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Symbols and abbreviations 

E element of 
E non element of 
=> implies 
o empty set 
T topology 
A 0 interior of A 
A = {a: property of a} definition of the set A 
AjB A\B={a:aEA;aEB} 
A c B a E A implies a E B 
AxB AxB = {(a,b): a EA; b E B} 
A n B intersection of A and B 
Rn n-dimensionallinear normed space 
F : El ->- E2 mapping from El into E2 
R (F) range of F 
F' (x) Frechet derivative of F 
f(EI ->- E 2) linear operators from El into E2 
J& (El ->- E 2 ) bounded linear operators from El into E2 
<x,y> inner product 
11 x i I norm of x 
FoG composition of the mappings F and G such that F 0 G(x) = F(G(x» 
F(.,y) the mapping F(x,y) for fixed y 
Mmxn set of mxn matrices 
J.(A) Lebesgue measure of A 
C<n) (to,t1) the set of the continuous functions F: [to,tl ] ->- Rn 
L(n) (to,ft) the set of the essentially bounded functions F: (to,t l ] __ Rn 

c(mxn) (to,lt) the set of the continuous m X n matrices F: [to,tl ] - lvImxn 
L(m xn) (to,lt) the set of the essentially bounded m X n matrices F: [to ,I1J -- ZvImxn 
co 

1. Introdnction 

In many optimization problems the quality of the process cannot he 
characterized by a single scalar-valued optimality criterion, because the 
user is simultaneously interested in several cost functionals. The scalar-valued 
cost functionals can be reduced to a single vector-valued performance 
criterion. 
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The linear state estimation problem also leads to an optimum problem 
"\\-ith a nonscalar-valued performance criterion, if the covariance matrix of 
the error between the state and its estimation must be infimum. In this case 
the performance criterion is matrix-valued. 

Dy-namic optimization problems with nonscalar-valued performance 
criteria are studied in the present paper. The meaning of "better than" has 
to be defined, and this "\\-ill be done by a partial-order relation. Partial ordering 
is defined by a positive cone. It is supposed that the performance criterion 
in the dynamic optimization problem has its range in a finite-dimensional 
partially ordered linear normed space (which is not necessarily an Euclidean 
space). 

The necessary conditions of the local infimum are summarized in two 
theorems. These theorems establish a relation between the local maximum 
principle of DUBOVICKIJ, MILJUTIN and GIRSANOY [1], the infimum principle 
of Athans and Geering [2], and the author's results [3]. 

The proofs of the theorems in the appendix of the paper can be found 
in the author's dissertation. 

2. Partial ordering 

Partial ordering on a set is a reflexive, (antisymmetric) and transitive 
relation. If the set is a linear topological space, then it , .. ill be supposed that 
the partial ordering is given by a closed and convex cone having a nonempty 
interior. 

Definition 1: Let (E, T) be a linear topological space, and let P c E 
be a closed and convex cone such that po ..,.:.. 0. We say that x > y if x,y E E 
and x-y E P. A linear topological space "\\-ith a relation 2': defined in this 
way is said to be a partially ordered linear topological space. Notation: 
(E, T, 2':). Since x E P <=> x 2': 0, the cone P , .. ill be called the positive cone 
(defining the relation ». If ± z E P = z = 0, then > is antisymmetric, 
i.e. x >y and y > x = x = y. 

Example 1: Let Rn be the usually n-dimensional Euclidean space. 
If P = {x = (~, ... , xn) E Rn: Xi 2': 0, i = 1, ... , n}, then P is a POSItIve 
cone in Rn and so P defines a partial ordering in Rn. Notation: (Rn, ». 
If 11 x 11 = 11 y 11 = 1 and x, y E P, then 11 x + y 112': 1. 

