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Introduction 

Some natural electrical processes can be characterized by logarithmic 
or exponential curves. This fact offers the possibility of building electric 
circuits with output signals varying proportional to the logarithm of the 
input signals. Circuits having such static characteristics are termed as loga­
rithmic function generators. It is similarly possrble to build circuits in which 
the logarithm of the output signal is proportional to the input signal: such 
circuits are called exponential function generators. 

Fig. 1 

Logarithmic and exponential circuits are widely used in analogue 
multiplier circuits in a way that the input signals to be multiplied are led 
through logarithmic function generators to a summator, the output signal 
of which is connected to an exponential function generator (see Fig. 1). The 
operation of such a multiplier is based on the well-kno'wn identity 

x . :y = e(ln x + In y) (1) 

The input signals to be multiplied are represented by continuously 
varying voltage levels. The amplitude scaling can be performed by the method 
of normalized variables: 

(2) 

where 

x = actual value of the represented signal 
Xo = zero point value of the represented signal 

5 
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Xmax maximum value of the represented signal 
Ex actual value of the voltage representing the signal 
Exmax = permissible maximum value of the voltage representing the 

signal, "machine unit" 
x = normalized variable scaled to the signal. 

The variables y and z have similar interpretation. The values X o' X max ' 

Yo' Zo and Zmax have to be chosen in a way that the dimensionless relative 
quantities x, y and z may change in the interval -1, +1 [1]. 

Questions of the accuracy, stability and operational speed of loga­
rithmical function generators have been analyzed in detail in the surveying 
articles of RISLEY and SHEINGOLD [2], [3]. The theory presented by them 
starts from the assumption that the level of the input signal of the logarithmic 
element may change by several orders of magnitude during operation. 

However, the logarithmic multipliers have different properties. The 
operating range of the input signals never exceeds two or three decades and 
therefore, the theories mentioned above cannot be applied to these. 

The analysis presented below aims at defining relations useful in dimen­
sioning logarithmic multipliers meeting the requirements of static accuracy 
and operational speed by optimal solutions. 

1. The accuracy of logarithmic multipliers built from logarithmic and 
exponential function generators 

The real static characteristics will serve as starting points to the error 
analysis of the circuit. 

In the case of natural la"ws described by logarithmic or exponential 
functions, the argumentum of the function as always a dimensionless number. 
Therefore, the output voltage of the circuits can always be 'VTitten as a 
function of the quotient of the input signal and the reference voltage (EREF). 

The non-negligible shape error of the actual circuit can always be taken into 
account by stating the input (EOS1 ) and output offset voltage (Eod (see 
Fig. 2). Shape errors of other nature of the nonlinear static characteristics 
'vill be disregarded both here and further on. Thus the logarithmic character­
istic can be wTitten as 

E in - Eosl E 
Eout=K·ln + oS2 

EREF 
(3) 

and the exponential characteristic: 

K Ein - Eos 1 ...L E E out = . exp I 052 

EREF 
(4) 
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For the logarithmic elements of the multiplier circuit of Fig. 1 the 
indices of x or y, and for the exponential elements the index z can be used: 

E K I Ex Eos Ix E 
out x = x· n + os 2x 

EREFx 

(5) 

E I Ey E OSlY E 
out y = K y • n + os 2y 

E REFy 

(6) 

E K Elnz - EOS I Z E 
out z = z· exp + os 2z 

E REFZ 

(7) 

After summation: 
(8) 

where ax and ay are the weight factors of summation, and Eoss is the offset 
voltage of the summator. 

Substituting (5), (6) and (7) into equation (8), then multiplying both 
sides by Exmax . Eymax . E zmax• after reduction we obtain 

As can be seen, the form of the resulting characteristic of the multiplier is 

(IO} 

where KR is the resulting transfer factor; 
Eos Ix and Eos Iy are the reduced offset values characteristic of the inputs; 
p and q are real exponents; 
EOS2R is the offset output voltage. 
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The multiplier is statically accurate if E OS1X = Eos 1y = Eo; 2R = 0 and 

p = q = KR = 1. (ll) 

The static error is small if the offset voltages have low values, p, q and 
KR are constant and (11) is optimally satisfied. 

