THE LOCAL SUPREMUM PRINCIPLE FOR OPTIMUM CONTROL PROBLEMS WITH NONSCALAR-VALUED PERFORMANCE CRITERION

By
B. Lantos
Department of Process Control, Technical University, Budapest

Received July 25. 1976
Presented by Prof. Dr. A. Frigyes

Symbols and abbreviations

ϵ	element of
を	non element of
\Rightarrow	implies
\emptyset	empty set
τ	topology
A°	interior of A
$A=\{\mathrm{a}:$ prop	ty of a definition of the set A
A / B	$A \backslash B=\{\mathrm{a}: \mathrm{a} \in A ; a \pm B\}$
$A \subset B$	$a \in A$ implies $a \in B$
$A \times B$	$A \times B=\{(a, b): a \in A ; b \in B\}$
$A \cap B$	intersection of A and B
	n-dimensional linear normed space
$F: E_{1} \rightarrow E_{2}$	mapping from E_{1} into E_{2}
$R(F)$	range of F
$F^{\prime}(x)$	Fréchet derivative of F
${ }_{2}\left(E_{1} \rightarrow E_{9}\right)$	linear operators from E_{1} into E_{9}
$\mathscr{S}\left(E_{1}-E_{2}\right)$	bounded linear operators from E_{1} into E_{2}
$\langle x, y>$	inner product
$\cdots \mathrm{Fog}$	norm of x of the mappings F and G such that $F \circ G(x)=F(G(x))$
Fob $F(., y)$	composition of the mappings F and G such that $F \circ G(x)=F(G(x))$ the mapping $F(x, y)$ for fixed y
$\mathrm{M}_{m \times} \times$	set of $m \times n$ matrices
$\lambda(A)$	Lebesgue measure of A
$C^{(n)}\left(t_{0}, t_{1}\right)$	the set of the continuous functions $F:\left[t_{0}, t_{1}\right] \rightarrow R^{n}$
$L^{(n)}\left(t_{0}, t_{1}\right)$	the set of the essentially bounded functions $F:\left[t_{0}, t_{1}\right] \rightarrow R^{n}$
$\begin{aligned} & C^{\infty}(m \times n)\left(t_{0}, t_{1}\right) \\ & L^{(m \times n)}\left(t_{0}\right) \end{aligned}$	the set of the continuous $m \times n$ matrices $F:\left[t_{0} \cdot t_{1}\right]-M_{m \times n}$

1. Introduction

In many optimization problems the quality of the process cannot be characterized by a single scalar-valued optimality criterion, because the user is simultaneously interested in several cost functionals. The scalar-valued cost functionals can be reduced to a single vector-valued performance criterion.

The linear state estimation problem also leads to an optimum problem with a nonscalar-valued performance criterion, if the covariance matrix of the error between the state and its estimation must be infimum. In this case the performance criterion is matrix-valued.

Dynamic optimization problems with nonscalar-valued performance criteria are studied in the present paper. The meaning of "better than" has to be defined, and this will be done by a partial-order relation. Partial ordering is defined by a positive cone. It is supposed that the performance criterion in the dynamic optimization problem has its range in a finite-dimensional partially ordered linear normed space (which is not necessarily an Euclidean space).

The necessary conditions of the local infimum are summarized in two theorems. These theorems establish a relation between the local maximum principle of Dubovickij, Miluutin and Girsanov [1], the infimum principle of Athans and Geering [2], and the author's results [3].

The proofs of the theorems in the appendix of the paper can be found in the auther's dissertation.

2. Partial ordering

Partial ordering on a set is a reflexive, (antisymmetric) and transitive relation. If the set is a linear topological space, then it will be supposed that the partial ordering is given by a closed and convex cone having a nonempty interior.

Definition 1: Let (E, τ) be a linear topological space, and let $P \subset E$ be a closed and convex cone such that $P^{\circ} \neq \emptyset$. We say that $x \geq y$ if $x, y \in E$ and $x-y \in P$. A linear topological space with a relation \geq defined in this way is said to be a partially ordered linear topological space. Notation: (E, τ, \geq). Since $x \in P \Leftrightarrow x \geq 0$, the cone P will be called the positive cone (defining the relation \geq). If $\frac{ \pm}{ \pm} \in P \Rightarrow z=0$, then \geq is antisymmetric, i.e. $x \geq y$ and $y \geq x \Rightarrow x=y$.

Example 1: Let R^{n} be the usually n-dimensional Euclidean space. If $P=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{i} \geq 0, i=1, \ldots, n\right\}$, then P is a positive cone in R^{n} and so P defines a partial ordering in R^{n}. Notation: $\left(R^{n}, \geq\right)$. If $\|x\|=\|y\|=1$ and $x, y \in P$, then $\|x+y\| \geq 1$.

Example 2: Let H be a Hilbert space. If $E=\{A \in \mathscr{B}(H \rightarrow H)$: A is self-adjoint $\}$ and $P=\{A \in E:<A x, x>\geq 0$ for all $x \in H\}$, then $E \subset \mathscr{A}(H \rightarrow H)$ is a closed subspace $\Rightarrow E$ is a Banach space and $P \subset E$ is a positive cone in E. Hence P defines a partial ordering in E. Notation: (E, \geq). If $\|A\|=\|B\|=1$ and $A, B \in P$, then $\|A+B\| \geq 1$.

