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Symbols and abbreviations

element of

non element of

implies

empty set

topology

A° interior of A

A = {a: property of a} definition of the set 4

Nmumm

N

A/B A\B = {a:a € 4; a ¢ B}

A< B a € Aimpliesa ¢ B

AxB AxB = {(a.b): a € A; b € B}

AN B intersection of 4 and B

R n-dimensional linear normed space

F:E — E, mapping from E| into E,

R(F) range of F

F'(x) Fréchet derivative of F

$E — E,) linear operators from E; into E,

& (E; — E;)  bounded linear operators from E, into E,

<X,y > inner product

Haxli norm of x

FoG composition of the mappings F and G such that Fo G(x) = F(G(x))
F(..y) the mapping F(x.y) for fixed y

Mxn set of m X n matrices

A Lebesgue measure of 4

CY (tost,) the set of the continuous functions F: [t;,t,] — R"

L™ (1,,1) the set of the essentially bounded functions F: [t,.f,] — R”

CUmxmy (g.1)  the set of the continuous m X n matrices F: [t5.0,] —~ Mmxn
L= (ts-t;)  the set of the essentially bounded mXn matrices F: [t,.6] — Mmxn

1. Introduction

In many optimization problems the quality of the process cannot be
characterized by a single scalar-valued optimality criterion, because the
user is simultaneously interested in several cost functionals. The scalar-valued
cost functionals can be reduced to a single vector-valued performance
criterion.
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The linear state estimation problem also leads to an optimum problem
with a nonscalar-valued performance criterion, if the covariance matrix of
the error between the state and its estimation must be infimum. In this case
the performance criterion is matrix-valued.

Dynamic optimization problems with nonscalar-valued performance
criteria are studied in the present paper. The meaning of “better than” has
to be defined, and this will be done by a partial-order relation. Partial ordering
is defined by a positive cone. It is supposed that the performance eriterion
in the dynamic optimization problem has its range in a finite-dimensional
partially ordered linear normed space (which is not necessarily an Euclidean
space).

The necessary conditions of the local infimum are summarized in two
theorems. These theorems establish a relation between the local maximum
principle of DuBovickly, MiLjutin and Girsanov [1], the infimum principle
of Athans and Geering [2], and the author’s results [3].

The proofs of the theorems in the appendix of the paper can be found
in the author’s dissertation.

2. Partial ordering

Partial ordering on a set is a reflexive, (antisymmetric) and transitive
relation. If the set is a linear topological space, then it will be supposed that
the partial ordering is given by a closed and convex cone having a nonempty
interior.

Definition 1: Let (E, t) be a linear topological space, and let P c E
be a closed and convex cone such that P° =t . We say that x >y ifx,y € E
and x—y € P. A linear topological space with a relation > defined in this
way is said to be a partially ordered linear topological space. Notation:
(E, 7, >>). Since x € P < x > 0, the cone P will be called the positive cone
(defining the relation >). If & z¢ P = z= 0, then > is antisymmetric,
ie.x >yandy >x=>zx=y.

Example 1: Let R” be the usually n-dimensional Euclidean space.
U P={x=(x,....2,) € Rt 4, >0, i=1,...,n}, then P is a positive
cone in R" and so P defines a partial ordering in R". Notation: (R", >).
If 2] =llyl| =1 and % y € P, then ||z +y | > L.

Example 2: Let H be a Hilbert space. If E= {4 ¢ & (H— H):
A is self-adjoint} and P = {4 € E: < Axx > >0 for all x ¢ H}, then
E c &(H— H) is a closed subspace = E is a Banach space and Pc E is
a positive cone in E. Hence P defines a partial ordering in E. Notation:
(E,>). If |4]|]=1]|Bll=1 and A,B€¢ P, then ||A -+ B| > 1.

Example 3: Notation is as in Example 2. Let H = R" (with fixed
orthonormal basis.) Then S(R" — R") can be identified with the set of nXn
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matrices and similarly E with the set of symmetric nXn matrices. Then
P is the set of positive semidefinite symmetric n X n matrices. The positive
cone P defines a partial ordering in the Banach space of the symmetric nxn

1
matrices. Notation: (M}, >). M;,, can be considered as a %—-

dimensional subspace of the linear normed space R™ (without inner product).

