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1. Introduction

During the research in threshold logic several synthesis methods have
been proposed [1, 2, 3]. In spite of the efforts, a great number of practical
problems remained unsolved. The main difficulties are the testing of linear
separability, the lack of a practical compound synthesis method of non-
separable Boolean functions, and the practical realization of threshold gates
for mass production.

The scope of this paper is to find a practical design method for combi-
national networks by making use of theoretical results and ideas from the
threshold logic. Most of the theoretical results in threshold logic seem to be
useful for a synthesis method of combinational networks with arbitrary
combinational building blocks determined in advance, because the threshold
gate can be considered as a generalization of the combinational gates.

The method described in this paper leads to a multilevel network of fix
structure, in which the number of levels depends on the set of building blocks
selectedin advance. It means that the building blocks determine only the rate
of convergence and not the decomposition structure of the network.The don’t-
care combinations of the Boolean function to be realized are really neglectable
in the method and so they have an advantageous effect on the rate of con-
vergence.

2. Terminology

Let F(x) denote an arbitrary Boolean function, where x means the
input vector with n bivalued components considered as real values:

x = (%,%5,... %)
Let »* = denote the set of input vectors for which F(x £ x!) = 1,

x° = the set of input vectors for which F(x € x°) = 0,
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2 = one of the input vectors x € xl,
2 = one of the input vectors x € x°

The number of the vectors x! and x° depends on the truth table of F(x).
The input vectors corresponding to the don’t-care combinations are obviously
not among the vectors x? and x°.

Let y* denote the difference vector of the input vectors x and x°:

¥ = 2 — 2P,

It has been shown [4, 8] that, by calculating all of the difference vectors
the Boolean function can be characterized by a matrix Y, the rows of which
are the difference vectors. Considering the special properties of the difference
vectors [4, 8], the matrix Y can be transformed into a more concise form
as follows:

where x1* is an arbitrary al-vector and x% is an arbitrary x’-vector.
It is easy to prove that the rows of matrix R' represent all of the
difference vectors [8].

3. The Decomposition Structure

Let x and xp denote the sets of 4 and x° vectors of a Boolean function
F(x), respectively. Suppose another Boolean function fj(x) which determines
subsets 4, B and C, D of sets x% and x%, respectively, as follows:
AUB=1xt; AN B=g (empty);
CUD==xg; C ND=¢ (empty),

(where U denotes union and () stands for disjunction);

flx e d)y=1; fila€c B)=20;
flxe C)=0; filxeD)=1.
Thus
% = AUB; 3, = BUC
Let two other functions be defined on the subsets 4, B, C, D as follows:

w

for xpp = A

xg
Ll R 0
f3t xp3 = B; gy

D
Cc

Il

So it can be proved that

F(x) = fifs “}“flf3- (1)
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This decomposition of F(x) follows from the definition of subsets 4, B,
C, D as shown in the next table:

Qutput values of
Subsets of input

vectors l
fl 1 f: fa F
i i i
A S S L= ?1
B ‘ 0 ! —_ 1 1
G 0 i — 0 | 0
D 1 i 0 — 0
i ]

In Figure 1 the KARNAUGH map of F(x) is shown with fi, f, and f;, as
input variables. Equation (1) follows from the map.

s

™

There are several other possibilities for the definition of the function
fo and f;. For example, F(x) can be expressed as

F(x) = fofy + 13), (2)

if fat af, = AUB: xf(; = D.
for 25, = B; 4}, =C.

In this case the truth table of the functiomns is as follows:

Output values of
Subsets of input

vectors ! 1§ ;

| | ’
A 1 1 1 - 1
B o |1 1 1
C o = | o 0
D 1 0 = 0

| i &

Equation (2) can be derived from the Karnaugh map in that case as well.
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A decomposition structure can be formed by successively defining a
function f; for functions f, and f; on every level as it is shown in Figure 2,
where K denotes a combinational network realizing Equations (1) or (2).
Functions f; on each level may be similar or different, depending on the
properties of the building blocks.