Example 3: Notation is as in Example 2. Let $H=R^{n}$ (with fixed orthonormal basis.) Then $\mathscr{B}\left(R^{n} \rightarrow R^{n}\right)$ can be identified with the set of $n \times n$
matrices and similarly E with the set of symmetric $n \times n$ matrices. Then P is the set of positive semidefinite symmetric $n \times n$ matrices. The positive cone P defines a partial ordering in the Banach space of the symmetric $n \times n$ matrices. Notation: $\left(M_{n \times n}^{s}, \geq\right) . M_{n \times n}^{\mathrm{s}}$ can be considered as a $\frac{n(n+1)}{2}$ dimensional subspace of the linear normed space $R^{n^{2}}$ (without inner product).

Remark: If (E, τ, \geq) is a partially ordered linear topological space, then $x \geq y$ and $z \in E \Rightarrow x+z \geq y+z$.

Definition 2: Let (E, τ, \geq) be a partially ordered linear topological space, $Q \subset E$ and $x_{0} \in Q$. We say that

1) $x_{0}=\max Q$, if there does not exist any $x \in Q$ such that $x \geq x_{0}$ and $x \neq x_{0}$,
2) $x_{0}=\min Q$, if there does not exist any $x \in Q$ such that $x_{0} \geq x$ and $x \neq x_{0}$,
3) $x_{0}=\sup Q$, if $x_{0} \geq x$ for all $x \in Q$,
4) $x_{0}=\inf Q$, if $x \geq x_{0}$ for all $x \in Q$.

In general, max Q and $\min Q$ are not unique, because the partial ordering is usually not a linear ordering (Q may have elements which are not comparable). Sup Q and $\inf Q$ are always unique (supposed that they exist and the partial ordering is antisymmetric).

3. The local supremum principle

Condition (C): We say that ($n, \mathbf{r}, m, T, \Phi$) satisfies the condition (C), if $0<T<\infty$,
$\Phi: R^{n} \times R^{r} \times[0, T] \rightarrow R^{m}$ is a mapping,

$$
S \subset[0, T] \text { and } \lambda([0, T] \backslash S)=0
$$

furthermore

1) there exist $\Phi_{y}(y, v, t), \Phi_{v}(y, v, t)$ for all $t \in S$, and $\left\{\Phi_{y}(\cdot, \cdot, t): t \in S\right\}$, $\left\{\bar{\Phi}_{\nu}(\cdot, \cdot, t): t \in S\right\}$ are equicontinuous in (y, v) on all compact sets $F \times G \subset R^{n} \times R^{r} ;$
2) $\Phi(y, v, \cdot), \Phi_{y}(y, v, \cdot)$ and $\Phi_{v}(y, v, \cdot)$ are measurable functions in t for all fixed $(y, v) \in R^{n} \times R^{r}$;
3) for each fixed bounded set $F \times G \subset R^{n} \times R^{r}$, there is a real number k such that $\|\Phi(y, v, t)\|<k,\left\|\Phi_{y}(y, v, t)\right\|<k$ and $\left\|\Phi_{v}(y, v, t)\right\|<$ $<k$ for all $(y, v, t) \in F \times G \times S$.
Theorem 1: Suppose that (n, r, m, T, Φ) and (n, r, n, T, φ) satisfy the condition (C). Let M be a convex set in R^{r} and $M^{0} \neq \emptyset$. Let $c, d \in R^{n}$. Let P_{0} be a closed and convex cone in R^{m} such that $P_{0}^{0} \neq \emptyset$ and $\pm z \in P_{0} \Rightarrow z=0$, and let the positive cone P_{0} define a partial ordering \geq in R^{m} (R^{m} is not necessarily an Euclidean space). Let the constraint Q be

$$
\begin{aligned}
Q= & \left\{(x, u) \in C^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T):\right. \\
& \frac{\mathrm{d} x(t)}{\mathrm{d} t}=\varphi(x(t), u(t), t) \text { for almost every } t \in[0, T] ; \\
& x(0)=c \text { and } x(T)=d ; \\
& u(t) \in M \text { for almost every } t \in[0, T]\}
\end{aligned}
$$

and let $\left(x_{0}, u_{0}\right) \in Q$. Suppose there is a neighbourhood V of $\left(x_{0}, u_{0}\right)$ such that $\left(x_{0}, u_{0}\right)$ is a solution of the problem

$$
\inf \left\{\int_{0}^{T} \Phi(x(t), u(t), t) \mathrm{d} t:(x, u) \in Q \cap V\right\}
$$