Remark: If (E, 7,>>) is a partially ordered linear topological space,
then x >y and 2 ¢ E=x -+ 2>y + 2

Definition 2: Let (E, v,>>) be a partially ordered linear topological
space, Q  E and x, € Q. We say that

1) x, = max (., if there does not exist any x € @ such that x > x,

and x = x,
2) xy= min (, if there does not exist any x € Q such that x; > x
and x =% x,

3) xg=-sup Q, if x; >« for all x € Q,

4) x,=1inf Q, if x > x, for all x € Q.

In general, max @ and min  are not unique, because the partial ordering
is usually not a linear ordering (Q may have elements which are not com-
parable). Sup @ and inf Q are always unique (supposed that they exist and the
partial ordering is antisymmetric).

3. The local supremum principle

Cendition (C): We say that (n,r.m,T,D) satisfies the condition (C), if
0 < T < oo,
@: R"XR x[0,T] - R™ is a mapping ,
S < [0,7] and A([0,TI\S) =0,
furthermore

1) there exist @, (y.v.t), Dy(y.w.t) for all 1€ S, and {®(-,-,7):21€ S},
{®,(+,+,t) 1t € S} are equicontinuous in (y,v) on all compact sets
FxG c R*"XR';

2) @D(y.v,+), @y(y,v,-) and @,(y.v.") are measurable functions in ¢ for

all fixed (y.v) € R"xXR;

3) for each fixed bounded set FXG < R"XR’, there is a real number

B such that || @(y.0d) || < k. || Dy(y0d) || <k and || B,(y04) || <
< k for all (y.v,t) € FXGXS.

Theorem 1: Suppose that (n,r,m,T.0) and (n.r,n,T.p) satisfy the con-
dition (C). Let M be a convex set in R" and M° ¢ g. Let ¢, d ¢ R". Let P,
be a closed and convex cone in R™ such that P} == ¢ and +z2¢€ Py=z=0,
and let the positive cone P, define a partial ordering > in R™ (R™ is not
necessarily an Euclidean space). Let the constraint Q be

7%
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Q = {(xu) € C™(0,T)xLY (0,T):

—(—13:#)— = @(x(¢), u(t), t) for almost every t€[0,T];
t
x2(0) = ¢ and 2(T) = d;
u(ty € M for almost every t ¢ [0,T]},
and let (x,.uy) € Q. Suppose there is a neighbourhood ¥ of (x,,u,) such
that (x,,1,) is a solution of the problem

T
inf {§ D (x(2), u(t), t) de:(x,u)€QN V} .

Then there exist a nXn constant matrix T and m X n matrix functions ()
such that

i) Ty > 0 for all ¥ > 0 ie. To(P,) < Py

ii) either Ty == 0 or y(t) = 0;

iii) ﬂld@ = — (1) @y(xo(0), uo(t), ) + To@(%,(t)> 1o(e), t) for almost every
t
t ¢ [0,T];
iv) (—"V’(t)(Fv(xo(t)v u(t),t) + T, D, (xo(t),uo(t),t)). (u - uo(t» c P,
for all u ¢ M and for almost every ¢ € [0,T];
v) specially if the system

djgt) = @, (%o(2), uy(t). 1) X(2) + ¢, (wa8) uo(®), f) (u(®) — w,(0))

for almost every t £ [0,7], %(0) = x(T) = 0,

u(t) £ M° for almost every ¢t £ [0.T]
has a solution (x,u) € C(0.T) < LY (0.T), then Ty = I is the mXm identity
matrix, If in addition @(y,v.,t) is a convex mapping and the dynamical system
is linear, ie. @(y.v.t) = A(t)y - B(t)v, then the local infimum in (xg.u,) is
also a global infimum on Q. furthermore, iil) and iv) are sufficient conditions
of the global infimum.

