THE LOCAL SUPREMUM PRINCIPLE FOR OPTIMUM CONTROL PROBLEMS WITH NONSCALAR-VALUED PERFORMANCE CRITERION

By

B. Lantos

Department of Process Control, Technical University, Budapest

Received July 25, 1976

Presented by Prof. Dr. A. FRIGYES

Symbols and abbreviations

E	element of
€	non element of
⇒	implies
Ø	empty set
τ	topology
A°	interior of A
$A = \{a: propen$	ty of a} definition of the set A
A/B	$A \setminus B = \{a: a \in A; a \notin B\}$
$A \subset B$	$a \in A$ implies $a \in B$
$A \times B$	$A \times B = \{(a,b): a \in A; b \in B\}$
$A \cap B$	intersection of A and B
R^n	n-dimensional linear normed space
$F: E_1 \to E_2$	mapping from E_1 into E_2
R(F)	range of F
F'(x)	Fréchet derivative of F
$\mathfrak{L}(E_1 \to E_2)$	linear operators from E_1 into E_2
$\mathfrak{K}(\check{E}_1 \to \check{E}_2)$	bounded linear operators from E_1 into E_2
$\langle x, y \rangle$	inner product
	norm of x
$F \circ G$	composition of the mappings F and G such that $F \circ G(x) = F(G(x))$
F(.,y)	the mapping $F(x,y)$ for fixed y
$M_{m \times n}$	set of $m \times n$ matrices
$\lambda(A)$	Lebesgue measure of A
$C^{(n)'}(t_0,t_1)$	the set of the continuous functions $F: [t_0, t_1] \rightarrow \mathbb{R}^n$
$L^{(n)}(t_0,t_1)$	the set of the essentially bounded functions $F: [t_0,t_1] \rightarrow \mathbb{R}^n$
$C(m \vee n) (A A)$	the set of the continuous on M = matrices The [t t] M
$T(m \times n)$ (t ₀ ,t ₁)	the set of the continuous $m \times n$ matrices $F: [t_0, t_1] \rightarrow Mm \times n$
$L^{(1)}$, (l_0, l_1)	the set of the essentially bounded $m \times n$ matrices $\mathbf{r}: [t_0, t_1] \to Mm \times n$

1. Introduction

In many optimization problems the quality of the process cannot be characterized by a single scalar-valued optimality criterion, because the user is simultaneously interested in several cost functionals. The scalar-valued cost functionals can be reduced to a single vector-valued performance criterion. The linear state estimation problem also leads to an optimum problem with a nonscalar-valued performance criterion, if the covariance matrix of the error between the state and its estimation must be infimum. In this case the performance criterion is matrix-valued.

Dynamic optimization problems with nonscalar-valued performance criteria are studied in the present paper. The meaning of "better than" has to be defined, and this will be done by a partial-order relation. Partial ordering is defined by a positive cone. It is supposed that the performance criterion in the dynamic optimization problem has its range in a finite-dimensional partially ordered linear normed space (which is not necessarily an Euclidean space).

The necessary conditions of the local infimum are summarized in two theorems. These theorems establish a relation between the local maximum principle of DUBOVICKIJ, MILJUTIN and GIRSANOV [1], the infimum principle of Athans and Geering [2], and the author's results [3].

The proofs of the theorems in the appendix of the paper can be found in the author's dissertation.

2. Partial ordering

Partial ordering on a set is a reflexive, (antisymmetric) and transitive relation. If the set is a linear topological space, then it will be supposed that the partial ordering is given by a closed and convex cone having a nonempty interior.

Definition 1: Let (E, τ) be a linear topological space, and let $P \subset E$ be a closed and convex cone such that $P^{\circ} \neq \emptyset$. We say that $x \geq y$ if $x, y \in E$ and $x-y \in P$. A linear topological space with a relation \geq defined in this way is said to be a partially ordered linear topological space. Notation: (E, τ, \geq) . Since $x \in P \Leftrightarrow x \geq 0$, the cone P will be called the positive cone (defining the relation \geq). If $\pm z \in P \Rightarrow z = 0$, then \geq is antisymmetric, i.e. $x \geq y$ and $y \geq x \Rightarrow x = y$.

Example 1: Let \mathbb{R}^n be the usually *n*-dimensional Euclidean space. If $P = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_i \ge 0, i = 1, \ldots, n\}$, then P is a positive cone in \mathbb{R}^n and so P defines a partial ordering in \mathbb{R}^n . Notation: (\mathbb{R}^n, \ge) . If ||x|| = ||y|| = 1 and $x, y \in P$, then $||x + y|| \ge 1$.