Defining the functions f; step by step, some of the subsets 4,B,C.D
may be found to be empty. These cases are summarized in Figure 3, where
K1 and K2 denote networks according to Equations (1) and (2), respectively.

-—f K

ki

o

Fig. 2

(=]

The convergence of the decomposition method described above is
ensured by the fact that the number of the input vectors of the function
fo and f; is decreasing level by level. This follows from the definition of the
sets x}s, x%_,, x}a, x}s. In other words, the functions f, and f; have more and
more don’t-care input combinations level by level. It is obvious that, in the
case when the function F(x) to be realized is not completely specified, the
rate of convergence will be the greatest if most of the input vectors are don’t-
care. So the don’t-care combinations do not require special handling and are
really neglectable.

4. Independence checking

For the computerization of the decomposition and design method it
is important to know which variables do not affect the functions f, and f;
on a given level. These variables are to be neglected because the next level
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The subsets
generated by The cutput of the decomposition level
f
—f fi frFy f ——f +
1 1 5l fi+ i/
ABCD —fy K 1:_1_.2_1 3 —f K2 F.Z...f1_3
—f ——f,
—— 7 ] f,
BCD W“ f2 K1 Fp—— Hp ——— fz K2 F
3 'D'—' f3
1 f —14 i f
ACD ——f  Ki 2 —f K2 12
l-.—~” T r"“;
0 3 o 3
'i)’— f1 f+f F=f
8.0 | 172 =R
A L K F—D Mot useful for
o f3 dacomposition
—5 o T
173 1 +E
ABC F fy k1 F wfy K2 Fj..i
——] f3 — ] f3
AC F= f; F= f1
B,.C F=f Fef
B.C fi-0 f1= O Not useful for
AD fy = fi= 1 decornposition
AB These cases cannct cccur following
[oND] from the definiion of the subsats :

Fig. 3

is independent of them. This independence checking can be made with the
use of the matrix Y or Rt [8], as it is summarized in the next statement:

A Boolean function F(x) has at least one realization for each of the
variables x;;. %;5,. . . x;, which is independent at least of one of these variables,
if and only if for the columns i, i5.... i, (r < n) of the matrix Y of F(x)
no rows can be found in which there would be only one nonzero value in
the columns i, i,...i,, respectively.

Proof:

For proving the necessity, assume that F(x) has a realization which is
independent of the variable x;. In this case there exists no ome x!; 2° vector

8
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pair in which 2! and x° are distinguished by x; only. (In the opposite case

F(x) should depend on x;.) Thus, among the difference vectors (the rows of
Y) there cannot be any vectors, with y; only as a nonzero component and
so the necessity is proved.

The sufficiency of the statement can be proven by assuming that the
column i of Y has no nonzero values single in their row. In this case no x!;
x® vector pair can exist in which x! and x° are distinguished by x; only. So
each x! has its neighbour by x; not among the vectors x° but among the
vectors x! or among the vectors corresponding to the don’t-care combi-
nations, Thus F(x) can be covered by prime implicants which do not contain
the variable x; and sufficiency is proved. By determining the cover of an
incompletely specified function the don’t-care combination vectors become
a1 or x°. This fixing of the don’t-care combinations can be done by many different
ways and the different fixings may be contradictory to each other. For this
reason, if more than one column (i;, i,...7,) of Y has the property mentioned
in the statement, then it is not sure that there exists a realization of F(x)
independent of all the variables x;.%;,,... x;, simultaneously. Such a real-
ization could afford a contradictory fixing of the don’t-care combinations.
Of course, the realization does exist for completely specified functions.
Example 4.1

A Boolean function is given by its combination vectors:

T Xy Xy Xy T Xp Xz Xy
al = (1, 0, 0, 1) 2% =(1, 0, 0, 0
22 = (1, 1, 0, 0 22=(1, 1, 0, 1)
W=, 1, 1, 0 W=, 0, 1, 1)
2= (1, 1, 1, 1)
Forming the matrix Y,
N Y Y3 s
Rt 0 0 17 ¥y o= a1l — %
0 1 0 0 y? o= x12 — x01
0 1 1 0 y3 = x1% — x%
0 1 1 1 yt o=l — 20
0 —1 1] 0 ys = all 402
0 0 0 -1 y8 = a2 — g
Y = 0 0 1 -1 ¥y o= xl® — x®
0 0 1 0 y8 = xlt — 1@
0 0 -1 0 ¥ o= all — 408
0 1 —1 =1 Y10 = x12 _ 03
0 1 0 —1 _.yn — 18 __ 403
L0 1 0 0 | Y12 o gl 503
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it can be concluded that the function has a realization independent of x;,
because all the values in column 1 are zeros. The Karnaugh map of the
function is shown in Figure 4. A minimal disjunctive form derived from
the map:

F = xyxy + 2,2 + %,x5%, ,

which is independent of x;.

4

T
|
_:}

*3

Example 4.2

A Boolean function is given by its combination vectors and by the
matrix Y:

x Xy X3 X Xy Xy
2 = (0, 1, 0) 21 =0, 0, ™ i 0 1 07
212 == (1, 1, 0) 22 =(0, 1, 1 1 1 o0
213 = (0, 0, 1) ¥ =(1, 1, 1} 0 0 1
M = (1, 0, 1) 2 =(1 0, % 1 0 1
0 0 -1
1 0 —1
0—-1 0
¥ = 1 -1 0
0 0 —1
-1 -1 0
0 -1 0
-1 1 0
0 1 0
—1 0 1
L 0 0 1 _

From Y we can conclude that the function has a realization independent
of x;, because column 1 does not contain a nonzero value single in its row.
On the Karnaugh map (Figure 5) the minimal disjunctive form is illustrated

F = 5,25 + %y%y,
which is independent of x,.

83
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Example 4.3
Consider the Y matrix of the following funection:

X Xy Xy Xy X Xy X3 X
at=1(1, 1, 0, 1) 2 =(0, 1, 0, 0)
@=(1, 1, 1, 1) 22 =(0, 0, 0, 1)
aB=(1, 1, 1, 0) 2?@=(1, 0, 0, 0)
a¥4=(0, 1, 1, 1)

-1 0 0 17
1 0 1 1

H 0 1 0

0 0 1 1

1 1 0 0

Y = 1 1 1 0
1 1 1 -1

0 1 1 0

0 1 0 1

0 1 1 1

0 1 1 0

L —1 1 1 1 ]

According to the statement, this function must have realizations each
of which is independent of one variable at least. Selecting from the prime
implicants signed on the Karnaugh map (Figure 6), the minimal disjunctive

X1

L] ]
X3 1_} E:

X1

4,

X3

Fig. 6
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forms can be derived as follow:

F=xx, -+ x4
F = xx, + x4

F=x,x, + x4
F = 22, + 252,

Each of the above expressions is independent of one of the variables.

5. Defining the functions f;

In the decomposition structure described above the rate of convergence
and the simplicity of the levels are strongly influenced by the function f.
For defining the most suitable f; on each decomposition level, optimality
conditions ought to be exactly known and in most cases this is not easy for
practical use. The optimality conditions are determined by the logical properties
of the building blocks, the scale of integration, the restrictions on the propa-
gation delay, hazards and wiring costs, etc. [3]. Instead of attempting to
express exact optimality conditions the effect of some general types of f;
is shown below,

5.1. f; as a threshold function

On each decomposition level the functions f; can be considered as,
threshold functions. So the specification of f] is easy to change and to describe
by determining the input weight and the threshold values [8] on each level.

Let F¥(x) denote the function to be realized on the decomposition
level k. The parameters of a suitable f| as a threshold function can be deter-
mined with the help of the matrix Y or R! [8]. Forming the unity difference
vectors, an advantageous weight vector w can be calculated [4, 8]:

J
we G2

=1 i
! [l
=]

(3)
where m is the number of the difference vectors of FX(x), n is the number

of the variables of F¥(x), and |yl | is the absolute value of the component
i of the difference vector yl.
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The advantageous effect of this weight vector on the decomposition
structure can be illustrated by the properties of the difference vectors [4, 8].