Proof: We will use the following notations:
F: C(”)(O,T) x LY(0,T) — R™,
T
Fo(z.u) = ( D(x(t),u(t),t) dt,
0
Fy: C(0,T)x LY(0,T) — C™(0,T),
¢
Fi(x,u)(t) = x(t) — ¢ — f #(x(z), u(r),7)dT,
0
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F, : C™(0,T)x LY0,T) — R",
Fy(x,u) = x(T) — d,
A = {(x.u) € C(0,T)X LD(0,T) : u(t) ¢ M for almost every ¢ ¢ [0,T]}.
Then
Q = {(xu) € C™(0,T)xLY(0,T) : Fy(x,u) = 0; Fyx,u) = 0; (1)

(x.u) €A} and (x,,uy) € Q is a solution of the problem
inf { Fo(x,u) : (x,u) €QNV}. (2)

Since A = C™(0,T)x B and M is a convex set such that M° == g, it follows
that B < L(0,T) such that B is a convex set and B° < ¢. Hence 4 is a
convex set and A4° == . Sinee (n,r,m,T.0) and (n.r,n,T,p) satisfy the condition
(C), it follows that F; and F) are continuously Fréchet differentiable and

Fy(wou,)(%.8) = Y [D,((2), wo(t):1)2(2) + D, (xo(2), uo(t).t) B(e)] dz,

Fi(xouo)(x.0)(t) = x(t) — S [ey(xo(T)steo(2):)2(7) +
+ gulmo(m) o). 2)(7) 47, (4)
furthermore, by Lemma 34 (in Appendix)
R(Fi(xp.u,)) = C™(0.T) (5
is satisfied. Evidently, F, is continuously Fréchet differentiable and

Fifpuo) (&) = (1), (6)
R(Fj(xgug)) = R". (7
By Lemma 44 and by (1)—(7), Theorem 1A can be applied. Hence there
are bounded linear operators
T, € &(R™— R™),
T, € B(C™(0,T)— R™),
T, ¢ &R"— R™),
T ¢ SB(C™(0,T)xLD(0,T) — R™)

such that T(P,) c P, and T; = 0 for at least one i € {0,1,2} and
T = Ty o Fy(xgue) + Ty 0 Fi(xgug) + Ty 0 Fy(xg.u) . (8)
T(xa) > T(xgu,) forall (%,n) € 4. 9)
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In a fixed basis the bounded linear operators Ty, T, and T, can be identified
with a mXm constant matrix, with a mXn matrix function and with a
mXn constant matrix, respectively. In the special case T, is the m X m identity
matrix. Since T(E,ﬁ) = T(E,O) 4 T(O,&) and +z€ P, =>z=0, it follows
from the form of the set A4, that

T(x,0) = Ofor all x ¢ C(0,T) ; (10)
T@) = T(z,2) = T(0,3) . (11)

Let u € LO(0,T) be fixed and let ¥ = %(u) be the solution of the equation
Fi(xo,u,)(x,u) = 0, ie.

Z gy folth el 1) 50 = ol ol 1)
for almost everyt ¢ [0,T7], (12)
#0) =0,

which has a unique solution by Lemma 34. It follows from (8) that
. T
T(@) = To [ (Dy)e %(1) + Pl u(r)) dt + To%(T) (13)
0

for all (x(u), u). Let y: [0,T] — B(R" — R™) be the solution of

d

_ﬁi_t)‘ = —1(t) Py(%6(t)> uo(t), t) - T oD, (o(t) uof2), t)
for almost every ¢t £ [0,7], (14)
p(T) = — Ty,

then in a fixed basis y(¢) can be identified with a m X n matrix function and
the solution y(¢) is unique by Lemma 34. If both T and y(.) are zero, then
T, is also zero by p(T) = —T,. Hence T is zero by (13) and T} o Fi(x,u,)
is also zero by (11) and (8). Since R(Fi(xqu,)) = C™(0,T), it follows that
T, is also zero. But this contradicts iii) in Theorem 14. This contradiction
proves that either T'j == 0 or y(¢) 2 0. By (14) and (12) and through integration
by parts it follows

T T
Ty [ @l %(t) de = —Tox%(T) — [ (1) @y, u(e) de . (15)
0 0
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Hence it follows from (13) and (15) that