Example 2: Let *H* be a Hilbert space. If $E = \{A \in \mathcal{B} (H \to H): A \text{ is self-adjoint}\}$ and $P = \{A \in E: \langle Ax, x \rangle \geq 0 \text{ for all } x \in H\}$, then $E \subset \mathcal{B} (H \to H)$ is a closed subspace $\Rightarrow E$ is a Banach space and $P \subset E$ is a positive cone in *E*. Hence *P* defines a partial ordering in *E*. Notation: (E, \geq) . If ||A|| = ||B|| = 1 and $A, B \in P$, then $||A + B|| \geq 1$.

Example 3: Notation is as in Example 2. Let $H = R^n$ (with fixed orthonormal basis.) Then $\mathfrak{B}(R^n \to R^n)$ can be identified with the set of $n \times n$

matrices and similarly E with the set of symmetric $n \times n$ matrices. Then P is the set of positive semidefinite symmetric $n \times n$ matrices. The positive cone P defines a partial ordering in the Banach space of the symmetric $n \times n$ n(n+1)

matrices. Notation: $(M^s_{n \times n}, \geq)$. $M^s_{n \times n}$ can be considered as a $\frac{n(n+1)}{2}$ -

dimensional subspace of the linear normed space R^{n^2} (without inner product).

Remark: If (E, τ, \geq) is a partially ordered linear topological space, then $x \geq y$ and $z \in E \Rightarrow x + z \geq y + z$.

Definition 2: Let (E, τ, \geq) be a partially ordered linear topological space, $Q \subset E$ and $x_0 \in Q$. We say that

- 1) $x_0 = \max Q$, if there does not exist any $x \in Q$ such that $x \ge x_0$ and $x \ne x_0$,
- 2) $x_0 = \min Q$, if there does not exist any $x \in Q$ such that $x_0 \ge x$ and $x \ne x_0$,
- 3) $x_0 = \sup Q$, if $x_0 \ge x$ for all $x \in Q$,
- 4) $x_0 = \inf Q$, if $x \ge x_0$ for all $x \in Q$.

In general, max Q and min Q are not unique, because the partial ordering is usually not a linear ordering (Q may have elements which are not comparable). Sup Q and inf Q are always unique (supposed that they exist and the partial ordering is antisymmetric).

3. The local supremum principle

Condition (C): We say that (n,r,m,T,Φ) satisfies the condition (C), if $0 < T < \infty$,

$$\begin{split} \Phi \colon R^n \times R^r \times [0,T] &\to R^m \text{ is a mapping }, \\ S \subset [0,T] \text{ and } \lambda([0,T] \setminus S) = 0 \end{split}$$

furthermore

- 1) there exist $\overline{\Phi}_{y}(y,v,t)$, $\overline{\Phi}_{v}(y,v,t)$ for all $t \in S$, and $\{\overline{\Phi}_{y}(\cdot,\cdot,t): t \in S\}$, $\{\overline{\Phi}_{v}(\cdot,\cdot,t): t \in S\}$ are equicontinuous in (y,v) on all compact sets $F \times G \subset \mathbb{R}^{n} \times \mathbb{R}^{r};$
- 2) $\Phi(y,v,\cdot)$, $\Phi_y(y,v,\cdot)$ and $\Phi_v(y,v,\cdot)$ are measurable functions in t for all fixed $(y,v) \in \mathbb{R}^n \times \mathbb{R}^r$;
- 3) for each fixed bounded set $F \times G \subset \mathbb{R}^n \times \mathbb{R}'$, there is a real number k such that $||\Phi(y,v,t)|| < k$, $||\Phi_y(y,v,t)|| < k$ and $||\Phi_v(y,v,t)|| < k$ for all $(y,v,t) \in F \times G \times S$.

Theorem 1: Suppose that (n,r,m,T,Φ) and (n,r,n,T,φ) satisfy the condition (C). Let M be a convex set in R' and $M^0 \neq \emptyset$. Let $c, d \in R^n$. Let P_0 be a closed and convex cone in R^m such that $P_0^0 \neq \emptyset$ and $\pm z \in P_0 \Rightarrow z = 0$, and let the positive cone P_0 define a partial ordering \geq in R^m (R^m is not necessarily an Euclidean space). Let the constraint Q be

7*

$$Q = \{(x,u) \in C^{(n)}(0,T) \times L_{\infty}^{(r)}(0,T):$$
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \varphi(x(t), u(t), t) \text{ for almost every } t \in [0,T];$$

x(0) = c and x(T) = d;

$$u(t) \in M$$
 for almost every $t \in [0,T]$.