Then there exist a $n \times n$ constant matrix T_{0} and $m \times n$ matrix fumctions $\psi(t)$ such that
i) $T_{0} y \geq 0$ for all $y \geq 0$ i.e. $T_{0}\left(P_{0}\right) \subset P_{0}$;
ii) either $T_{0} \neq 0$ or $\psi(t) \not \equiv 0$;
iii) $\frac{\mathrm{d} \psi(t)}{\mathrm{d} t}=-\psi(t) \varphi_{y}\left(x_{0}(t), u_{0}(t), t\right)+T_{0} \tilde{\Phi}\left(x_{0}(t), u_{0}(t), t\right)$ for almost every $t \in[0, T] ;$
iv) $\left(-\psi(t) \varphi_{v}\left(x_{0}(t), u_{0}(t), t\right)+T_{0} \Phi_{v}\left(x_{0}(t), u_{0}(t), t\right)\right) .\left(u-u_{0}(t)\right) \in P_{0}$
for all $u \in M$ and for almost every $t \in[0, T]$;
v) specially if the system

$$
\frac{\mathrm{d} \bar{x}(t)}{\mathrm{d} t}=\varphi_{y}\left(x_{0}(t), u_{0}(t), t\right) \bar{x}(t)+\varphi_{v}\left(x_{0}(t), u_{0}(t), t\right)\left(u(t)-u_{0}(t)\right)
$$

for almost every $t \in[0, T], \bar{x}(0)=\bar{x}(T)=0$,
$u(t)=M^{0}$ for almost every $t \in[0, T]$
has a solution $(x, u) \in \mathrm{C}^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T)$, then $T_{0}=I$ is the $m \times m$ identity matrix. If in addition $\Phi(\gamma, v, t)$ is a convex mapping and the dynamical system is linear, i.e. $\varphi(y, v, t)=A(t) y+B(t) v$, then the local infimum in $\left(x_{0}, u_{0}\right)$ is also a global infimum on Q. furthermore, iii) and iv) are sufficient conditioas of the global infimum.
Proof: We will use the following notations:

$$
\begin{aligned}
& F_{0}: C^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T) \rightarrow R^{m} \\
& F_{0}(x, u)=\int_{0}^{T} \Phi(x(t), u(t), t) \mathrm{d} t \\
& F_{1}: C^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T) \rightarrow C^{(n)}(0, T) \\
& F_{1}(x, u)(t)=x(t)-c-\int_{0}^{t} \varphi(x(\tau), u(\tau), \tau) \mathrm{d} \tau
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}: C^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T) \rightarrow R^{n} \\
& F_{2}(x, u)=x(T)-d \\
& A=\left\{(x, u) \in C^{(\mathrm{n})}(0, T) \times L_{\infty}^{(r)}(0, T): u(t) \in M \text { for almost every } t \in[0, T]\right\}
\end{aligned}
$$

Then

$$
\begin{equation*}
Q=\left\{(x, u) \in C^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T): F_{1}(x, u)=0 ; F_{2}(x, u)=0\right. \tag{1}
\end{equation*}
$$

$(x, u) \in \mathbf{A}\}$ and $\left(x_{0}, u_{0}\right) \in Q$ is a solution of the problem

$$
\begin{equation*}
\inf \left\{F_{0}(x, u):(x, u) \in Q \cap V\right\} . \tag{2}
\end{equation*}
$$

Since $A=\mathrm{C}^{(n)}(0, T) \times B$ and M is a convex set such that $M^{\circ} \neq \emptyset$, it follows that $B \subset L_{\infty}^{(r)}(0, T)$ such that B is a convex set and $B^{\circ} \neq \emptyset$. Hence A is a convex set and $A^{\circ} \neq \emptyset$. Since ($\left.n, r, m, T, \Phi\right)$ and (n, r, n, T, φ) satisfy the condition (C), it follows that F_{0} and F_{1} are continuously Fréchet differentiable and

$$
\begin{align*}
& F_{0}^{\prime}\left(x_{0}, u_{0}\right)(\bar{x}, \bar{u})=\int_{0}^{T}\left[\Phi_{y}\left(x_{0}(t), u_{0}(t), t\right) \bar{x}(t)+\Phi_{\nu}\left(x_{0}(t), u_{0}(t), t\right) \bar{u}(t)\right] \mathrm{d} t^{\prime} \tag{3}\\
& F_{1}^{\prime}\left(x_{0}, u_{0}\right)(\bar{x}, \bar{u})(t)=x(t)-\int_{0}^{t}\left[\varphi_{y}\left(x_{0}(\tau), u_{0}(\tau), \tau\right) \bar{x}(\tau)+\right. \\
& \left.+\varphi_{v}\left(x_{0}(\tau), u_{0}(\tau), \tau\right) \tilde{u}(\tau)\right] \mathrm{d} \tau \tag{4}
\end{align*}
$$

furthermore, by Lemma $3 A$ (in Appendix)

$$
R\left(F_{1}^{\prime}\left(x_{0}, u_{0}\right)\right)=C^{(n)}(0, T)
$$

is satisfied. Evidently, F_{2} is continuously Fréchet differentiable and

$$
\begin{align*}
& F_{2}^{\prime}\left(x_{0}, u_{0}\right)(\bar{x}, \bar{u})=\bar{x}(T) \tag{6}\\
& R\left(F_{2}^{\prime}\left(x_{0}, u_{0}\right)\right)=R^{n} \tag{7}
\end{align*}
$$