T
T(w) =0§ (—w(t) @oly + To@y)) u(r) dt . (16)
By (9), (11) and (16)
T
T(@ — ug) = § (—2(t) @ole + ToDole) (@e) —uo(t)) de € P, 17)

0

is satisfied for allu € B = {u ¢ L(;)(O,T): u(t) € M for almostevery ¢ £ [O,T]}.
Hence by Lemma 24

(““P(t) Pl + TO(D,J!t)(u — uo(‘)) € P, (18)

for all u € M and for almost every ¢t ¢ [0,T].

In the special case v) of the theorem let now @(y,v,t) be a convex function
and let the dynamical system be linear,i.e. g(y,v.t) = A(t)y + B(t)v. Let
(x.u) € Q and use the notations * = x — x;, and @ = u — u,. Then

%= A(t)% - B(t)%, (19)
%(0) = ®(T) = 0

is satisfied,i.e. ¥ has the form x = x{w). If iii) and iv) in the theorem are
satisfied, then (14) and (18) are also satisfied with Ty = I and T, = —y(T).
Since P, is a closed and convex cone and % has the form ¥ = %(u), it follows

from (18), (17), (16), (15), (14), (13). (11) and %T) = 0, that
P(u) = Fylxoue) (F.8) = Fylwpuo) (5 — xpu —ug) € Py (20)

thus ii’) in Theorem 1A is satisfied, which is the sufficient condition of the
global infimum.

Remark: Define H(x,u.,p.t) = yo(x,ut) — T@(x,ut). Then iv) is equi-
valent to

—H (5(8). uo(t): 9(e):2) (u — ug(t)) € Py (1)

for ail u ¢ M and for almost every t ¢ [0,7]. By Theorem 14 (13) is the
necessary condition for the function —H(x(t), u,3(¢).t) to attain local infimum
on the set M in the point u = uy(t). Thus, if (x,,u,) is a solution of the optimum
control problem in Theorem 1, then the function H(x,(t).u,p(t),t) satisfies
the necessary condition of the local supremum on the set M for almost every
t € [0,T] in the point u = u(t). Hence Theorem 1 will be called a local
supremum prineiple.
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If the performance criterion is given not by an integral but F(x.u) ="
= F(«(T)), where F( -} is a differentiable function and the final state x(T)
is free (x(T) € R”),then with p(T) = — F'(2(T)) and @ == 0 (formally) in the
proof, Theorem 1 remains still valid, furthermore, T is the mxm identity
matrix.

Theorem 2: Suppose that (n.r.n,T.p) satisfies the condition (C). Let
¢ € R". Let P, be a closed and convex cone in R™ such that P§ =g and
+z € Py = z = 0, and let the positive cone P, define a partial ordering > in
R™(R™ is not necessarily an Euclidean space). Let F : R” — R™ be a differ-
entiable mapping and let the constraint Q be

Q = {(x,u) € C™(0,T) x L0, T):

dax(2)

3 = ¢(=(t), u(r), t) for almost every € [0, T] ;
t

x(0) = c} ,

and let (x,,u,) € Q. Suppose there is a neighbourhood ¥V of (x,u,) such that
{xg.uy) is a solution of the problem

inf { F(x(T)): (x,u) £ Q N V}.

Then there exists a m X nr matrix function p(t) such that

i) __dg;(t) = —p(t) ¢,(xo(t). uo(2), t) for almost every t € [0, T ;

t

i) y(T) = — F'(x,(T));

1) p(t)g(xy(2),uq(t).t) = 0 for almost every t € [0,T];

iv) specially if m = n and F’'(x,(T)) bas an inverse, than

Fo(xo(£)suo(8\t) = 0 for almost every ¢ € [0,T7].

If Fis a convex function and the dynamic system is linear, ie. g(ynt) =
= A(t)y — B(t)v, then the local infimum in (xyu,) is also a global infimum
on (), furthermore i)—iii) or iv) are the sufficient conditions of the global
infimum.