and let $(x_0, u_0) \in Q$. Suppose there is a neighbourhood V of (x_0, u_0) such that (x_0, u_0) is a solution of the problem

$$\inf \left\{ \int_{0}^{T} \Phi\left(x(t), u(t), t\right) \mathrm{d}t : (x, u) \in Q \cap V \right\}$$

Then there exist a $n \times n$ constant matrix T_0 and $m \times n$ matrix functions $\psi(t)$ such that

- i) $T_0 y \ge 0$ for all $y \ge 0$ i.e. $T_0(P_0) \subset P_0$; ii) either $T_0 \ne 0$ or $\psi(t) \ne 0$;
- iii) $\frac{\mathrm{d}\psi(t)}{\mathrm{d}t} = -\psi(t) \varphi_{\mathcal{Y}}(x_0(t), u_0(t), t) + T_0 \bar{\mathcal{P}}(x_0(t), u_0(t), t) \text{ for almost every} \\ t \in [0,T];$

iv) $\left(-\psi(t)\varphi_{\nu}(x_0(t), u_0(t), t) + T_0 \Phi_{\nu}(x_0(t), u_0(t), t)\right)$. $\left(u - u_0(t)\right) \in P_0$ for all $u \in M$ and for almost every $t \in [0,T]$;

v) specially if the system

$$\frac{\mathrm{d}\overline{x}(t)}{\mathrm{d}t} = \varphi_{y}\left(x_{0}(t), u_{0}(t), t\right)\overline{x}(t) + \varphi_{v}\left(x_{0}(t), u_{0}(t), t\right)\left(u(t) - u_{0}(t)\right)$$

for almost every $t \in [0,T]$, $\overline{x}(0) = \overline{x}(T) = 0$,

 $u(t)\in M^0$ for almost every $t\in [0,T]$

has a solution $(x,u) \in C^{(n)}(0,T) \times L_{\infty}^{(r)}(0,T)$, then $T_0 = I$ is the $m \times m$ identity matrix. If in addition $\Phi(y,v,t)$ is a convex mapping and the dynamical system is linear, i.e. $\varphi(y,v,t) = A(t)y + B(t)v$, then the local infimum in (x_0,u_0) is also a global infimum on Q. furthermore, iii) and iv) are sufficient conditions of the global infimum.

Proof: We will use the following notations:

$$\begin{split} F_0: \ C^{(n)}(0,T) \times L^{(r)}_{\infty}(0,T) &\to R^m \ , \\ F_0(x,u) &= \int_0^T \varPhi(x(t), u(t), t) \ \mathrm{d}t, \\ F_1: \ C^{(n)}(0,T) \times L^{(r)}_{\infty}(0,T) &\to C^{(n)}(0,T), \\ F_1(x,u)(t) &= x(t) - c - \int_0^t \varPhi(x(\tau), \ u(\tau), \tau) \mathrm{d}\tau, \end{split}$$

$$egin{aligned} &F_2:C^{(n)}(0,T) imes L^{(r)}_{\infty}(0,T) o R^n\ ,\ &F_2(x,u)=x(T)-d,\ &A=\{(x,u)\in C^{(n)}(0,T) imes L^{(r)}_{\infty}(0,T):u(t)\in M\ ext{for almost every}\ t\in[0,T]\}. \end{aligned}$$

Then

$$Q = \{(x,u) \in C^{(n)}(0,T) \times L^{(r)}_{\infty}(0,T) : F_1(x,u) = 0; F_2(x,u) = 0;$$
(1)

 $(x,u) \in A$ } and $(x_0,u_0) \in Q$ is a solution of the problem

$$\inf \{F_0(x,u) : (x,u) \in Q \cap V\}.$$
(2)

Since $A = C^{(n)}(0,T) \times B$ and M is a convex set such that $M^{\circ} \neq \emptyset$, it follows that $B \subset L_{\infty}^{(r)}(0,T)$ such that B is a convex set and $B^{\circ} \neq \emptyset$. Hence A is a convex set and $A^{\circ} \neq \emptyset$. Since (n,r,m,T,Φ) and (n,r,n,T,φ) satisfy the condition (C), it follows that F_0 and F_1 are continuously Fréchet differentiable and

$$F_{0}'(x_{0},u_{0})(\bar{x},\bar{u}) = \int_{0}^{T} \left[\Phi_{y}(x_{0}(t),u_{0}(t),t)\bar{x}(t) + \Phi_{y}(x_{0}(t),u_{0}(t),t)\bar{u}(t) \right] dt, (3)$$

$$F_{1}'(x_{0},u_{0})(\bar{x},\bar{u})(t) = x(t) - \int_{0}^{t} \left[\varphi_{y}(x_{0}(\tau),u_{0}(\tau),\tau)\bar{x}(\tau) + \varphi_{y}(x_{0}(\tau),u_{0}(\tau),\tau)\bar{u}(\tau) \right] d\tau, \qquad (4)$$