By Lemma $4 A$ and by (1)-(7), Theorem $1 A$ can be applied. Hence there are bounded linear operators

$$
\begin{aligned}
& T_{0} \in \mathscr{B}\left(R^{\mathrm{m}} \rightarrow R^{m}\right) \\
& T_{1} \in \mathscr{B}\left(C^{(n)}(0, T) \rightarrow R^{m}\right), \\
& T_{2} \in \mathscr{A}\left(R^{n} \rightarrow R^{m}\right) \\
& \widetilde{T} \in \mathscr{B}\left(C^{(n)}(0, T) \times L_{\infty}^{(r)}(0, T) \rightarrow R^{m}\right)
\end{aligned}
$$

such that $T_{0}\left(P_{0}\right) \subset P_{0}$ and $T_{i} \neq 0$ for at least one $i \in\{0,1 ; 2\}$ and

$$
\begin{gather*}
\widetilde{T}=T_{0} \quad \circ F_{0}\left(x_{0}, u_{0}\right)+T_{1} \text { o } F_{1}^{\prime}\left(x_{0}, u_{0}\right)+T_{2} \text { o } F_{2}^{\prime}\left(x_{0}, u_{0}\right), \tag{8}\\
\widetilde{T}(\bar{x}, \bar{u}) \geq \widetilde{T}\left(x_{0}, u_{0}\right) \text { for all }(\bar{x}, \bar{u}) \in A \tag{9}
\end{gather*}
$$

In a fixed basis the bounded linear operators T_{0}, T_{1} and T_{2} can be identified with a $m \times m$ constant matrix, with a $m \times n$ matrix function and with a $m \times n$ constant matrix, respectively. In the special case T_{0} is the $m \times m$ identity matrix. Since $\widetilde{T}(\bar{x}, \bar{u})=\widetilde{T}(\bar{x}, 0)+\widetilde{T}(0, \bar{u})$ and $\pm z \in P_{0} \Rightarrow z=0$, it follows from the form of the set A, that

$$
\begin{align*}
\widetilde{T}(x, 0) & =0 \text { for all } x \in C^{(n)}(0, T) \tag{10}\\
\dot{T}(\bar{u}) & =\widetilde{T}(\bar{x}, \bar{u})=\widetilde{T}(0, \bar{u}) \tag{11}
\end{align*}
$$

Let $\bar{u} \in L_{\infty}^{(r)}(0, T)$ be fixed and let $\bar{x}=\bar{x}(\bar{u})$ be the solution of the equation $F_{1}^{\prime}\left(x_{0}, u_{0}\right)(\bar{x}, \bar{u})=0$, i.e.

$$
\begin{align*}
& \frac{\mathrm{d} \bar{x}(t)}{\mathrm{d} t}=\varphi_{y}\left(x_{0}(t), u_{0}(t), t\right) \bar{x}(t)+\varphi_{v}\left(x_{0}(t), u_{0}(t), t\right) \bar{u}(t) \\
& \quad \text { for almost every } t \in[0, T] \tag{12}\\
& \quad \bar{x}(0)=0
\end{align*}
$$

which has a unique solution by Lemma $3 A$. It follows from (8) that

$$
\begin{equation*}
\hat{T}(\bar{u})=T_{0} \int_{0}^{T}\left(\left.\Phi_{y}\right|_{t} \bar{x}(t)+\left.\Phi_{v}\right|_{t} \bar{u}(t)\right) \mathrm{d} t+T_{2} \bar{x}(T) \tag{13}
\end{equation*}
$$

for all $(\bar{x}(\bar{u}), \bar{u})$. Let $\psi:[0, T] \rightarrow \mathscr{B}\left(R^{n} \rightarrow R^{m}\right)$ be the solution of

$$
\begin{align*}
& \frac{\mathrm{d} \psi(t)}{\mathrm{d} t}=-\psi(t) \varphi_{y}\left(x_{0}(t), u_{0}(t), t\right)+T_{0} \Phi_{y}\left(x_{0}(t), u_{0}(t), t\right) \\
& \quad \text { for almost every } t \in[0, T] \tag{14}
\end{align*}
$$

$$
\psi(T)=-T_{2}
$$

then in a fixed basis $\psi(t)$ can be identified with a $m \times n$ matrix function and the solution $\psi(t)$ is unique by Lemma $3 A$. If both T_{0} and $\psi(\cdot)$ are zero, then T_{2} is also zero by $\psi(T)=-T_{2}$. Hence \hat{T} is zero by (13) and T_{1} o $F_{1}^{\prime}\left(x_{0}, u_{0}\right)$ is also zero by (11) and (8). Since $R\left(F_{1}^{\prime}\left(x_{0}, u_{0}\right)\right)=C^{(n)}(0, T)$, it follows that T_{1} is also zero. But this contradicts iii) in Theorem $1 A$. This contradiction proves that either $T_{0} \neq 0$ or $\psi(t) \neq 0$. By (14) and (12) and through integration by parts it follows

$$
\begin{equation*}
T_{0} \int_{0}^{T} \Phi_{y \mid t} \bar{x}(t) \mathrm{d} t=-T_{2} \bar{x}(T)-\left.\int_{0}^{T} \psi(t) \varphi_{v}\right|_{t} \bar{u}(t) \mathrm{d} t \tag{15}
\end{equation*}
$$