Proof: By the remark after Thecrem 1, i) and ii) are satisfied and

—1p(t) (%), uo(2)2) (u — ue(t) € Py (22)
(-
for all u ¢ R and for almost every ¢ £ [0,T]. On the contrary, supposeiii) is
not valid. Then there exists § ¢ [0,T] such that A(§) >0 and

— (1) gu(xo(t)uo(2)1) == 0 (23)
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for all € §. Hence for all 1 € § there exists i(t) ¢ R" such that
—(t) g (x4(t)uo(2)t) u(t) == 0 and a(t) = 0. (24)

Let uy(t) = au(t) + uy(t) and uy(t) = —ii(t)~u,t). By (22) there is a S < §
such that A(S) > 0 and

~(t) go(wo(t)-uo(t):) @(e) € Py (25)

for all ¢ ¢ S. Since ~z € P, = z = 0, hence

9(t) Fo(molt)ugt)t) i(r) = 0 (26)

for allt ¢ § ¢ § and so (26) contradicts (24). This contradiction proves iii).
Specially if m = n and F'(x(T)) has an inverse, then by Lemma 34

— F/(xo(T)) D(L.T) pulft) oft).2) = 0 (27)

for almost every t ¢ [0,T], where the nXn matrix —F'(x,(T))®(:,T) has an
inverse for all ¢ € [0,T] and so it follows from (27), that

gol(®o(t)stto(t)t) = 0 (28)

for almost every t ¢ [0,T]. The proof of the sufficience part is analog to that
in Theorem 1.

Remark: Let H(x,u.p,t) = yg(x.u.t), then the function H(x,(t).u.p(1).t)
satisfies the necessary condition of the local supremum (condition iii)) on
R’ for almost every t € [0,T] in the point u = uy(t). Hence Theorem 2 is
also a local supremum principle.

4. Applications

A generalization of Pontryagin’s principle in the form of a global
supremum principle can be derived from the local supremum principle with
the same technique as used by Dubovickij, Miljutin and Girsanov ([1], pp.
83—92).

Theorem 54 shows that infimizing the error covariance matrix, all
scalar-valued performance ertiteria used practically will be simultaneously
mipimized.

In [2] a global infimum principle was reported and the applicability
of the theory to the analysis of dynamic vector estimation problems and to
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a class of uncertain optimal control problems was demonstrated. However,
all problems examined in [3] can also be easily solved applying the local
supremum principle (Theorem 2, case iv)).

Appendix

Theorem 1A: Suppose that the following conditions are satisfied:
1) E and E; are Banach spaces, i =1,...,n - k; E; is a reflexive Banach space;
2) P; ¢ Ejis a closed and convex cone, 0¢ P¥==f and P;(asa positive cone) defines
a partial ordermo- > in the Banach space E;, i = 0,..., n; furthermore there is a real number
8> 0 such that for all Yy € Po and [y [l = || v [i —1litis |y + oy [i= 6
3) F;: E —~ E; is a mapping which has a Fréchet denvatlve Fi(x,) in the point x,
i=0,....n and for whlch R(F, (x,)) is closed in E;, i = 1,...,n;
4) F;: E — E; is a mapping, which is continuously Fréchet dlfferentlable in a neigh-
bourhood of % and for which R(Fz(xg)) is closed in El, i=n-+1,...,n+k
5) A ¢ E is a convex set and A%
6) Q={x€E: —F(x))>0,i=1,....n Fi(x) =0, i=n+1,....n+k x € 4}
is a constraint. x, £ Q and there exists a neighbourhood ¥ of x, such that
inf {Fo(x) x€Q n V} = Fo(x,).
Then there are linear mappings T; ¢ € (E; — E;), which are continuous on R(Fi(x,)),
i=0,....n 4+ k and for which
) To_}o € Py, ie. Tgy, > 0 forall 30 E PO, furthermore, Tjy; € Py i.e. Tyy; > 0 for all
¥i € R(—Fi(x)) 0 (P; + Filx,))- l—gl

n-+
ii} with the notation T = X Tjo F,(xo) the inequality Tx > Tx,, i.e. T(x—x) € Py