furthermore, by Lemma 3A (in Appendix)

$$R(F_1'(x_0, u_0)) = C^{(n)}(0, T)$$
(5)

is satisfied. Evidently, F_2 is continuously Fréchet differentiable and

$$F'_{2}(x_{0},u_{0})(\overline{x},\overline{u}) = \overline{x}(T), \qquad (6)$$

$$R(F_2'(x_0, u_0)) = R^n . (7)$$

By Lemma 4A and by (1)-(7), Theorem 1A can be applied. Hence there are bounded linear operators

$$egin{aligned} T_0 \in \mathfrak{A}(R^m o R^m), \ T_1 \in \mathfrak{A}(C^{(n)}(0,T) o R^m), \ T_2 \in \mathfrak{A}(R^n o R^m), \ \widetilde{T} \in \mathfrak{A}(C^{(n)}(0,T) imes L^{(n)}_{\infty}(0,T) o R^m) \end{aligned}$$

such that $T_0(P_0) \subset P_0$ and $T_i \neq 0$ for at least one $i \in \{0,1,2\}$ and

$$\widetilde{T} = T_0 \quad o \ F_0(x_0, u_0) + T_1 \ o \ F_1'(x_0, u_0) + T_2 \ o \ F_2'(x_0, u_0) , \qquad (8)$$

$$\tilde{T}(\bar{x},\bar{u}) \ge \tilde{T}(x_0,u_0) \text{ for all } (\bar{x},\bar{u}) \in A.$$
 (9)

In a fixed basis the bounded linear operators T_0 , T_1 and T_2 can be identified with a $m \times m$ constant matrix, with a $m \times n$ matrix function and with a $m \times n$ constant matrix, respectively. In the special case T_0 is the $m \times m$ identity matrix. Since $\widetilde{T}(\overline{x},\overline{u}) = \widetilde{T}(\overline{x},0) + \widetilde{T}(0,\overline{u})$ and $\pm z \in P_0 \Rightarrow z = 0$, it follows from the form of the set A, that

$$\widetilde{T}(x,o) = 0 \text{ for all } x \in C^{(n)}(0,T); \qquad (10)$$

$$\hat{T}(\vec{u}) = \tilde{T}(\vec{x}, \vec{u}) = \tilde{T}(0, \vec{u}).$$
(11)

Let $\overline{u} \in L_{\infty}^{(r)}(0,T)$ be fixed and let $\overline{x} = \overline{x}(\overline{u})$ be the solution of the equation $F'_1(x_0,u_0)(\overline{x},\overline{u}) = 0$, i.e.

$$\frac{\mathrm{d}\overline{x}(t)}{\mathrm{d}t} = \varphi_{y}(x_{0}(t), u_{0}(t), t) \,\overline{x}(t) + \varphi_{v}(x_{0}(t), u_{0}(t), t) \,\overline{u}(t)$$
for almost every $t \in [0, T]$,
$$\overline{x}(0) = 0,$$
(12)

which has a unique solution by Lemma 3A. It follows from (8) that

$$\hat{T}(\overline{u}) = T_0 \int_0^T \left(\Phi_y|_t \, \overline{x}(t) + \Phi_v|_t \, \overline{u}(t) \right) \mathrm{d}t + T_2 \overline{x}(T) \tag{13}$$

for all $(\overline{x}(\overline{u}), \overline{u})$. Let $\psi: [0,T] \to \mathfrak{B}(\mathbb{R}^n \to \mathbb{R}^m)$ be the solution of

$$\frac{\mathrm{d}\psi(t)}{\mathrm{d}t} = -\psi(t) \varphi_{y}(x_{0}(t), u_{0}(t), t) + T_{0} \Phi_{y}(x_{0}(t), u_{0}(t), t)$$
for almost every $t \in [0, T]$,
$$\psi(T) = -T_{2},$$
(14)

then in a fixed basis $\psi(t)$ can be identified with a $m \times n$ matrix function and the solution $\psi(t)$ is unique by Lemma 3A. If both T_0 and $\psi(\cdot)$ are zero, then T_2 is also zero by $\psi(T) = -T_2$. Hence \hat{T} is zero by (13) and $T_1 \circ F'_1(x_0, u_0)$ is also zero by (11) and (8). Since $R(F'_1(x_0, u_0)) = C^{(n)}(0,T)$, it follows that T_1 is also zero. But this contradicts iii) in Theorem 1A. This contradiction proves that either $T_0 \neq 0$ or $\psi(t) \neq 0$. By (14) and (12) and through integration by parts it follows

$$T_0 \int_0^T \Phi_{y|t} \,\overline{\mathbf{x}}(t) \,\mathrm{d}t = -T_2 \,\overline{\mathbf{x}}(T) - \int_0^T \psi(t) \,\varphi_{v|t} \,\overline{\mathbf{u}}(t) \,\mathrm{d}t \,. \tag{15}$$