Thus the sources of static errors are as follows: 
a) A comparison of equations (9) and (10) shows that the multiplier 

"inherits" the input offset error of the logarithmic inputs, and the offset 
resultant of the output has the same value as the offset of the exponential 

circuit. 
b) A further error source may be the change of the transfer factor. 

Assume in the examination that in the basic condition the multiplier is free 
of any linearity error, i.e.: 

(12) 

In this case: 

K R = Kz' Ex max • Ey max . exp ---"_-=-=-_--'-_-"-':.=-___ .::..= __ -=-'=_ 

EREF X • EREF Y . E z max EREF Z 
(13) 

and the whole change of the resulting transfer factor caused by small changes 
around the working point lH is: 

(14) 

where the values of the partial derivatives in M can be determined from (9). 
Since the small changes around the working point can be considered to be 
independent probability variables, the resulting transfer factor can be 
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expected to have the uncertainty 

+ ( Eoss )2 + ( EOS 1Z )2]~ 
EREFZ EREFZ 

With the usual solution of summation the expectable changes of the 
weight factors of summation can be neglected as compared , .. ith the other 
factors. From (15) it is seen that, if the resultant of the offset volt ages is 
zero, an alteration of the voltage EREF Z does not affect directly the transfer 
factor. The relative change of the transfer factor is the sum of the relative 
change of the parameters Kz, EREF x' EREF y, and of the offset voltage changes 
(drifts) ",ith respect to EREF z. 

c) It is a peculiar problem of the logarithmic multiplier that a consid­
erable linearity error may occur [4]. The change of the linearity error of 
multipliers as a function of exponent p is shown in Table 1. 

Table I 

p 0.8 0.9 0.95 0.99 I 1.0 I 1 01 

0.37 I 0 -0.37 

1.05 1.1 1.2 

hlin [%] 8.19 3.87 1.89 -1.79 -3.50 -6.70 

The linearity error can be eliminated by stabilizing the quotients 

and 
ay' Ky 

q=~--"-

E REFZ 

(16) 

composed from the transfer factors of the logarithmic circuits, the input 
weight factors of the summator and the reference voltage of the exponential 
circuit, further by continuously adjusting one of the parameters influencing 
the quotient. 

Stability of the values of p and q can be ensured either by the stability 
of the singular factors or by a design in which the values of the numerator 
and the denominator change in the same manner upon the influence of dis­
turbing signals. 
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Since, e.g., the nominal value of p is Po = 1, small changes near 
the working point "\till produce, according to (16): 

Llp = Llax + LlKx _ LlEREF Z 1'8 LlKx _ LlEREF Z 

ax Kx EREF Z Kx EREF Z 
(17) 

Similarly 

(18) 

Thus, the compensation must be designed in a manner that external 
disturbances produce relative changes of identical extent in the parameters 
Kx, Ky and EREF z. 

2. The accuracy of a logarithmic multiplier hnilt from logarithmic elements 

A compensated construction in accordance with the above consider­
ations is described by the implicit form of the basic identity (1) of operation: 

In x + lny -In z = 0 (19) 

The construction of the logarithmic multiplier working according to 
(19) requires only one type of non linear basic element (Fig. 3). With appropriate 
design, the corresponding parameters of the logarithmic circuits applied 

Ey 
Y o-~'-;to..; 

Eoutz 

Fig. 3 

Ez >-_--oz 

agree 'with each other. Thus the multiplier may be free of errors deriving 
from the alteration of the exponent. 

Write the operational equations for the static analysis of the circuit. 
In accordance ,~ith the foregoing, the characteristics of the logarithmic elements 
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will be: 

E outx = Kx . In 
Ex - E OSIX 

E OS2X (20) 
E REFX 

Eouty = Ky . In 
Ey --- E OsIy 

+ EOs 2y (21) 
E REFy 

E outz = K;· In 
Ez E~S1Z 

E~S2Z (22) 
E/REFZ 

The amplifier's output voltage ",-ill be 

E z = A· (ax · E outx + ay· Eouty E out z + E 05S) (23) 

where A = is the gain of the amplifier. 
aEoutz 

A comparison of the equations, after reduction, ,~-ill yield: 

(E E 
) 

ax·Kz 
x os Ix Kz' . 

