback (Kh > 1). 
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