Hence it follows from (13) and (15) that

$$\hat{T}(\overline{u}) = \int_{0}^{T} \left(-\psi(t) \varphi_{v|t} + T_{0} \Phi_{v|t} \right) \overline{u}(t) \, \mathrm{d}t \;. \tag{16}$$

By (9), (11) and (16)

$$\hat{T}(\overline{u}-u_0) = \int_0^T \left(-\psi(t) \varphi_v|_t + T_0 \Phi_v|_t\right) \left(\overline{u}(t) - u_0(t)\right) \mathrm{d}t \in P_0$$
(17)

is satisfied for all $\overline{u} \in B = \{\overline{u} \in L_{\infty}^{(r)}(0,T) : \overline{u}(t) \in M \text{ for almost every } t \in [0,T] \}$. Hence by Lemma 2A

$$\left(-\psi(t) \varphi_{v|t} + T_{0} \Phi_{v|t}\right) \left(u - u_{0}(t)\right) \in P_{0}$$
(18)

for all $u \in M$ and for almost every $t \in [0,T]$.

In the special case v) of the theorem let now $\Phi(y,v,t)$ be a convex function and let the dynamical system be linear, i.e. $\varphi(y,v,t) = A(t)y + B(t)v$. Let $(x,u) \in Q$ and use the notations $\overline{x} = x - x_0$ and $\overline{u} = u - u_0$. Then

$$\dot{\overline{x}} = A(t)\,\overline{x} + B(t)\,\overline{u}\,, \tag{19}$$
$$\overline{x}(0) = \overline{x}(T) = 0$$

is satisfied, i.e. \overline{x} has the form $\overline{x} = \overline{x}(\overline{u})$. If iii) and iv) in the theorem are satisfied, then (14) and (18) are also satisfied with $T_0 = I$ and $T_2 = -\psi(T)$. Since P_0 is a closed and convex cone and \overline{x} has the form $\overline{x} = \overline{x}(\overline{u})$, it follows from (18), (17), (16), (15), (14), (13), (11) and $\overline{x}(T) = 0$, that

$$\hat{T}(u) = F'_0(x_0, u_0) \ (\overline{x}, \overline{u}) = F'_0(x_0, u_0) \ (x - x_0, u - u_0) \in P_0 \ , \tag{20}$$

thus ii') in Theorem 1A is satisfied, which is the sufficient condition of the global infimum.

Remark: Define $H(x,u,\psi,t) = \psi \varphi(x,u,t) - T_0 \Phi(x,u,t)$. Then iv) is equivalent to

$$-H_{u}(x_{0}(t), u_{0}(t), \psi(t), t) (u - u_{0}(t)) \in P_{0}$$
(21)

for all $u \in M$ and for almost every $t \in [0,T]$. By Theorem 1A (13) is the necessary condition for the function $-H(x_0(t), u, \psi(t), t)$ to attain local infimum on the set M in the point $u = u_0(t)$. Thus, if (x_0, u_0) is a solution of the optimum control problem in Theorem 1, then the function $H(x_0(t), u, \psi(t), t)$ satisfies the necessary condition of the local supremum on the set M for almost every $t \in [0,T]$ in the point $u = u_0(t)$. Hence Theorem 1 will be called a local supremum principle. If the performance criterion is given not by an integral but $F_0(x,u) = F(x(T))$, where $F(\cdot)$ is a differentiable function and the final state x(T) is free $(x(T) \in \mathbb{R}^n)$, then with $\psi(T) = -F'(x(T))$ and $\Phi \equiv 0$ (formally) in the proof, Theorem 1 remains still valid, furthermore, T_0 is the $m \times m$ identity matrix.

Theorem 2: Suppose that (n,r,n,T,φ) satisfies the condition (C). Let $c \in \mathbb{R}^n$. Let P_0 be a closed and convex cone in \mathbb{R}^m such that $\mathbb{P}_0^0 \neq \emptyset$ and $\pm z \in P_0 \Rightarrow z = 0$, and let the positive cone P_0 define a partial ordering \geq in $\mathbb{R}^m(\mathbb{R}^m$ is not necessarily an Euclidean space). Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable mapping and let the constraint Q be

$$Q = \left\{ (x, u) \in C^{(n)}(0, T) \times L^{(r)}_{\infty}(0, T) : \frac{\mathrm{d}x(t)}{\mathrm{d}t} = \varphi(x(t), u(t), t) \text{ for almost every } t \in [0, T] ; x(0) = c \right\},$$