If, for the weight vector determined by Equation (3) a threshold domain
(T}, T,) can be calculated such that

w - (x€xp) >T,
w- (x€ad,) <T,
hold for all specified x-vectors, then f, realizes F*(x) as a threshold function

and the decomposition procedure is finished on the k-th level. In this case
the calculation of the threshold domain is based on the inequality

(wxl)min > (wxo)max .

The threshold values T; and T, can be placed somewhere between
the above two values.

If, for the weight vector determined by Equation (3) no threshold
domain can be determined by which F “(x) would be realizable, then the
decomposition procedure must go on. In this case a threshold domain (T}, T',)
must be calculated by which the subsets A,B,C,D are determinable for
continuing the decomposition on the next level:

Aiw- (e k) >T,

B:w:(v€ap) <T,
C:w-(x€ap) <T,
D:w-(x€xp) >T,

The suitable threshold domain (I3, T',) has an effect on the simplicity
of the next levels. For this reason it is important to decide how to design
the values T, and T,. In that case the inequality

(wxl)min g (wxo)max

holds, and whatever values of T, and T, are determined, some of the input
vectors remain unrealized on the k-th level and are left for the next levels.
In the examples below the calculation of the threshold domain is made
aceording to the expressions as follow:

1= (wxo)max 3 Tyo=T1—1 (4)
T, =T,4+1; Ty= (wr)pa (5)

1) .
T, = entier[ (42 min _; (102 max ] sTo=T,—1 (6)
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The calculation of the weight vectors is executed not only by Equation (3)
but, in addition, according to the expressions

w= 3yl 0
j=1

-

Y= 2T @

In the examples the components of the weight vectors are normalized
as follows:

W; norm = entier {—w})ﬁ)—v . wi] 9)
i/max

Of course, these ways of calculation are only iliustrations of the design
and decomposition method and can be changed depending on the building.
blocks. For example, the procedure described above is applicable for the
case in which f, is given in advance as athreshold gate with restricted param-
eters on all levels. ‘

5.2. fi as function of one variable only

In this case the decomposition tree consists of networks K1 or K2
only. If f; = «; or f; = %, then subsets 4,B,C,D can be selected by the values
of x; or x; in the combination vectors. The rate of convergence and the
simplicity of the levels are not independent of which variable is chosen for
f==x; or f= %, on each level. For choosing a suitable variable, the matrices
Y or Rt of F¥(x) can be used [8]. For each variable the following formulas

are to be calculated:

k { !
k—]k-x}l—fop1+l(l—1).x}l—2x}r (10)
I p=1 | r=2
k | 1
l-{—‘k-x} — > ap —‘{l——l)-x}l— oy (11)
p=1 r=2

where x}l, x?P, ler are the j-th components of the combination vectors (x!
is chosen arbitrarily);

l is the number of the combination vectors xl,

k is the number of the combination vectors x°.

Based on the above expressions, the next statement provides a tool

for selecting a suitable x;.
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The subsets 4 and C generated by f; = «x; or f; = x; contain the most
combination vectors of x}:k and x?:k, respectively, if the value of one of the
Expressions (10) and (11) is the smallest with j = i.

The proof of this statement is based on the properties of the difference
vectors and of the matrix R and detailed in [8].

The variables selected by the statement represent the best single-variable
cover of the combination vectors of F*(x).

5.3. f; as a special symmetrical function

In the examples further on f; is restricted as a special symmetrical
function on each level. This tvpe of function can be described concisely as
follows:

Jfi=Srsrita e (Ao x,) or

h

I

n
o
&3
0
—
o
&
?
i
bl

where the lowerindices0,1,2,...t—1.¢+4-1. .. denote the symmetry numbers [1].

Functions of this type can be considered as threshold funetions with
input weights all equal to 1. The threshold domain depends on the value
of t. It can be proved |1, 2] that this type of function forms a complete
function class [3], if

n-—+1

o
2

which always holds for even values of .

In this case the design procedure may be similar to that in 5.1 with
fias a special threshold function, the input weights of which are given in
advance and only the threshold domain can be calculated on each level.
This calculation becomes easy with the help of the matrix Y or RY, because
it means only a comparison of the row sums [4, 8].