Example 2: Let H be a Hilbert space. If E = {A E <ffi (H ~ H): 
A is self-adjoint} and P = {A E E: < Ax,x > >0 for all x EH}, then 
E c <ffi (H ~ H) is a closed subspace = E is a Banach space and P c: E is 
a positive cone in E. Hence P defines a partial ordering in E. Notation: 

(E,2':)' If 11 A 11 = 11 B 11 = 1 and A,B E P, then 11 A + B 11 > 1. 
Example 3: Notation is as in Example 2. Let H = Rn ("\\-ith fixed 

orthonormal basis.) Then <ffi(Rn ~ Rn) can be identified with the set of n X n 
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matrices and similarly E with the set of symmetric n X n matrices. Then 
P is the set of positive semidefinite symmetric n X n matrices. The positive 
cone P defines a partial ordering in the Banach space of the symmetric n X n 

. N . (MS » MS b 'd d n(n + 1) matnces. otatlOn: - nXn' _. nXn can e conSl ere as a 2 

dimensional subspace of the linear normed space Rn' (without inner product). 
Remark: If (E, T,~) is a partially ordered linear topological space, 

then x ~ y and z E E => x + z ~ y + z. 
Definition 2: Let (E, T, » be a partially ordered linear topological 

space, Q C E and Xo E Q. We say that 
1) Xo = max Q, if there does not exist any x E Q such that x > Xo 

and x # x o' 
2) Xo = min Q, if there does not exist any x E Q such that Xo > x 

and x # x o' 
3) xo = sup Q, if X o x for all x E Q, 
4) Xo = inf Q, if x > Xo for all x E Q. 
In general, max Q and min Q are not unique, because the partial ordering 

is usually not a linear ordering (Q may have elements which are not com
um:able). Sup Q and inf Q are always unique (supposed that they exist and the 
partial ordering is antisymmetric). 

3. The local supremum principle 

Condition (C): We say that (n,r,m,T,CP) satisfies the condition (C), if 

0< T < 00, 

CP: RnXRTx[O,T]-+Rm is a mapping, 

S c [O,T] and }.([O,T]\S) = ° , 
furthermore 

1) there exist CPy(y,v,t), CPv(y,v,t) for all t E S, and {CPy("" t): t E S}, 
{CPv("" t) : t E S} are equicontinuous in (y,v) on all compact sets 
FxG c RnxRT; 

2) CP(y ,v, .), CPy(y,v,.) and CPv(y,v,') are measurable functions in t for 
all fixed (y,v) E RnxRT; 

3) for each fixed bounded set F X G c Rn X RT, there is a real number 

k such that 11 CP(y,v,t) 11 < k, 11 CPy(y,v,t) 11 < k and i I CPv(y,v,t) I1 < 
<k for all (y,v,t) E FxGxS. 

Theorem 1: Suppose that (n,T,m,T,CP) and (n,T,n,T,cp) satisfy the con
dition (C). Let !.VI be a convex set in RT and MO # 0. Let c, d E Rn. Let Po 
be a closed and convex cone in Rm such that Pg # 0 and ±z E Po => z = 0, 
and let the positive cone Po define a partial ordering > in Rm (Rm is not 
necessarily an Euclidean space). Let the constraint Q be 
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{(x,u) E c(n) (O,T) xL~) (O,T): 

dx(t) 
--= gJ(x(t), u(t), t) for almost every t E [O,T]; 

dt 

x(O) = c and x(T) = d; 
u(t) E 11,[ for almost every t E [O,T]} , 

and let (xo,u o) E Q. Suppose there is a neighbourhood V of (xo,u o) such 
that (xo,u o) is a solution of the problem 

T 

inf { S <P (x(t), u(t), t) dt : (x, u) E Q n V} . 
o 

Then there exist a nXn constant matrix To and mXn matrix functions ljJ(t) 
such that 

i) ToY > ° for all y > ° i.e. To(Po) C Po; 
ii) either To -;-<- ° or 1p(t) ~ 0; 

iii) d:~t)_ = - 1p(t) gJy(xo(t), uo(t), t) + To<P(xo(t), uo(t), t) for almost every 

tE [O,T]; 
iv) (-ljJ(t)q:;l\~o(t), uo(t),t) + To<pv (xo(t),uo(t),t»). (u - uo(t») E Po 

for all u E _M and for almost every t E [O,T]; 
v) specially if the system 

for almost every t E [O,T], x(O) = x(T) = 0, 
u(t) E 11[0 for almost eveT) t E [O,T] 

has a solution (X,ll) E c(n)(O,T) XL~) (O,T), then To = I is the m)< m identity 
matrix. If in addition ct>(y,v,t) is a convex mapping and the dynamical system 
is linear, i.e. gJ(y,v,t) = A(t)y + B(t)v, then the local infimum in (xo,uo) is 
also a global infimum on Q, furthermore, iii) and iv) are sufficient conditions 
of the glohal infimum. 
Proof: We will use the following notations: 