and let $(x_0, u_0) \in Q$. Suppose there is a neighbourhood V of (x_0, u_0) such that (x_0, u_0) is a solution of the problem

$$\inf \{F(x(T)): (x,u) \in Q \cap V\}.$$

Then there exists a $m \times n$ matrix function $\psi(t)$ such that

- i) $\frac{\mathrm{d}\psi(t)}{\mathrm{d}t} = -\psi(t) \varphi_y(x_0(t), u_0(t), t)$ for almost every $t \in [0, T]$; ii) $\psi(T) = -F'(x_0(T));$
- iii) $\psi(t)q_{\mathbf{v}}(x_0(t),u_0(t),t) = 0$ for almost every $t \in [0,T]$;
- iv) specially if m = n and $F'(x_0(T))$ has an inverse, than
 - $\varphi_{\mathbf{v}}(x_0(t), u_0(t), t) = 0$ for almost every $t \in [0, T]$.

If F is a convex function and the dynamic system is linear, i.e. $\varphi(y,v,t) = A(t)y + B(t)v$, then the local infimum in (x_0,u_0) is also a global infimum on Q, furthermore i)—iii) or iv) are the sufficient conditions of the global infimum.

Proof: By the remark after Theorem 1, i) and ii) are satisfied and

$$-\psi(t) \varphi_{\mathbf{v}}(x_0(t), u_0(t), t) (u - u_0(t) \in P_0$$
(22)

1 -

for all $u \in R'$ and for almost every $t \in [0,T]$. On the contrary, suppose iii) is not valid. Then there exists $\hat{S} \subset [0,T]$ such that $\lambda(\hat{S}) > 0$ and

$$-\psi(t) \varphi_{\nu}(x_0(t), u_0(t), t) \neq 0$$
(23)

for all $t \in \hat{S}$. Hence for all $t \in \hat{S}$ there exists $\tilde{u}(t) \in R'$ such that

$$-\psi(t)\varphi_{\mathbf{v}}(x_0(t),u_0(t),t)\,\tilde{u}(t)\neq 0 \text{ and } \tilde{u}(t)\neq 0.$$
(24)

Let $u_1(t) = \tilde{u}(t) + u_0(t)$ and $u_2(t) = -\tilde{u}(t) + u_0(t)$. By (22) there is a $\tilde{S} \subset \hat{S}$ such that $\lambda(\tilde{S}) > 0$ and

$$\pm \psi(t) \varphi_{\mathbf{v}} \big(\boldsymbol{x}_{0}(t), \boldsymbol{u}_{0}(t), t \big) \quad \tilde{\boldsymbol{u}}(t) \in \boldsymbol{P}_{0}$$
(25)

for all $t \in \tilde{S}$. Since $\pm z \in P_0 \Rightarrow z = 0$, hence

$$\psi(t) \varphi_{\mathbf{v}} \left(\boldsymbol{x}_0(t), \boldsymbol{u}_0(t), t \right) \tilde{\boldsymbol{u}}(t) = 0$$
(26)

for all $t \in \tilde{S} \subset \hat{S}$ and so (26) contradicts (24). This contradiction proves iii). Specially if m = n and F'(x(T)) has an inverse, then by Lemma 3A

$$-F'(x_0(T))\Phi(t,T)\varphi_{\nu}(x_0(t),u_0(t),t) = 0$$
⁽²⁷⁾

for almost every $t \in [0,T]$, where the $n \times n$ matrix $-F'(x_0(T))\Phi(t,T)$ has an inverse for all $t \in [0,T]$ and so it follows from (27), that

$$\varphi_{\mathbf{v}}(\boldsymbol{x}_{0}(t),\boldsymbol{u}_{0}(t),t) = 0 \tag{28}$$

for almost every $t \in [0,T]$. The proof of the sufficience part is analog to that in Theorem 1.

Remark: Let $H(x,u,\psi,t) = \psi \varphi(x,u,t)$, then the function $H(x_0(t),u,\psi(t),t)$ satisfies the necessary condition of the local supremum (condition iii)) on R^r for almost every $t \in [0,T]$ in the point $u = u_0(t)$. Hence Theorem 2 is also a local supremum principle.

4. Applications

A generalization of Pontryagin's principle in the form of a global supremum principle can be derived from the local supremum principle with the same technique as used by Dubovickij, Miljutin and Girsanov ([1], pp. 83-92).

Theorem 5A shows that infimizing the error covariance matrix, all scalar-valued performance crtiteria used practically will be simultaneously minimized.