Exmax 
(
E - E ) ay.K. y OSlY ~ 

,Eymax • 

(24) 

( 
EREF Y ) ay~~. 

, Ey max 

Considering the similarity of forms and the differences of contents 
between Eqs (24) and (9), the following can be stated of static characteristics 
of the resulting multiplier looked for in the form (10): 

a) This multiplier, too, "inherits" the input offset error of the loga­
rithmic circuits belonging to x and y; the value of the output offset, however, 
agrees with the input offset error of the logarithmic circuit feeding back 
the signal E z• 

b) The resulting transfer factor is: 

E E E' E E z 
ax • OS2X+ ay· 052y- OS2Z+ 05S-- A 

K E' REF Z . Exmax . Eymax 
R = . exp ----------------

E z max . EREF X . EREF Y K~ 
(25) 

Due to the similarities between the logarithmic circuits applied, it can 
be supposed that both in the basic state, and in its vicinity the reference 
voltages and the transfer factors of the particular circuits, respectively, agree 
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'with each other. 
(26) 

(27) 
In this case, however, 

(28) 

and thus ax and ay may have only the value 1 in the basic state. Consider 
also our earlier statement on the exceptable change of the summation weight 
factors, further assume that in the basic state the resultant of the offset 
volt ages can be set to zero. Using all this, let us write the relative change 
of the resulting transfer factor that can be expected to be caused by small 
changes of the parameters around the working point determined by the 
values of the basic state. 

LlKR =V( LlEREF)2 + (Ll(EoS2X+EoS2y-EoS2Z+Eoss))2 (29) 
KR EREF ., K 

A most typical form of additional errors is the temperature dependence 
of the circuit characteristics. If the temperature dependence of the resulting 
transfer factor depends to the same extent on the temperature dependence 
of the reference voltage and of the resultant of the offset voltages, then the 
following dimensioning relationships will be obtained from (29): 

. 1/2 
J ctEREF I < 2 . ctKR max (30) 

1/2 
I ctOSAMP + ctOSLOO I < 12 • K . ctKR rnax (31) 

where 7.EREF temperature coefficient of the reference voltage of the 
basic logarithmic circuit [%/OC); 

7. KR rnax permissible temperature coefficient of the resulting 
transfer factor of the logarithmic multiplier [%/0C]; 

7.0SAMP temperature coefficient of the input offset voltage of 
the operational amplifier, in other words: drift of the 
amplifier [V/CC]; 

7.0SLOO output drift of the basic logarithmic circuit [V/cC]; 
K transfer factor of the basic logarithmic circuit [V]. 

Writing (31), it was presumed that, due to the similarity of the circuits, 

(32) 
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c) It can further be seen from (24) that due to the gain A being finite, 
a product error appears as well. If the gain is large, it will be sufficient to 
consider only the first term of the Taylor series of the exponential expression. So 

h Ezmax 1 0)/ = X • Y . --. 0 ~o 
A·K 

(33) 

The minimum value of the gain belonging to the permissible maximum 
product error will be: 

A Ezmax 
min= 

K 

100% 

hmax 
(34) 

d) Following from earlier considerations the linearity error of such a 
multiplier is dependent only on the values ofax and ay (see (26), (27) and (28)). 
The linearity error can be eliminated ifax and ay can continuously be adjusted. 

3. Accuracy of the logarithmic multiplier from exponential elements 

Following from the considerations made at the end of Sec. 1, also the 
logarithmic multiplier built from purely exponential elements according to 
Fig. 4 can be expected to work ",ithout linearity errors. 

To the analysis of accuracy, let us 'write the operational equations of 
the singular circuits. For simplicity presume that the transfer factors and 
reference volt ages of the singular exponential circuits and the gains of the 
operational amplifiers agree with each other and also the summation weight 
factors have been set identical. 

