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1. Introduction 

Computers applied to the control of plants generally influence the 
control loops by set-point control, but direct digital control (DDC) is also 
increasingly used. In process control it is common practice to model the 
process by a linear system and to use simple digital algorithms, particularly 
the discrete equivalent of the proportional - plus - integral - plus -
derivative (PID) controller. 

There is a need for the on-line tuning of the controllers and DDC param­
eters to set new control loops or to improve the performance of the working 
control loops. The modification of control is necessary to correct the effect 
of parameters changing slowly due to nonlinearities and setpoint or load 
changes. 

The control parameters can be set by the process operator or by auto­
matic tuning procedures. A program package is necessary in both cases to 
perform fast analysis of the control loop, to identify the parameters of an 
apropriately simple model, and to determine the controller setting. A scheme 
for computer identification and control is demonstrated in Fig. 1. 

The computer determines the input signal for the plant according to 
the DDC algorithm defined by the discrete transfer function D(z) = u(z)Je(z) . 
The discrete signal u(k) is stored by the zero-order hold (Z. O. H.) for the 
sampling period To. The computer measures the output signal of the plant, 
which is y(k) at t = kTo' In the knowledge of the input-output sequence 
the computer can identify the dynamical characteristics of the plant. 

The identificating procedure can superpose an appropriate test signal 
upon the input signal, and the transient function of the loop can be determined 
in this way. In the follo'''ing we assume that the step response of the plant 
is available. 

In this paper we present an identification of two-stage type consisting of 
a) determination of a nonparametric model by Fourier analysis, 
b) model-fitting to obtain a simple parametric model containing equi­

valent time constants and time delay. 
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A deterministic input signal can be applied to the input of most plants 
v.ithout considerably disturbing the working conditions. It is possible to 
use the frequency response analysis effectively if the noise-to-signal ratio 
can be reduced to a low level by proper instrumentation or by filtering 
procedures. 

In the follo"\Ving chapters methods for the numerical evaluation of the 
frequency response ,viII be summarized (sec. 2) and a new algorithm presented 
capable of determining particularly the middle frequency range (sec. 3). 
Then methods for the derivation of simple models will be surveyed and algo­
rithms for fitting a second order model containing dead-time will be developed 
(sec. 4). Identification and control based on this method "\ViII be demon­
strated by an example (sec. 5). 

2. Methods for the evaluation of the frequency response from the transient 
response 

The frequency response can be determined from the weight function 
w(t) of the linear control loop as 

'" W(jw) = S w(t) e-jwl dt 
o 

(1) 
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The problem is to compute the Fourier trausform of the function w(t), 
but only the transient function 

I 

v(t) = 5 w(t) dt 
o 

(2) 

IS available from measurements. It is represented by its samples 

Vk = v(kT 0) where k = 0, 1, 2 ... N 1 (3) 

The Fourier transform can be interpreted as the Laplace transform 

'" W(s) = 5 w(t) e-SI dt (4) 
o 

\\'ith the substitution of s = jw. 

2.1. The finite Fourier transform 

For the numerical evaluation of (4) the approximating formula 

IS 

W(s) ~ W
2
(s) = J w(t) e-SI dt + W(tN) e-S/.V + w'(tN) e-SIN (5) 

s S2 
o 

can be used which is an approximation of second order in terms of v(t). The 
above formula is equivalent to Eq. (6) 

Iy 

W 2(s) = s~ fWlf(t) e-sl dt (6) 

This can be proved by partial integrations of (6) which will yield formula (7), 
(8) and (9), respectively 

tv 

W2(s) = ~ J w'(t) e-st dt + W'(:N) e-st.v (7) 
s s~ 

o 

/.v 

S w(t) e-sl dt + W(tN) e-SIN + W'(tN) e-SIN (8) 
s S2 

(9) 
6* 
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In order to have better convergence in the above equations, let us 
split off the assymptotes from the integrand as 

Wo(t) = w'(t) -- w'(tN) 

wo(t) = w(t) - W(tN) - w'(tN) (t - tN) 

vo(t) = v(t) - v(tN) - W(tN) (t - tN) w'(tN) (t - tN)2j2 

to obtain the formulas (10), (11) and (12): 

tN 

W 2(s) = ~ f w~(t) e-st dt + w'(tN) 
s S2 

(10) 

o 

tN - f () -st d + W(tN) + w'(tN) - Wo t e t --- ---
S S2 

(11) 

o 

tN 

= s f vo(t) e-st dt + v(tN) + W(tN) + W'(:N) (12) 
s s 

o 

2.2. Application of the Fast Fourier Transform 

Further on, substitute s = j2'Tlf and examine the numerical approxi­
mation to the finite Fourier integral in formula (12) of the following type: 