Fo: c(n)(O,T) XL<;/(O,T) -+ R m , 
T 

Fo(X,ll) = r <p(X(t),ll(t),t) dt, 
o' 

F1 : c(n)(O,T) xL~)(O,T) -+ c(n)(O,T), 
t 

F1(x,u)(t) = x(t) - c - S q:;(x(r), u(r),r)dr, 
o 
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F2 : c(n)(O,T) xL~)(O,T) -+ Rn , 
F 2(x,u) = x(T) - d, 
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A = {(x,u) E c(n)(O,T) X L~)(O,T) : u(t) E .l~1 for almost every t E [O,TJ}. 

Q = {(x,u) E c(n)(o,T)XL~)(O,T) : FI(x,u) = 0; F 2(x,u) = 0; (1) 

(x,u) EA} and (xo,uo) E Q is a solution of the problem 

inf {Fo(x,u) : (x,u) E Qn V}. (2) 

Since A = c(n)(O,T) X Band it1 is a convex set such that 111° -;-'- g, it follows 
that B c L!!!(O,T) such that B is a convex set and BO # g. Hence A is a 
convex set and AO # £I. Since (n,r,m,T,<P) and (n,r,n,T,cp) satisfy the condition 
(C), it follows that Fo and FI are continuously Frechet differentiable and 

T 

F~(xo,uoK~,u) = J [<Py(xo(t), uo(t),t)x(t) + <Pv(xo(t), uo(t),t) ii(t)] dt, (3) 
o 

t 

Fi(xo,uo)(x,ii)(t) = x(t) - J [cpy(xo('r),uo('r);r)x(-r) + 
o 

furthermore, by Lemma 3A (in Appendix) 

is satisfied. Evidently, F2 is continuously Frechet differentiable and 

F~(xo'uo) (x,u) = x(T) , 

R( F~(xo'uo») = Rn . 

(4) 

(5 

(6) 

(7) 

By Lemma 4A and by (1)-(7), Theorem lA can be applied. Hence there 
are bounded linear operators 

To E &?>(Rm -+ Rm), 
Tl E &?>(c(n)(O,T) -+ Rm) , 
T2 E &3(Rn -+ Rm) , 
T E &3(c(n)(O,T) XL~)(O,T) -+ Rm) 

such that To(Po) C Po and Ti -;-'- 0 for at least one i E {0,1~2} and 

T = To 0 Fo(xo,uo) + T10 Fi(xo,uo) + T2 0 F~(xo'uo) , (8) 

T(x,u) ~ T(xo'u o) for all (x,u) EA. (9) 
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In a fixed basis the bounded linear operators To, Tl and T 2 can be identified 
with a m X m constant matrix, with a m X n matrix function and with a 
m X n constant matrix, respectively. In the special case To is the m X m identity 
matrix. Since T(x,u) = T(x,O) + T(O,u) and± z E Po ~ z = 0, it follows 
from the form of the set A, that 

T(x,o) = ° for all x E c(n)(O,T) ; 

T(u) = T(x,u) = T(O,u) . 

(10) 

(11) 

Let U E L~)(O,T) be fixed and let x = x(u) be the solution of the equation 
Fi(xo,uo)(x,u) = 0, i.e. 

for almost every t E [O,T] , (12) 

x(O) = 0, 

which has a unique solution by Lemma 3A. It follows from (8) that 

T 

t(U) = To 5 (q}ylt x(t) + q}vlt u(t») dt + Tzx(T) (13) 
o 

for all (x(u), u). Let 1p: [O,T] -?- &b(Rn -?- Rm) be the solution of 

for almost every t E [O,T] , (14) 

then in a fixed basis 1f(t) can be identified with a m X n matrix function and 
the solution 1f(t) is unique by Lemma 3A. If both To and 1f(') are zero, then 
T2 is also zero by 1f(T) = -T2• Hence T is zero by (13) and Tt 0 Fi(xo'u o) 
is also zero by (11) and (8). Since R( F{(xo,uo») = c(n)(O,T), it follows that 
Tt is also zero. But this contradicts iii) in Theorem lA. This contradiction 
proves that either To ~ ° or ljJ(t) ~ 0. By (14) and (12) and through integration 
by parts it follows 