Using the notations of Fig. 4: 

<Py = C . exp <P1ny - <POSlY + <POS2Y 
<PREF 

<P1ny = A . (Ey - <Py - EOSAMP y) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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<P!nx 

z 

Fig. 4 

After substitution and reduction: 

Exmax' Eymax 

E zmax ' C 
. exp (, <Pos 1x + <POSlY + Eoss - <Pos lz ) • 

<PREF 

<Plnx 

A 

<Plny 
Ey + <POS 2Y + EOSA,.VlPy -

A <POS2Z --------------- + --=..::.=.-

Eymax E z max 

(41) 

Based on (41), the f()llowing statements can be made on the multiplier 
built from exponential basic elements: 

a) The input offset of the multiplier is the resultant of the input offset 
value of the exponential circuits belonging to the inputs x and y on the one 
hand, and of the input offset value of the amplifiers belonging to the inputs 
x and y, 011 the other. 

b) It can be seen that, with finite gains, a linearity error depending 
on x and y arises, respectively. 

rr. 1 ( EXCmax ) '¥REF' n X· 

hLX(x,yo) = -----'------'--. Yo' 100% 
A . Exmax 

rr. 1 ( Ey max ) '¥REF' n y. 
C . 

hLy(xo,y) = ---------- . Xo . 100% 
A . Eymax 

(42) 

(43) 
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Eqs (42) and (43) deliver dimensioning data for the design of multipliers 
built from basic exponential elements. If the permissible linearity errors 

hLxmax and hLYmax depending on x and y, respectively, are given in advance, 
then it is possible to determine the required values of the gains Ax and Ay 
of the amplifiers: 

ffi I Exmax 
'PREF' n C 

Ax > -------­
Ex rnax 

ffi I Ey rnax 
'PREF' n C 

Ay>------­
Ey rnax 

100% (44) 

hLX rnax 

100% (45) 

hLy rnax 

where (/JREF is the reference voltage of the exponential circuit and C is the 
transfer factor of the exponential circuit. 

c) Based on a comparison of (41) and (10), the transfer factor of the 
logarithmic multiplier built from exponential elements is 

(46) 

If we presume that, in the basic state the resultant of the offset volt ages 
can be adjusted to zero, i.e., 

(/Jos Ix + (/Jos ly + Eoss - (/Jos 1: = 0 ( 47) 

then the expected value of the relative change of KR upon the effect of small 
changes of the particular parameters will be 

_~~R = V l ~CC r ( ~«(/JOSIX+(/JOSlY (/JOSIZ+ Eoss) )2 

(/JREF 

( 48) 

The formal identity and the similarity of contents in Eqs (48) and 
(29) allo·w conclusion to the two dimensioning relationships 

where c!.c 

1/9 
Ixc i < ~ . xI<R rnax - 2 

(49) 

(50) 

temperature coefficient of the transfer factor of the 
exponential circuit [%/0C]; 
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Cl.KR max permissible temperature coefficient of the result transfer 
factor of the multiplier [%/0C]; 

Closs temperature coefficient of the offset voltage, in other 
words: drift of the summator circuit [V/0C]; 

iXos EXP drift of the exponential circuit [Vi°C]. 
d) The linearity error of the circuit can be eliminated by adjustment 

of the weight factors. Because of the previous assumptions, relationships (41) 
expresses the conditions present after elimination of such errors. 

4. Open-loop gain and dynamic properties of the logarithmic multiplier built 
from logarithmic elements 

The multiplier built from purely logarithmic elements contains a closed 
control loop (Fig. 3). This loop is nonlinear, but using the principle of working 
point linearization, the open-loop gain can be interpreted in each working 
point: 

After substitution: 
K 

H(EJ = A· E
z 

(51) 

(52) 

With the constraints (34) made on the gain, and with regard to (2): 

1 100% 

hmax 

(53) 

where b > 1 is a safety factor. 
Thus the open-loop gain is a hyperbolic function of the working point 

-value of the output signal of the multiplier, and the minimum value of the 
open-loop gain required to keep the product error within a previously fixed 
value is a quantity independent of the parameters of the circuit elements. 

Knowing the open-loop gain, one can perform the dynamic examination 
of the linearized model of the multiplier. It must be taken into consideration 
that the nonlinear feedback is connected to an amplifier having frequency­
dependent signal transfer. Suppose that the amplifier applied can be consid­
ered to be a proportional element "With three simple lags, and the logarithmic 
element to be a proportional element with level-dependent transfer factor 
and without time lag (Fig. 5). 

With the above assumptions the loop gain ,till be level-dependent and 
also frequency-dependent. 

1 1 
(54) 
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~ 
A 

n.. 