IS .• 
X(f) = S x(t) e-]2:rp dt 

o 
(13) 

where the function x(t) is sampled in lY points at intervals of length LIt, i.e. 
tN = NLlt (The notation is the one used in literature). It is assumed that 

x(t) (14) 

The simplest approximation of (13) is 

N-l 
Xp(f) = ~ x(kLlt) e-jZ,"'fkJI LIt (15) 

k=O 

which means the approximation of the integral by the rectangular rule applied 
to the integrand x(t)e- j2

:Tf l. If Xo = xN = 0 then this approximation is 
equivalent to that obtained by the trapezoidal rule. 
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It is well-known that the Fourier transform of the sampled function 
is a periodic function 

cc 

Xp(f) = ~ X(f + kF) (16) 
k=-cc 

with the period 

F = IjLlt . (17) 

Thus, Llt is chosen so that the distortion, the so-called aliasing, involved 
in constructing X(f) from X p(f) is negligible, i.e. 

X(f) ?S Xp(f) for If I < ~ F. 
-2 

(18) 

If we consider the values of X p(f) in N equally spaced points in the 
domain [O,F] with 

we obtain 
::Jf = FIN = IjNLlt 

N-I 
Xp(r.df) = ~ x(kLlt) e-j2:·,krIN Llt 

k=O 

(19) 

(20) 

If the assumption (14) is not valid, then the Fourier transform of the 
sequence x k is 

where 

cc 

Xp(f) = ~ x(kLlt) e-jZ'rfkLJt Llt 
k=O 

It can be proved that in this case 

N-I 
Xp(rLlf) = ~ xp(kLlt) e-j2:7kr/N Llt 

k=1 

cc 

xp(t) = ~ x(t + IT) 
1=-", 

is periodic '\vith T = NLlt. 

(21) 

(22) 

(23) 

It is to be noted that the limitation in the summing causes an aliasing 
in the time domain. Formula (22) is called the discrete Fourier transform 
(DFT) of the sequence xp(kLlt), k = 0, 1, ... N-l. 

The procedure to be followed at the application of the DFT to compute 
the Fourier transform can be summarized as: 

a) Llt must be chosen to make the frequency F = IJLlt large enough 
to encompass the region where X(f) is significantly different from zero. 
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b) N is chosen to get the frequency resolution LJf = Fj N required. 
c) The aliased sequence xp(kLJt) must be formed and it is generally 

sufficient to consider only the term ",ith I = -1. If N is chosen to avoid 
the aliasing of x(kLJt) it will generally lead to greater frequency resolution 
than required, i.e. to more computation work. 

The Fast Fourier Transform (FFT) is a method for efficiently computing 
the discrete Fourier transform (DFT); 

where 

N-I 
Xr = ~ x"w-"r r = 0,1 ... N 1 

k=O 

W == ej2:tiJ.\' 

(24) 

Specifically, if the time series consists of N = 2n samples then 2Nn real 
multiplications , .. ill be necessary to evaluate all IV coefficients. In the case 
of a large N, the above number is very small compared with the number N2 
of the operations required for the straightforward calculation of the DFT 
coefficients. This fact made possible the real-time applications of transform 
methods. 

2.3. Approximations of different order 

In practice the sampling rate of the computer is constrained, so the 
sampling period can not be chosen small enough to avoid the aliasing of 
the frequency response. Therefore, it is necessary to use some kind of inter­
polation for the sampled function. 

The integral of the form 

IN 
I = S v(Il)(t) e-st dt 

o 
(25) 

,."ill be partitioned and the function v(Il)(t) ",ill be approximated by the 
constant v~n) in the k-th interval, i.e. v(t) is composed from polynomials of 
n-th order. So we obtain 

(26) 

The correction is necessary if the function v(t) and its derivatives have jump 
at t = O. Let the partition be equidistant ",ith the interval length lWTo' i.e. 

where To is the sampling period. 
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So the transfer function can be determined by the formula 

n-l -siN + ~ Vln-I-i) si -n+l + V(n) _e __ 
~ 0 N Sn 

where n denotes the order of the approximation in terms of v(t). 
a) Zero-order approximation: 

with n = 0, and lVI = 1 we get 

1 - e-sT, N-l 
Wo(s) = S ~ vke-SkT, + vNe-SNT• 

S k=O 

303 

(27) 

(28) 

This formula contains the discrete Fourier transform of the sequence 
Vk multiplied by the transfer function of the zero-order hold. 

By splitting the assimptote Vn we obtain 

N-l 

e-ST,) ~ (Vk - VN) e-skT + VN 
k=O 

Applying the follo1Ving equality 

N-l N 
e-ST,.:E Vke-skT, = ~ Vk_le- SkT, 

k=O k=l 

Eq. (28) can be put into the form 

N 
Wo(s) = Vo + ~ (vk - Vk-l) e-skT• 

k=l 

N-l 

= Vo + ~ (Vk+1-Vk) e-skT • • e-sT, 
k=O 

which is the DFT of the first difference of the sequence, i.e. 