T T 

To 5 q}ylt x(t) dt = - T zi(T) - 5 1fJ(t) IPult u(t) dt . (15) 
o 0 
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Hence it follows from (13) and (15) that 

T 

T(u) = S (-1p(t) !Pvll + ToWvlt) U(t) dt . (16) 
o 

By (9), (11) and (16) 

T 

T(u - UO) = S ( -1p(t) !Pvlt + ToWvlt)(u(t) -UO(t») dt E Po (17) 
o 

is satisfied for all u E B = {u E L~)(O,T): u(t) E M for almost every t E [O,T]}. 
Hence by Lemma 2A 

(18) 

for all u E ]vl and for almost every t E [O,T]. 
In the special case v) of the theorem let now W(y,v,t) be a convex function 

and let the dynamical system be linear, i.e. rp(y,v,t) = A(t)y + B(t)v. Let 
(x,u) E Q and use the notations x = x - xo and u = u - U o' Then 

~ = A(t) x B(t) u , (19) 

x(O) = x(T) = 0 

is satisfied, i.e. x has the form x = x(u). If iii) and iv) in the theorem are 
satisfied, then (14) and (18) are also satisfied with To = I and T z = -1p(T). 
Since Po is a closed and convex cone and x has the form x = x(u), it follows 
from (18), (17), (16), (15), (14), (13), (11) and x(T) = 0, that 

thus ii') in Theorem lA is satisfied, ·which is the sufficient condition of the 
global infimum. 

Remark: Define H(x,u,lP,t) = ljJrp(x,u,t) - ToW(x,u,t). Then iv) is equi-
valent to 

(21) 

for all u E 1\11 and for almost every t E [O,T]. By Theorem lA (13) is the 
necessary condition for the function -H(xo(t), u,1p(t),t) to attain local infimum 
on the set 111 in the point u = uo(t). Thus, if (xo,uo) is a solution of the optimum 
control problem in Theorem 1, then the function H(xo(t),U,1p(t),t) satisfies 
the necessary condition of the local supremum on the set 1t! for almost every 
t E [O,T] in the point u = uo(t). Hence Theorem 1 ,,,ill be called a local 
supremum principle. 
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If the performance criterion is given not by an integral but Fo(x,u) = 
= F(x(T)), where F( . ) is a differentiable function and the final state x(T) 
is free (x(T) E Rn), then 1~ith 1p(T) = -F'(x(T» and r[J = 0 (formally) in the 
proof, Theorem 1 remains still valid, furthermore, To is the m X m identity 
matrix. 

Theorem 2: Suppose that (n,r,n,T,cp) satisfies the condition (C). Let 
c E Rn. Let Po be a closed and convex cone in R11l such that Pg "" (j and 
= z E Po = z = 0, and let the positive cone Po define a partial ordering > in 
R11l(R11l is not necessarily an Euclidean space). Let F : Rn -+ Rm be a differ
entiable mapping and let the constraint Q be 

Q = {(x, u) E c(n) (0, T) X L~)(O, T): 

dx(t) d-;- = <p(x(t), u(t), t) for almost every t E [0, T] ; 

x(O) = c} , 

and let (xo,u o) E Q. Suppose there is a neighbourhood V of (xo,u o) such that 
(xo,uo) is a solution of the problem 

inf {F(x(T»: (x,u) E Q n V}. 

Then there exists a 171 X n matrix function 1jJ(t) such that 

i) d~~t) = -1p(t) Cpy(xo(t), uo(t), t) for almost every t E [0, T] ; 

ii)1p(T) = -F'(xo(T»; 
ill) 1p(t)!fv(xo(t),u o(t),t) = 0 for almost every t E [O,T]; 
iv) specially if 171 = nand F'(xo(T» has an inverse, than 

({v(xo(t),uo(t\,t) = 0 for almost every t E [O,T]. 
If F is a convex function and the dynamic system is linear, i.e. cp(y,v,t) = 

= A(t)y -i- B(t)v, then the local infimum in (xo,u o) is also a global infimum 
on Q, furthermore i)-iii) or iv) are the sufficient conditions of the global 
infimum. 
Proof: By the remark after Theorem L i) and ii) are satisfied and 