i=0
holds for all x € A4,
ii) T; 5= 0 for at least one I,
iv) ifi € {1,...,n} and — Fy(x,) € P% then T; = 0,

v) if the system
R(Fi(xy) = E n-+1,...,n -k,
(_Fo(xo)) ﬂ g ""’ﬁ
€ {L.....n} and —Fy(x) ¢ P} = R(—F z(xo))n (P + {AFi(%): 4 > 0}) = 0
ati sf ed then T; 0 Fi(x) ;ﬁ 0 for at least one i,
vi) specially lfR(F,(:x.o)) =FE, i=n+1,..,n+k and the system
,(xo)(x—-x)-—() l—n+1,

4+ k,
(L. n} and — Fi(xg) & Plm — Filzg) (= — %) € P} (AFa): 4 > 0}

L

can be s

m

i

x ¢ A°
has a solution in x, then T,, = Iis the 1dent1tv operator. If in addition F;is a convex mappm
i=0,...,n F(x) Bix -+ b;, where B; is a bounded linear operator and b; € E[, i =
i=n-+ 1, R then the local mflmum is also a global infimum on Qandi), u) orii’), iv),

vi) are the sufflclent conditions of the global mflmum, where ii') x € Q = Fi(x}x — %) =
= T(x — xp) =, )"T o Fi(x)(x — x4) € Py; specially for n = 0, ii’) has the form » € 0=

= T(x — xp) € P
Lemma 24 Let M < R,Q={xcL ) (0,T):x(t) € M for almost every ¢ £[0,T1}, x, €@,
A € L(nxr) (0.T) and let P be a closed (and not necessarily convex) cone in RT. Suppose that

5 A@) (1) — m() dr € P
0

for all x( - ) ¢ Q. Then
Ay (x — xo(1)) € P

for all x ¢ M and for almost every ¢t € [0.T].
Lemma 3A: Let 7 £ [0,T] and let A4 ( ) ¢ Linxm) (0,T). Then
i) the problem
dd(t. 1)

& = O(t.t) A(t) for almost every ¢t £ [0,T7],

D(,7) = Inxn -



LOCAL SUPREMUM PRINCIPLE 323

has exactly one solution @ ( - ,7) € C("x™) (0,T);
ii) the problem

d(ﬁit) = g(t) A(t) for almost every t ¢ [0,T] ,

g(r) is given,
has exactly one solution ¢( - ) € CmXn (0,T), and the solution is

() = (1) D (t.7) :

ii) for all ¢, v € [0,T], the inverse matrix @~¥(t,7) exists and
DUt 7) = D(z, t).
Lemma 4A: Let P be a closed and convex cone in the linear normed space, R", such
that P® = (f and +z € P = z = 0. Then there exists a real number § > 0 such that for all
ypy: € Pand ||y | H = |y || =1litis [lyy + 5. || =0
Theorem 5A: Let Q — R" and let 4 be a positive semidefinite symmetric n X n matrix.
Let (2,04, p) be a probability space, let & < {x: Q2 — R" is a random variable: Ex == 0
and there exists E(xx¥)}, and let § = {x ¢ & : p({w):x(w) € @}) = 1. Use the following nota-
tions:

F: § — Mynxn F(x) = E(xx®);

F,:& —~ R, Fi(x) = E(x*A4x);
F,:§ —~ R, F,(x) = trace E(xx¥);
F,: & — R, F(x) = det E(xx*).

It F(x)> F(y),i.e. F(x) — F(y)is a positive semidefinite symmetric matrix, then Fy(x)> Fy(y)
i =1.23.Ifx, € Gandinf {F(x): x € G} = F(x,). then min {F{x): x € G} = Fy(x,), i = 1.2,3

Sumamary

The principal aim of this paper is to give the necessary condition of the optimum
(infimum) in form of the local supremum principle for optimum control problems with
nonscalar-valued performance criterion. The performance criterion has its range in a finite-
dimensional partially ordered linear normed (not necessarily Euclidean) space. The local
supremum can be applied to the analysis of dynamic vector estimation problems and to
uncertain optimal control problems.
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