Hence it follows from (13) and (15) that

$$
\begin{equation*}
\hat{T}(\bar{u})=\int_{0}^{T}\left(-\psi(t) \varphi_{v \mid t}+T_{0} \Phi_{v \mid t}\right) \bar{u}(t) \mathrm{d} t . \tag{16}
\end{equation*}
$$

By (9), (11) and (16)

$$
\begin{equation*}
\hat{T}\left(\bar{u}-u_{0}\right)=\int_{0}^{T}\left(-\psi(t) \varphi_{0} \|_{t}+T_{0} \Phi_{v \mid t}\right)\left(\bar{u}(t)-u_{0}(t)\right) \mathrm{d} t \in P_{0} \tag{17}
\end{equation*}
$$

is satisfied for all $\bar{u} \in B=\left\{\bar{u} \in L_{\infty}^{(r)}(0, T): \bar{u}(t) \in M\right.$ for almost every $\left.t \in[0, T]\right\}$. Hence by Lemma $2 A$

$$
\begin{equation*}
\left(-\psi(t) \varphi_{v}\left|t+T_{0} \Phi_{v}\right| t\right)\left(u-u_{0}(t)\right) \in P_{0} \tag{18}
\end{equation*}
$$

for all $u \in M$ and for almost every $t \in[0, T]$.
In the special case v) of the theorem let now $\Phi(y, v, t)$ be a convex function and let the dynamical system be linear, i.e. $\varphi(y, v, t)=A(t) y+B(t) v$. Let $(x, u) \in Q$ and use the notations $\bar{x}=x-x_{0}$ and $\bar{u}=u-u_{0}$. Then

$$
\begin{align*}
& \dot{\bar{x}}=A(t) \bar{x}+B(t) \bar{u}, \tag{19}\\
& \bar{x}(0)=\bar{x}(T)=0
\end{align*}
$$

is satisfied, i.e. \bar{x} has the form $\bar{x}=\bar{x}(\bar{u})$. If iii) and iv) in the theorem are satisfied, then (14) and (18) are also satisfied with $T_{0}=I$ and $T_{2}=-\psi(T)$. Since P_{0} is a closed and convex cone and \bar{x} has the form $\bar{x}=\bar{x}(\bar{u})$, it follows from (18), (17), (16), (15), (14), (13), (11) and $\bar{x}(T)=0$, that

$$
\begin{equation*}
\hat{T}(u)=F_{0}^{\prime}\left(x_{0}, u_{0}\right)(\bar{x}, \bar{u})=F_{0}^{\prime}\left(x_{0}, u_{0}\right)\left(x-x_{0}, u-u_{0}\right) \in P_{0}, \tag{20}
\end{equation*}
$$

thus ii') in Theorem $1 A$ is satisfied, which is the sufficient condition of the global infimum.

Remark: Define $H(x, u, \psi, t)=\psi \varphi(x, u, t)-T_{0} \Phi(x, u, t)$. Then iv) is equivalent to

$$
\begin{equation*}
-H_{u}\left(x_{0}(t), u_{0}(t), \psi(t), t\right)\left(u-u_{0}(t)\right) \subseteq P_{0} \tag{21}
\end{equation*}
$$

for all $u \in M$ and for almost every $t \in[0, T]$. By Theorem $1 A$ (13) is the necessary condition for the function $-H\left(x_{0}(t), u, \psi(t), t\right)$ to attain local infimum on the set M in the point $u=u_{0}(t)$. Thus, if $\left(x_{0}, u_{0}\right)$ is a solution of the optimum control problem in Theorem 1, then the function $H\left(x_{0}(t), u, \psi(t), t\right)$ satisfies the necessary condition of the local supremum on the set M for almost every $t \in[0, T]$ in the point $u=u_{0}(t)$. Hence Theorem 1 will be called a local supremum principle.

If the performance criterion is given not by an integral but $F_{0}(x, u)=$ $=F(x(T)$), where $F(\cdot)$ is a differentiable function and the final state $x(T)$ is free $\left(x(T) \in R^{n}\right.$), then with $\psi(T)=-F^{\prime}(x(T))$ and $\Phi \equiv 0$ (formally) in the proof, Theorem 1 remains still valid, furthermore, T_{0} is the $m \times m$ identity matrix.

Theorem 2: Suppose that (n, r, n, T, φ) satisfies the condition (C). Let $c \in R^{n}$. Let P_{0} be a closed and convex cone in R^{m} such that $P_{0}^{0} \neq \emptyset$ and $\pm z \in P_{0} \Rightarrow z=0$, and let the positive cone P_{0} define a partial ordering \geq in $R^{m}\left(R^{m}\right.$ is not necessarily an Euclidean space). Let $\mathrm{F}: R^{n} \rightarrow R^{m}$ be a differentiable mapping and let the constraint Q be

$$
\begin{gathered}
Q=\left\{(x, u) \in C^{(n)}(0, T) \times L_{\propto}^{(r)}(0, T):\right. \\
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\varphi(x(t), u(t), t) \text { for almost every } t \in[0, T] ; \\
x(0)=\mathrm{c}\}
\end{gathered}
$$