In [2] a global infimum principle was reported and the applicability of the theory to the analysis of dynamic vector estimation problems and to

a class of uncertain optimal control problems was demonstrated. However, all problems examined in [3] can also be easily solved applying the local supremum principle (Theorem 2, case iv)).

Appendix

Theorem 1A: Suppose that the following conditions are satisfied:

Incorem 1A: Suppose that the following conditions are satisfied: 1) E and E_i are Banach spaces, i = 1, ..., n + k; E_0 is a reflexive Banach space; 2) $P_i \subset E_i$ is a closed and convex cone, $0 \in P_i^0 \neq \emptyset$ and P_i (as a positive cone) defines a partial ordering \geq in the Banach space E_i , i = 0, ..., n; furthermore, there is a real number $\delta > 0$ such that for all $y_1, y_2 \in P_0$ and $||y_1|| = ||y_2|| = 1$ it is $||y_1 + y_2|| \geq \delta$; 3) $F_i : E \to E_i$ is a mapping which has a Fréchet derivative $F_i(x_0)$ in the point x_0 , i = 0, ..., n and for which $R(F_i(x_0))$ is closed in E_i , i = 1, ..., n; 4) $F_i : E \to E_i$ is a mapping, which is continuously Fréchet differentiable in a neighbourhood of x_0 and for which $R(F_i(x_0))$ is closed in E_i , i = n + 1, ..., n + k; 5) $A \subset E$ is a convex set and $A^0 \neq \emptyset$; 6) $Q = \{x \in E : -F_i(x_0) > 0$, i = 1, ..., n; $F_i(x) = 0$, i = n + 1

6) $Q = \{x \in E : -F_i(x_0) \ge 0, i = 1, ..., n; F_i(x) = 0, i = n + 1, ..., n + k; x \in A\}$ is a constraint, $x_0 \in Q$ and there exists a neighbourhood V of x_0 such that

inf $\{F_0(x) : x \in Q \cap V\} = F_0(x_0)$. Then there are linear mappings $T_i \in \mathcal{L}(E_i \to E_0)$, which are continuous on $R(F_i(x_0))$,

 $\begin{array}{l} i=0,\ldots,n+k \text{ and for which} \\ i) \ T_0y_0 \in P_0, \text{ i.e. } T_0y_0 \geq 0 \text{ for all } y_0 \in P_0; \text{ furthermore, } T_iy_i \in P_0 \text{ i.e. } T_iy_i \geq 0 \text{ for all } y_i \in R(-F_i(x_0)) \cap (P_i+F_i(x_0)), i=1,\ldots,n, \end{array}$

ii) with the notation $T = \sum_{i=0}^{L} T_i \circ F'_i(x_0)$ the inequality $Tx \ge Tx_0$, i.e. $T(x-x_0) \in P_0$

holds for all $x \in A$,

iii) $T_i \neq 0$ for at least one *i*, iv) if $i \in \{1, ..., n\}$ and $-F_i(x_0) \in P^0$, then $T_i = 0$,

v) if the system

$$R(F'_i(x_0) = E_i, \quad i = n + 1, \dots, n + k$$
$$R(-F'_i(x_0)) \cap P_0^n \neq \emptyset,$$

$$i \in \{1, \ldots, n\}$$
 and $-F_i(x_0) \notin P_i^0 \Rightarrow \mathbf{R}(-F_i(x_0)) \cap (P + \{\lambda F_i(x_0): \lambda > 0\}) \neq \emptyset$

can be satisfied, then $T_i \circ F'_i(x_0) \neq 0$ for at least one *i*, vi) specially if $R(F'_i(x_0)) = E_i$, i = n + 1, ..., n + k and the system

$$F_{i}(x_{0})(x - x_{0}) = 0, \quad i = n + 1, \dots, n + k, \\ \in \{1, \dots, n\} \text{ and } -F_{i}(x_{0}) \in P_{i}^{0} \Rightarrow -F_{i}(x_{0})(x - x_{0}) \in P_{i}^{0} + \{\lambda F_{i}(x_{0}): \lambda > 0\} \\ x \in A^{0}$$

has a solution in x, then $T_0 = I$ is the identity operator. If in addition F_i is a convex mapping, $i = 0, \ldots, n$; $F_i(x) = B_i x + b_i$, where B_i is a bounded linear operator and $b_i \in E_i$, $i = i = n + 1, \ldots, n + k$, then the local infimum is also a global infimum on Q and i), ii) or ii'), iv), vi) are the sufficient conditions of the global infimum, where ii') $x \in Q \Rightarrow F'_0(x_0)(x - x_0) =$