(22) 

,-
for all u E Rr and for almost every t E [O,T]. On the contrary, suppose iii) is 
not valid. Then there exists 5 C [O,T] such that 1.(5) > 0 and 

(23) 
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for all t E S. Hence for all t E S there exists u(t) E R' such that 

-1p(t) gy(xu(t),uo(t),t) U(l) ~ , ° and li(t) " 0. (24) 

Let ~(t) = u(t) + uo(t) and u 2(t) = -u(t)+uo(t). By (22) there is a S c S 
such that }.(S) > 0 and 

for all t E S. Since ±z E Po = z = 0, hence 

(26) 

for all t E S c S and so (26) contradicts (24). This contradiction proves iii). 
Specially if m = nand F'(x(T») has an inverse, then by Lemma 3A 

(27) 

for almost every t E [O,T], where the nXn matrix -F'(xo(T»)!J>(t,T) has an 
inverse for all t E [O,T] and so it follows from (27), that 

(28) 

for almost every t E [O,T]. The proof of the sufficience part is analog to that 
in Theorem 1. 

Remark: Let H(x,u,1p,t) = 1pq;(x,u,t), then the function H(x o(t),U,1p(t),t) 
satisfies the necessary condition of the local supremum (condition iii» on 
R' for almost every t E [O,T] in the point u = uo(t). Hence Theorem 2 is 
also a local supremum principle. 

4. Applications 

A generalization of Pontryagin's principle in the form of a global 
supremum principle can be derived from the local supremurn principle with 
the same technique as used by Dubovickij, lVIiljutin and Girsanov ([1], pp. 
83-92). 

Theorem SA shows that infimizing the error covariance matrix, all 
scalar-valued performance crtiteria used practically will be simultaneously 
minimized. 

In [2] a global infimum principle was reported and the applicability 
of the theory to the analysis of dynamic vector estimation problems and to 
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a class of uncertain optimal control problems was demonstrated. However, 
all problems examined in [3] can also be easily solved applying the local 
supremum principle (Theorem 2, case iv)). 

Appendix 

Theorem lA: Suppose that the following conditions are satisfied: 
1) E and Ei are Banach spaces, i = 1, ... , n + k; Eo is a reflexive Banach space; 
2) Pi c Ei is a closed and convex cone, 0 if P~ 7'" 0 and Pi (as a positive cone) defines 

a partial ordering 2: in the Banach space Ei, i = 0, ... , n; furthermore, there is a real number 
0> 0 such that for all Yl'Y2 E Po and IIYll1 = IIYzl1 = 1 it is IIYl +Y2112: 0; 

3) F i : E -+ Ei is a mapping which has a Frechet derivative Fi(xo) in the point xo, 
i = 0, ... , n and for which R(F/(xo» is closed in E i , i = 1, ... , n; 

4) F; : E -+ Ei is a mapping, which is continuously Frechet differentiable in a neigh
bourhood of Xo and for which R(Fi(xo» is closed in E;, i = n + 1, ... , n + k: 

5) AcE is a convex set and AD 7'" 0: 
6) Q= {xE E: -Fi(xo) 2: 0, i=l, ... ,n; Fi(X)=O, i=n+ l, ... ,n+k; xE A} 

is a constraint, Xo E Q and there exists a neighbourhood V of Xo such that 
inf {Fo(x) : x E Q n V} = Fo(xo). 

Then there are linear mappings Ti E f (Ei -+ Eo), which are continuous on R(Fi(xo»' 
i = 0, ... , n + k and for which 

i) ToYo E Po, i.e. ToYo >- 0 for all Yo E Po: furthermore, T;Yi E Po i.e. Tm 2: 0 for all 
Yi E R( - Fi(xo» n (Pi + Fi(xo»' i = 1, ... , n, 

n-'-k 
ii) with the notation T = i Ti 0 Fi(xo) the inequality Tx 2: Txo, i.e. T(x-xo} E Po 

i=O 
holds for all x E A, 

ill) Ti 7'" 0 for at least one i, 
iv) if i E {1, ... , n} and Fi(Xo) E po, then Ti = 0, 
v) if the system 