and let $\left(x_{0}, u_{0}\right) \in Q$. Suppose there is a neighbourhood V of $\left(x_{0}, u_{0}\right)$ such that $\left(x_{0}, u_{0}\right)$ is a solution of the problem

$$
\inf \{F(x(T)):(x, u) \in Q \cap V\}
$$

Then there exists a $m \times n$ matrix function $\psi(t)$ such that
i) $\frac{\mathrm{d} \psi(t)}{\mathrm{d} t}=-\psi(t) \varphi_{y}\left(x_{0}(t), u_{0}(t), t\right)$ for almost every $t \in[0, T] ;$
ii) $\psi(T)=-F^{\prime}\left(x_{0}(T)\right)$;
iii) $\psi(t)_{\mathcal{Y}_{\mathrm{v}}}\left(x_{0}(t), u_{0}(t), t\right)=0$ for almost every $t \in[0, T]$;
iv) specially if $m=n$ and $F^{\prime}\left(x_{0}(T)\right)$ has an inverse, than $\varphi_{\mathrm{v}}\left(x_{0}(t), u_{0}(t), t\right)=0$ for almost every $t \in[0, T]$.
If F is a convex function and the dynamic system is linear, i.e. $\varphi(y, v, t)=$ $=A(t) y+B(t) v$, then the local infimum in $\left(x_{0}, u_{0}\right)$ is also a global infimum on Q, furthermore i)-iii) or iv) are the sufficient conditions of the global infimum.
Proof: By the remark after Theorem 1, i) and ii) are satisfied and

$$
\begin{equation*}
-\psi(t) \mathscr{F}_{\mathrm{v}}\left(x_{0}(t), u_{0}(t), t\right)\left(u-u_{0}(t) \in P_{0}\right. \tag{22}
\end{equation*}
$$

1^{-}

for all $u \in R^{r}$ and for almost every $t \in[0, T]$. On the contrary, suppose iii) is not valid. Then there exists $\hat{S} \subset[0, T]$ such that $\lambda(\hat{S})>0$ and

$$
\begin{equation*}
-\psi(t) \varphi_{v}\left(x_{0}(t), u_{0}(t), t\right) \neq 0 \tag{23}
\end{equation*}
$$

for all $t \in \hat{S}$. Hence for all $t \in \hat{S}$ there exists $\tilde{u}(t) \in R^{r}$ such that

$$
\begin{equation*}
-\psi(t) \gamma_{\mathrm{v}}\left(x_{0}(t), u_{0}(t), t\right) \dot{u}(t) \neq 0 \text { and } \dot{u}(t) \neq 0 \tag{24}
\end{equation*}
$$

Let $u_{1}(t)=\tilde{u}(t)+u_{0}(t)$ and $u_{2}(t)=-\tilde{u}(t)+u_{0}(t)$. By (22) there is a $\widetilde{S} \subset \hat{S}$ such that $\lambda(\widetilde{S})>0$ and

$$
\begin{equation*}
\pm \psi(t) \varphi_{v}\left(x_{0}(t), u_{0}(t), t\right) \quad \tilde{u}(t) \in P_{0} \tag{25}
\end{equation*}
$$

for all $t \in \tilde{S}$. Since $\pm z \in P_{0} \Rightarrow z=0$, hence

$$
\begin{equation*}
\psi(t) \varphi_{\mathrm{v}}\left(x_{0}(t), u_{0}(t), t\right) \tilde{u}(t)=0 \tag{26}
\end{equation*}
$$

for all $t \in \tilde{S} \subset \hat{S}$ and so (26) contradicts (24). This contradiction proves iii). Specially if $m=n$ and $F^{\prime}(x(T))$ has an inverse, then by Lemma $3 A$

$$
\begin{equation*}
-F^{\prime}\left(x_{0}(T)\right) \Phi(t, T) \varphi_{\nu}\left(x_{0}(t), u_{0}(t) ; t\right)=0 \tag{27}
\end{equation*}
$$

for almost every $t \in[0, T]$, where the $n \times n$ matrix $-F^{\prime}\left(x_{0}(T)\right) \Phi(t, T)$ has an inverse for all $t \in[0, T]$ and so it follows from (27), that

$$
\begin{equation*}
\varphi_{\mathrm{v}}\left(x_{0}(t), u_{0}(t), t\right)=0 \tag{28}
\end{equation*}
$$

for almost every $t \in[0, T]$. The proof of the sufficience part is analog to that in Theorem 1.

Remark: Let $H(x, u, \psi, t)=\psi \varnothing(x, u, t)$, then the function $H\left(x_{0}(t), u, \psi(t), t\right)$ satisfies the necessary condition of the local supremum (condition iii)) on R^{r} for almost every $t \in[0, T]$ in the point $u=u_{0}(t)$. Hence Theorem 2 is also a local supremum principle.

4. Applications

A generalization of Pontryagin's principle in the form of a global supremum principle can be derived from the local supremum principle with the same technique as used by Dubovickij, Miljutin and Girsanov ([1], pp. 83-92).

Theorem $5 A$ shows that infimizing the error covariance matrix, all scalar-valued performance crtiteria used practically will be simultaneously minimized.