 $= T(x - x_0) - \sum_{i=1}^{n} T_i \text{ o } F'_i(x_0)(x - x_0) \in P_0; \text{ specially for } n = 0, \text{ ii'} \text{ has the form } x \in Q \Rightarrow$ $\Rightarrow T(x - x_0) \in P_0.$

Let $M \subset R^{r}$, $Q = \{x \in L^{(r)}(0,T) : x(t) \in M \text{ for almost every } t \in [0,T]\}$, $x_0 \in Q$, $A \in L_{\infty}^{(n \times r)}(0,T)$ and let P be a closed (and not necessarily convex) cone in \mathbb{R}^{n} . Suppose that

$$\int_{0}^{T} A(t) \left(x(t) - x_{0}(t) \right) \mathrm{d}t \in P$$

 $A(t) (x - x_0(t)) \in P$

for all $x(\cdot) \in Q$. Then

for all
$$x \in M$$
 and for almost every $t \in [0,T]$.
Lemma 3A: Let $\tau \in [0,T]$ and let $A(\cdot) \in L_{z}^{(n \times n)}(0,T)$. Then
i) the problem

$$\frac{\mathrm{d}\Psi(t,\tau)}{\mathrm{d}t} = \Phi(t,\tau) \ A(t) \text{ for almost every } t \in [0,T] ,$$
$$\Phi(\tau,\tau) = I_{n \times n} \ .$$

has exactly one solution $\Phi(\cdot, \tau) \in C^{(n \times n)}(0,T)$; ii) the problem

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \varphi(t) \ A(t) \text{ for almost every } t \in [0,T] \ ,$$
$$\varphi(\tau) \text{ is given,}$$

has exactly one solution $\varphi(\cdot) \in \mathbb{C}^{m \times n}(0,T)$, and the solution is

$$\varphi(t) = \varphi(\tau) \Phi(t,\tau) :$$

iii) for all $t, \tau \in [0,T]$, the inverse matrix $\Phi^{-1}(t,\tau)$ exists and $\Phi^{-1}(t,\tau)=\Phi(\tau,t).$

Lemma 4A: Let P be a closed and convex cone in the linear normed space, R^n , such

that $P^0 \neq \emptyset$ and $\pm z \in P \Rightarrow z = 0$. Then there exists a real number $\delta > 0$ such that for all $y_1, y_2 \in P$ and $||y_1|| = ||y_2|| = 1$ it is $||y_1 + y_2|| \ge \delta$. Theorem 5A: Let $Q \subset \mathbb{R}^n$ and let A be a positive semidefinite symmetric $n \times n$ matrix. Let (Ω, \mathcal{A}, p) be a probability space, let $\mathcal{F} \subset \{x : \Omega \to \mathbb{R}^n \text{ is a random variable: } Ex = 0$ and there exists $E(xx^*)$, and let $\mathcal{G} = \{x \in \mathcal{F} : p(\{\omega\}: x(\omega) \in Q\}) = 1$. Use the following notations:

$$\begin{array}{lll} F: \ensuremath{\mathfrak{F}} \to M, n \times n & F(x) = E(xx^*); \\ F_1: \ensuremath{\mathfrak{F}} \to R^1, & F_1(x) = E(x^*Ax); \\ F_2: \ensuremath{\mathfrak{F}} \to R^1, & F_2(x) = \mathrm{trace} \ E(xx^*); \\ F_3: \ensuremath{\mathfrak{F}} \to R^1, & F_3(x) = \mathrm{det} \ E(xx^*). \end{array}$$

If $F(x) \ge F(y)$, i.e. F(x) - F(y) is a positive semidefinite symmetric matrix, then $F_i(x) \ge F_i(y)$, i = 1, 2, 3. If $x_0 \in \mathcal{C}_i$ and $\inf \{F(x): x \in \mathcal{C}_i\} = F(x_0)$, then $\min \{F_i(x): x \in \mathcal{C}_i\} = F_i(x_0), i = 1, 2, 3$

Summary

The principal aim of this paper is to give the necessary condition of the optimum (infimum) in form of the local supremum principle for optimum control problems with nonscalar-valued performance criterion. The performance criterion has its range in a finitedimensional partially ordered linear normed (not necessarily Euclidean) space. The local supremum can be applied to the analysis of dynamic vector estimation problems and to uncertain optimal control problems.

References

- 1. Гирсанов, И. В., Декции по математической теории эктремальных задач. Изд. Московского Университета, 1970.
- 2. GEERING, H. P. ATHANS, M.: The infimum principle. IEEE Transactions on Automatic Control, 19 (1974) 485-494.
- 3. LANTOS, B.: Necessary conditions for the optimality in abstract optimum control problems with nonscalar-valued performance criterion. Problems of Control and Information Theory, 1976/3.

Béla LANTOS H-1521 Budapest