It is obvious that a more flexible design procedure can be formulated
by allowing f; not to be dependent on all of the variables of F(x), In this
case a variable selection is necessary which is similar to that in 5.2, but more
variables have to he selected on each level. The method of selection is based
on the statement in 5.2. This selection can be considered as a generalization
of the one-variable selection and is made by trials with all possible variable
combinations., The effect of this method can be compared with the one-
variable selection in the computer examples further on.

The design and decomposition method is summarized in the flow chart
of Figure 7.
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The design procedure outlined above is illustrated by some examples
in which the defining of f; is made in the ways as mentioned in 5. Figures
8—14 show the Karnaugh maps of the functions to be realized and the result-
network. Each result is characterized by the codes on the upper left parts
of the figures as follow:

6. Examples

E: decomposition with network K1
B: decomposition with network K2
Y: calculating the weight vector by Expression (7)
X: calculating the weight vector by Expression (3)

Start

inout &f the combination
‘vectors x'and X°

___]I

=

Forming the difference
vectors or Rt

Independence  checking,
neglecting of some
variables if possibie

|

Defining the function #

Calculating the

weight vector

and the threshdld
domain

Single-varicble | Sele
selection vari
symmetryc function
Caleulating the
value of £

Considering
as given in
cdvance

f1

Forming the subsets
AB. CD

|

Forming the combination vectors

x'and x°of f, and f3

|

7

Is the decomposition
firished?

Fig. 7

>
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o
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3 sl ]
3 5
? 12 fy
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2 2
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BYF Q1T = BXF 047" 3
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7 8 o 1L |2 Z
S A T P
3 ma ol Ly Ky H
g E — ;2 K2 1 1 f; ?
3 0 . - f1
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Fig.8
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BYK 030"
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N

calculating the weight vector by Expression (8)

: one-variable selection —

f1 as a special symmetric function

calculating the threshold domain by Expression (4)
: calculating the threshold domain by Expression (4)
calculating the threshold domain by Expression (6)

-

ARG

The normalization of the weight vectors has been made in every case
according to Expression (9). After the letter-code of the results the computing
time is shown in each figure. The design program has been written for the
computer ODRA 1204 in autocode MOST 2. If the function to be realized
is a threshold function, then omne of the known realizationsis given under
the Karnaugh map in the figures.

From the results of the examples it can be concluded that the way
of calculating the weight vectors does not effect very much the rate of
convergence with the normalization applied according to Expression (9).
In some cases the multi-variable selection seems to be less advantageous
than the single-variable selection (Figure 8).
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7. Conclusions

The design method described above is applicable for the practical
synthesis of combinational networks with arbitrary building blocks given
in advance. The properties of the building blocks can he taken into consid-
eration in the specification of the function f; for all levels or for each level
separately. In the latter case the defining methods differ from the outlined
ones only in the determination of the subsets 4,B,C.D.

There is also another way of using arbitrary building blocks. The
properties of the building blocks may be left out of consideration in the
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specification of f; and after having got the resulting decomposition network,
only the resulting functions f; and the networks K1 or K2 are to be realized
by means of the arbitrary building blocks given in advance. For these possi-
bilities the defining methods outlined in Part 5 are only illustrations and their
aim is to test the procedure by some examples.

For the design of multiple output combinational networks the method
described above can be used in two different ways:

a) The functions f; may be defined as common for several output
functions on each level.

b) For the design of multiple-output networks the single-output method
is applicable with constructing a proper single-output network [6, 7].

The elimination of the logical hazards is a very important task in a
design procedure. In the design and decomposition method described in this
paper the hazard elimination seems to be feasible by making special restrictions
on the subsets 4.B.C.D, and it is one of the subjects of further research.

Summary

In the paper a synthesis method is described, by which a design procedure can be
constructed, using threshold gates with parameters given in advance. Therefore, the method
is applicable for combinational network synthesis with arbitrary combinational gates chosen
in advance. The method does not require a special handling of the not completely specified
Boolean functions. The realization of the synthesis is made by a fixed multilevel decom-
position structure. Some computer examples are given in order to illustrate the efficiency of
the method.
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