In [2] a global infimum principle was reported and the applicability of the theory to the analysis of dynamic vector estimation problems and to
a class of uncertain optimal control problems was demonstrated. However, all problems examined in [3] can also be easily solved applying the local supremum principle (Theorem 2, case iv)).

Appendix

Theorem 1A: Suppose that the following conditions are satisfied:

1) E and E_{i} are Banach spaces, $i=1, \ldots, n+h ; E_{0}$ is a reflexive Banach space;
2) $P_{i} \subset E_{i}$ is a closed and convex cone, $0 \in P_{i}^{0} \neq \emptyset$ and P_{i} (as a positive cone) defines a partial ordering \geq in the Banach space $E_{i}, i=0, \ldots, n$; furthermore, there is a real number $\delta>0$ such that for all $y_{1}, y_{2} \in P_{0}$ and $\left\|y_{1}\right\|=\left\|y_{2}\right\|=1$ it is $\left\|y_{1}+y_{2}\right\| \geq \delta$;
3) $F_{i}: E \rightarrow E_{i}$ is a mapping which has a Fréchet derivative $F_{i}^{\prime}\left(x_{0}\right)$ in the point x_{0}, $i=0, \ldots, n$ and for which $R\left(F_{i}^{\prime}\left(x_{0}\right)\right)$ is closed in $E_{i}, i=1, \ldots, n$;
4) $\mathrm{F}_{i}: E \rightarrow E_{i}$ is a mapping, which is continuously Fréchet differentiable in a neighbourhood of x_{0} and for which $R\left(F_{i}^{\prime}\left(x_{0}\right)\right)$ is closed in $E_{i}, i=n+1, \ldots, n+h$;
5) $A \subset E$ is a convex set and $\mathrm{A}^{0} \neq \emptyset$;
6) $Q=\left\{x \in E:-F_{i}\left(x_{0}\right) \geq 0, i=1, \ldots, n ; F_{i}(x)=0, i=n+1, \ldots, n+k ; x \in A\right\}$ is a constraint, $x_{0} \in Q$ and there exists a neighbourhood V of x_{0} such that

$$
\inf \left\{F_{0}(x): x \in Q \cap V\right\}=F_{0}\left(x_{0}\right)
$$

Then there are linear mappings $T_{i} \in \mathcal{L}\left(E_{i} \rightarrow E_{0}\right)$, which are continuous on $R\left(F_{i}\left(x_{0}\right)\right)$, $i=0, \ldots, n+k$ and for which
i) $T_{0} y_{0} \in P_{0}$, i.e. $T_{0} y_{0} \geq 0$ for all $y_{0} \in P_{0}$; furthermore, $T_{i} y_{i} \in P_{0}$ i.e. $T_{i} y_{i} \geq 0$ for all $y_{i} \in R\left(-F_{i}\left(x_{0}\right)\right) \cap\left(P_{i}+F_{i}\left(x_{0}\right)\right), \underset{n+k}{i=1}, \ldots, n$,
ii) with the notation $T=\sum_{i=0}^{n+k} T_{i} \circ F_{i}^{\prime}\left(x_{0}\right)$ the inequality $T x \geq T x_{0}$, i.e. $T\left(x-x_{0}\right) \in P_{0}$ holds for all $x \in A$,
iii) $T_{i} \neq 0$ for at least one i,
iv) if $i \in\{1, \ldots, n\}$ and $-F_{i}\left(x_{0}\right) \in P^{0}$, then $T_{i}=0$,
v) if the system

$$
R\left(F_{i}^{\prime}\left(x_{0}\right)=E_{i}, \quad i=n+1, \ldots, n+k,\right.
$$

$i \in\{1, \ldots, n\}$ and $-F_{i}\left(x_{0}\right) \notin P_{i}^{0} \Rightarrow \mathbf{R}\left(-F_{i}^{\prime}\left(x_{0}\right)\right) \cap\left(P+\left\{\lambda F_{i}\left(x_{0}\right): \lambda>0\right\}\right) \neq \emptyset$
can be satisfied, then T_{i} o $F_{i}^{\prime}\left(x_{0}\right) \neq 0$ for at least one i,
vi) specially if $R\left(F_{i}\left(x_{0}\right)\right)=E_{i}, \quad i=n+1, \ldots, n+k$ and the system

$$
F_{i}^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0, \quad i=n+1, \ldots, n+k,
$$

$i \in\{1, \ldots, n\}$ and $-F_{i}\left(x_{0}\right) \leftarrow P_{i}^{0} \Rightarrow-F_{i}^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \in P_{i}^{0}+\left\{\lambda F_{i}\left(x_{0}\right): \lambda>0\right\}$
has a solution in x, then $T_{0}=I$ is the identity operator. If in addition F_{i} is a convex mapping, $i=0, \ldots, n ; F_{i}(x)=B_{i} x+b_{i}$, where B_{i} is a bounded linear operator and $b_{i} \in E_{i}, i=$ $i=n+1, \ldots n+k$, then the local infimum is also a global infimum on Q and i), ii) or ii'), iv), vi) are the sufficient conditions of the global infimum, where ii') $x \in Q \Rightarrow F_{0}^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=$ $=T\left(x-x_{0}\right)-\sum_{i=1}^{n} T_{i} o F_{i}^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \in P_{0}$; specially for $n=0$, ii') has the form $x \in Q \Rightarrow$ $\Rightarrow T\left(x-x_{0}\right) \in P_{0}$.