(HwT,)' ('.jwT2)·(1+jwTY 
z 

I fl(zo) I 
I J 

a. 

b 
Fig. 5 

The circuit will be stable at the values zO' 1Vith which the crossover 
frequency is lower than the reciprocal of the second time-constant. In order 
to obtain a stable circuit for all the values of 

1Vith 8 > 0 given in advance, dynamic compensation must be provided for 
the control loop. A compensation is required which ensures that the frequency 
function of the open-loop gain decreases to the 0 dB-level with a slope of 
20 dB/decade even in the case of Zo = 8. 

Denoting the new time constants of the frequency function of the 
compensated circuit by T~ and T~ (T~ > T~), the above requirement can he 
'Hitten as 

T~ - > H(zo = 8, co = 0) 
T~ -

(55) 

However, as it is known from control engineering, T~ cannot be arbitrarily 
small, since 

(56) 

Thus, "With consideration to (54), the greatest time-constant in the 
forward branch of the system compensated stable "Will be: 

(57) 
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Determine now the resulting transfer function of the stabilized system. 
Since 

(58) 

the forward branch will be modelled by a single-Iag proportional element 
"\\-ith time-constant T{ (Fig. 6). 

~ 
A 

~ 
oZ 

1.jwj' 

I fl(z.,) 

Fig. 6 

The resultant frequency response of the system calculated by means 
of this model "\\-ill be 

A 

(59) 

I --L • T:i, 
I JO) 

I + A . (J(zo) 

where AR is the resulting transfer factor and T R is the resulting time-constant, 
both dependent on the working point, in the case of small changes around 
the working point. 

As can be seen, 
T:i, 

T R = ---------
H(zo = zo, 0) = 0) 

(60) 

and, with the prescribed dynamic compensation, the settling time of I per cent 
accuracy in the cases of small signal changes around a given working point, 
using (54) and (57), , .. ill be 

T(l %) = 4,606 . Zo • T3 (61) 
8 

5. Open-loop gain and dynamic properties of the logarithmic multiplier huilt 
from exponential elements 

The input signals x and y of this type of multiplier are handled by 
nonlinear control circuits (Fig. 4). 

In the circuit belonging to the input x, the open-loop gain , .. ill be similar 

5* 
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to the previous ones. 

(62) 

Mter substitution: 

(63) 

With the constraint (44) made on the gain, and with regard to (2) : 

H(xo) = bx • Xo . In ( Ex;ax ) 
100% 

(64) 
hLXmax 

Similarly 
E 100% 

H(Yo)=by.yo.lnl y;ax) 
hLYmax 

(65) 

'where bx > 1 and by > 1 are safety factors. 
In the closed control loops of the exponential multiplier the open-loop 

gains are linear functions of the working point values of the corresponding 
input signals. The minimum value of open-loop gain reqnired for keeping 
the linearity error within a given limit depends also on the quotient of the 
machine unit chosen and of the transfer factors of the exponential circuits 
being applied. 

The value of open-loop gain is maximum in the case of Xo = 1. 

H - b . In (Exmax J' . 100% xmax - x 
,C hLXmax 

(66) 

Let again an amplifier model with three lags be used and the nonlinear 
element be frequency independent during the dynamic examination. 

The circuit is stable with certainty if after compensation 

T~ >H 
T' - xmax 

2 

Condition (56) is valid again, and thus: 

(67) 

(68) 

Calculating according to Fig. 6, the resulting time constant will be: 

(69) 
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The settling time of 1 % accuracy around a working point in the case 
of small signal changes: 

1 
T(l%) = 4,606 . -. T3 

Xo 

Similar results can be obtained from (65) for the control circuit belonging 
to the input y. 

Summary 

The behaviour of logarithmic multipliers may be ana lyzed starting from the static 
characteristics of the component circuits. The static accuracy of such multipliers is influenced 
by input and output offset further the stability of the transfer factor of the elements chosen, 
and also there are errors due to the finite gain of the op amps applied. 

After clarifying the relations between the characteristics of the elements and the 
resultant parameters of the multiplier, some dimensioning relationships may be established. 
The analysis of the stability of closed control loops applied in the multipliers leads to further 
dynamical dimensioning relationships. 
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