Wo = DFT(vvk)' k = 0, 1, 2, ... N 
where 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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b) First-order approximation: 
,vith n = 1 and .ZV[ = 1 the following formula can be derived 

(35) 

The polygonal approximation to v(t) means that 

v~: = (36) 

Substituting this into formula (35), and using the procedure described at 
zero-order approximation, we obtain the formulas [3] 

(37) 

(38) 

This can be expressed as the DFT of the second central difference of the 

sequence, i.e. 

(39) 

where 

Formula (37) can be written also in the form 

(41) 

which contains the DFT of the sequence Vk multiplied by the transfer function 
of the polygonal hold: 

(42) 

Substituting S = jw, we obtain 

(
sin wT /2)2 N-l . W = V ..L ° J'w V v e-lkwTo 

1 ° I TOj2 .,;;;. k w k=O 

(43) 

which is the formula published in [5]. 
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The approximation of second order can be derived from (27) with 
n = 2 and 1tf = 2, so the formula proposed by Goldner [4] can be obtained. 

As it was shown above, the frequency response of the plant can be 
determined by means of the discrete Fourier transform, but it generally needs 
some preprocessing of the sequence, and postprocessing of the DFT coef­
ficients. Using the computational advantage of the FFT algorithm the Fourier 
transform can be computed in real-time. 

3. Derivation of new Transform Methods 

It is possible to get new formulas for the real and imaginary parts of 
the Fourier transform by a polynominal approximation of the sine and cosine 
function instead of the function v(t). 

The transfer function can be approximated by 

IS 

Wn(s) = ~ f v<n+l)(t)f(t)dt 
sn 

(44) 

o 
where 

f(t) = e-sl (45) 

It is an approximation of n-th order in terms of v(t). 
After partial integration m times we obtain the general formula 

(46) 

where 

(47) 

The second subscript of W denotes the number of partial integrations, and 
the order of the derivate of f(t) in Eq. (47). The expressions belonging to 
the same n are theoretically equivalent, but they differ from the view-point 
of numerical computation according to m. 

The formulas (6), (7), (8) and (9) can be derived from (46) withf(t) = e-st
, 

n = 2 and m = 0, 1, 2, 3 respectively. 
With the combination of n and m new formulas can be obtained. 
Let either of the components of the function 

e- jwl = cos rot - j sin rot 
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he denoted by f(t) in the folio'wing. The first-order approximation to f(t) 
mean, that it is composed of straight lines, i.e. f'(t) has a constant value 
f'(tk) in the interval [tk,tk+1]. 

Thus, the foliowing equation can be obtained from Eq. (46) 

Suhstituting n = 1 into Eq. (48) we get 

1 N-l 
W1,1(S) = - - ~ f'(tk) [v(tk+1) - v(tk)] 

S k=O 

v'(t
N

) f(t N ) 

S 
(49) 

which is a simple formula since the samples of the transient function v(t) 
are used. 

The sine and cosine function can be approximated appropriately by 
a trapezoid [1]. 

The period T helonging to the actual frequency w is divided into I1f 
equidistant intervals according to Fig. 2, where NI = 8. Thus both the sin wt 
and cos wt functions are approximated by straight lines. 
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The approximation of sine function is defined as 

J 
f,(t) -1 

where 

emt 

en/4 

enj4 - em(t - t 3 ) 

-en;4 

-en/4 + em(t - t7) 

t1 = T/lv! = nj(4m) 

tk = ktl 

The cosine function can be expressed as 

The slope of the sides is e m where 

e = 1.11 

if o ~ t ~ t1 

if t1 ~ t ~ t3 

if t3 ~ t ~ t5 

if t5 ~ t ~ t7 

if t7 ~ t ~ t8 
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(50) 

(51) 

(52) 

(53) 

which is a correcting factor to make the amplitude of the fundamental harmonic 
of the trapezoid function equal to unity, but e was modified to the value 

e = 1.13 (54) 
on the basis of test runs. 

We shall compute the frequency response at frequencies 

m, = 2njT, (55) 

where the actual period time is selected to be an integer multiple of the 
minimal period time defined as 

So the following relations are obtained 

Tr = rT1 = rJ.11To 

mr = 2n/Tr = l/r . 2n/Tl 

(56) 

(57) 

(58) 

This means that the equidistant intervals of f(t) are increasing continuously 
with decreasing frequencies. 
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We shall approximate the integral (44) by taking the integer multiple 
of the actual period time, i.e. 

tN = KT = K 2n!w (59) 

From Eq. (49) we obtain 

1 K-l (r+l)M-l . . f(t ) 
W1,1(S) = - -::2 ::2 !'(tk) [V(tk+1) - v(tk)] + v'(tN) -.!:L (60) 

S r=O k=rM S 

'with the limitation 

since the summation can not be extended oyer the measured interval. 
Substituting K = 1, 1v! = 8 into Eq. (60) we obtain for the approxi­

mation by the given trapezoids: 

(61) 

(62) 

'where R denotes the real part and Q the imaginary part of the frequency 
response function. 