Lemma 2A: Let $M \subseteq R^{r}, Q=\{x \in L(r)(0, T): x(t) \in M$ for almost every $t \in[0, T]\}, x_{0} \in Q$, $A \in L(n \times r)(0, T)$ and let P be a closed (and not necessarily convex) cone in R^{n}. Suppose that

$$
\int_{0}^{T} A(t)\left(x(t)-x_{0}(t)\right) \mathrm{d} t \in P
$$

for all $x(\cdot) \in Q$. Then

$$
A(t)\left(x-x_{0}(t)\right) \in P
$$

for all $x \in M$ and for almost every $t \in[0, T]$.
Lemma 3A: Let $\tau \in[0, T]$ and let $A(\cdot) \in L_{\underset{\sim}{(n \times n)}}^{(0, T) \text {. Then }}$
i) the problem

$$
\begin{gathered}
\frac{\mathrm{d} \Phi(t, \tau)}{\mathrm{d} t}=\Phi(t, \tau) A(t) \text { for almost every } t \in[0, T] \\
\Phi(\tau, \tau)=I_{n \times n}
\end{gathered}
$$

has exactly one solution $\Phi(\cdot, \tau) \in C^{(n \times n)}(0, T)$;
ii) the problem

$$
\begin{gathered}
\frac{\mathrm{d} \varphi(t)}{\mathrm{d} t}=\varphi(t) A(t) \text { for almost every } t \in[0, T], \\
\varphi(\tau) \text { is given, }
\end{gathered}
$$

has exactly one solution $\varphi(\cdot) \in \mathrm{C}^{m \times n}(0, T)$, and the solution is

$$
\varphi(t)=\varphi(\tau) \Phi(t, \tau)
$$

iii) for all $t, \tau \in[0, T]$, the inverse matrix $\Phi^{-1}(t, \tau)$ exists and

$$
\Phi^{-1}(t, \tau)=\Phi(\tau, t) .
$$

Lemma 4A: Let P be a closed and convex cone in the linear normed space, R^{n}, such that $P^{0} \neq \emptyset$ and $\pm z \in P \Rightarrow z=0$. Then there exists a real number $\delta>0$ such that for all $y_{1}, y_{2} \in P$ and $\left\|y_{1}\right\|_{=}=\left\|y_{2}\right\|=1$ it is $\left\|y_{1}+y_{2}\right\| \geq \delta$.

Theorem 5A: Let $Q \subset R^{n}$ and let A be a positive semidefinite symmetric $n \times n$ matrix. Let (Ω, \mathcal{A}, p) be a probability space, let $\mathscr{F} \subset\left\{x: \Omega \rightarrow R^{n}\right.$ is a random variable: $E x=0$ and there exists $\left.E\left(x x^{*}\right)\right\}$, and let $\mathcal{G}=\{x \in \mathscr{F}: p(\{\omega): x(\omega) \in Q\})=1$. Use the following notations:

$$
\begin{array}{ll}
F: \tilde{\mathscr{F}} \rightarrow M, n \times n & F(x)=E\left(x x^{*}\right) ; \\
F_{1}: \mathcal{F}_{3} \rightarrow R^{1} & F_{1}(x)=E\left(x^{*} A x\right) ; \\
F_{2}: \nsubseteq R^{1}, & F_{2}(x)=\operatorname{trace} E\left(x x^{*}\right) ; \\
F_{3}: \mathscr{F} \rightarrow R^{1}, & F_{3}(x)=\operatorname{det} E\left(x x^{*}\right) .
\end{array}
$$

If $F(x) \geq F(y)$, i.e. $F(x)-F(y)$ is a positive semidefinite symmetric matrix, then $F_{i}(x) \geq F_{i}(y)$, $i=1,2,3$. If $x_{0} \in \mathcal{C}_{f}$ and $\inf \left\{F(x): x \in \mathcal{C}_{\}}\right\}=F\left(x_{0}\right)$, then $\min \left\{F_{i}(x): x \in \mathcal{G}_{\mathcal{G}}\right\}=F_{i}\left(x_{0}\right), i=1,2,3$.

Summary

The principal aim of this paper is to give the necessary condition of the optimum (infimum) in form of the local supremum principle for optimum control problems with nonscalar-valued performance criterion. The performance criterion has its range in a finitedimensional partially ordered linear normed (not necessarily Euclidean) space. The local supremum can be applied to the analysis of dynamic vector estimation problems and to uncertain optimal control problems.

References

1. Гирсанов, И. В., Лекции по математической теории эктремальных задач. Изд. Московского Университета, 1970.
2. Geering, H. P. - Athans, M.: The infimum principle. IEEE Transactions on Automatic. Control, 19 (1974) 485-494.
3. Lantos, B.: Necessary conditions for the optimality in abstract optimum control problems with nonscalar-valued performance criterion. Problems of Control and Information Theory, 1976/3.
Béla Lantos H-1521 Budapest