R(Fi(xo) = Ei, i = n + 1, ... , n + k, 
R( -F~(xo» n Pg 7'" 0, 

i E {1, ... , n} and -Fi(XO) if P~ => R(-Fi(xo»n (P + P.Fi(xo):)' > O}) ~ 11 
can be satisfied, then Ti 0 Fi(xo) ;;e 0 for at least one i, 

,i) specially if R( Fi(xo» = Ei , i = n + 1, ... , n + k and the system 
F';(xo)(x xo)=O. i=n+1, ... ,n+k, 

i E {l, ... , n} and -F;(xo) if P~=> -Fi(xo)(x - xo) E P~ + P.Fi(Xo): ;. > O} 
:t E AO 

has a solution in x, then To = I is the identity operator. If in addition Fi is a convex mapping, 
i = 0, ... , n; Fi(x) = Bix + bi' where Bi is a bounded linear operator and bi E E;. i = 
i = n + 1, ...• n + k, then the local infimum is also a global infimum on Q and i), ii) or ii/), iv), 
vi) are the sufficient conditions of the global infimum, where ii') x E Q => F~(xo)(x - xo) = 

n 
= T(x - xo) - I: Ti 0 Fi(xo)(x 

1=1 
xo) E Po: specially for n = 0, ii/) has the form x E Q-

=> T(x - xo) E Po. 
Lemma 2A: Let M eRr, Q ={x EL (r) (O,T) :x(t) E NI for almost every t E [O,T]}, Xo EQ, 

A E Vo,nxr) (O.T) and let P be a closed (and not necessarily convex) cone in Rn. Suppose that 

for all x( . ) E Q. Then 

T 
S A(t) (x(t) - xo(t)) dt E P 

o 

A(t) (x - xo(t» E P 

for all x E NI and for almost every t E [O,T]. 
Lemma 3A: Let T E [O.T] and let A ( . ) E Vo,nxn) (O,T). Then 
i) the problem 

d<li(t, T) 
dt = <li(t.T) A(t) for almost every t E [O,T] , 

<li(T,T) = Inxn 
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has exactly one solution (p ( • ;r) E C(nxn) (O,T); 
ii) the problem 

d~~t) = !pet) A(t) for almost every t E [O,T] , 

!p(r) is given, 

has exactly one solution !p( . ) E CmXn (O,T), and the solution is 

rp(t) = !p(r) (p (t,r) : 
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ill) for all t, r E [O,T], the inverse matri.x (P-l(t,r) exists and 
(P-l(t, r) = (P(r, t). 

Lemma 4A: Let P be a closed and convex cone in the linear normed space, RI!, such 
that pO;:: fi and +z E P => z = O. Then there exists a real number 15 > 0 such that for all 
YI'Y2 E P and I! YIII = ! 1 Y2 11 = 1 it is 11 YI + Y2 I! :2:: 15. 

Theorem 5A: Let Q c RI! and let A be a positive semidefinite symmetric n X n matri.'!:. 
Let (Q,cft,p) be a probability space, let !iF c {x: Q -+- Rn is a random variable: Ex = 0 
and there exists: E(xx*)}, and let i!i = {x E !iF : p( {w) : x( w) E Q}) = 1. Use the following nota
tions: 

F: g;: ~ _itf,nXI! 
F 1 : iiF -+- RI, 
F. : g;: -+- RI, 
F;: g;: -+- RI, 

F(x) = E(xx*); 
FI(x) = E(x*Ax); 
F 2(x) = trace E(xx*); 
Fix) = det E(xx*). 

If F(x):2:: F(y), i.e. F(x) - F(y) is a positive semidefinite symmetric matrix, then F1{x):2:: Fi(y), 
i = 1,2,3. If Xo E CJ and inf {F(x): x E i!i} = F(xo)' then min {Fi(X): x E i!i} = Fi(xo), i = 1,2,3' 

Summary 

The principal aim of this paper is to give the necessary condition of the optimum 
(infimum) in form of the local supremum principle for optimum control problems with 
nonscalar-valued performance criterion. The performance criterion has its range in a finite
dimensional partially ordered linear normed (not necessarily Euclidean) space. The local 
supremum can be applied to the analysis of dynamic vector estimation problems and to 
uncertain optimal control problems. 
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