The first subscript gives the order of the approximation in terms of 
v(t), the second subscript defines the order of the approximation of f(t), and 
the third subscript refers to the upper limit of the integral. 

The formulas for period K are 

K-l 
R 1,1,K(w) = c.:E [v(8r + 1) + v(8r + 3) - v(8r + 5) - v(8r 7)] + cv(8K) 

(63) 
r=O 

K-l 

Q1,1 K(w) = c.:E [v(8r + 1) 
r=O 

v(8r + 3) - v(8r + 5) v(8r+ 7)] -cv'(8K)~ 
4w 

(64) 

The derivate of v(t) at the last point can be approximated by the backward 
difference. With the second-order approximation of v(t) a correction term 
to the real part of the frequency function can be determined, the imaginary 
part does not change: 

v"(8K)_1-
w2 

(65) 

(66) 
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The transformation based on these formulas is called the middle frequency 
transformation (lVIFT) , since it has been demonstrated [1] that the approx­
imation to the frequency response is appropriate in the decade around the 
frequency belonging to the phase shift of -180°. This domain is decisive 
for tuning a controller. Thus, the middle frequency portion of the frequency 
response computed by lVIFT can be used for fitting a model which is a basis 
of the controller setting. 

The accuracy of the lVIFT is detailed in [2] 'with several test examples. 
Now, only the effect of the choice of k and of the correction term will be 
illustrated. 

Let the plant be defined by the transfer function 

W s _ 10.112 
( ) - (1 + 0.354s)2 (1 + 2.828s)2 

(67) 

The gain is set to the critical value, thus, on the exact Bode plot of the plant 
the amplitude curve ap intersects the 0 dB axis where the phase curve !Pp 

has the value -180:; (see Fig. 3). The amplitude and phase curves computed 
by MFT (Eq. (63), (64)) "\vith different values of K are indexed "\\ith K. 

a[dBl 'i' 

20 
~=::::....... 

-50 

Fig. 3 
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It can be seen that the approximation -with K = 1 is appropriate from 
cp = -45° until cp = -225°, i.e. the error in phase is less than 5°, and in 
amplitude is less then IdB in this domain. This accuracy is sufficient for model 
fitting from the view-point of closed-loop control. With increasing K the 
approximation improves in the range of high frequencies. 

The effect of the correction term in Eq. (65) is illustrated by Fig. 4. 
The exact curves are indexed 'with p, the MFT -without correction has the 
index 1 and the corrected MFT has the index 2, both are computed ,\'ith 
K = 1. There is a considerable improvement of the approximation for higher 
frequencies, as the correction means the second-order extrapolation of v(t), 
which is significant on the initial portion. The importance of the correction 
decreases ,dth increasing time, (i.e. at low frequencies) or K. 

It can be seen that in the middle frequency range the frequency response 
of the plant can be determined ,vith sufficient accuracy by the appropriate 
formula of MFT. Formulas (61) and (62) are very simple, but they give good 
approximation in the decade, that is the most important for controller tuning. 

The computational requirements of MFT are minimal, even compared 
with the FFT algorithm. The disadvantage of IvIFT is the great noise sensivity, 
because of the few points used for computation. That is why we have assumed 

J,d,,: 1~ 

20~=::::::::. ........ 

10 

-10 

~.~o~~ __________________ ~~ ______ ~~ ____________ ___ 
-180' 

-30 

-1.0 -270' 

-50 

-60 -360' 

Fig. 4 
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that the noise-to-signal ratio is reduced by hardware and software means 
to a small level. The smoothing procedures are implicit components of the 
control packages. 

Considerable measure time can be saved by the fact, that the MFT 
computes the Fourier integral "\\'ith an upper limit which depends on the 
actual frequency. Thus, the knowledge of the stationary state is not necessary 
for the middle frequency analysis. 

In the next part of this paper methods for fitting models to the frequency 
response will be described and the control application of MFT will be presented. 

Summary 

:Methods for the numerical evaluation of the frequency response from the transient 
function are reviewed. The application of the Fast Fourier Transform algorithm to compute 
Fourier integral by various approximations to the transient function is described. New for­
mulas can be derived by means of generalization of the approximating methods. The so-called 
middle-frequency transformation is presented, which enables the real-time frequency 
analysis of the control loop in the middle-frequency range. 
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