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Several circuits are known [1, 2] suitable to model two-ports with given 
parameters using networks containing nullators, norators, and impedances. 
These models can be used also in the case of two-ports "\'d.th extreme param­
eters, such as ideal transformers, negative impedance converters, gyrators, 
current- or voltage-controlled current or voltage sources. For the analysis 
of the steady state of networks containing such models, calculation methods 
are available [3, 4, 5, 6]. To introduce a further method, a method will be 
presented for "\',rriting the state equation of the above mentioned models. 

Two-port model with nullators and norators 

The nullator is a two-pole, both current and voltage of which are zero. 
Symbol indicated in Fig. la. ,,,-ill be applied. There is no restriction with regard 
to current and voltage of the norator. Symbol is shown in Fig. lb. A net­
work analysis problem can be unique if a relationship exists between currents 
and voltages of its two-poles. The nullator involves two restrictions, the norator 
no one. Therefore, to obtain a unique solution of the equations, the network 
should contain as many nullators as norators. 

@ 1=0, u=o 
o>----{O 0 

Fig. 1 

Connecting a nullator and a norator according to Fig. 2 produces a 
nullor. The nullor is a two-port 1'iith the primary side connected to a nullator, 
and the secondary side to a norator. The nullor can be regarded as the model 
of the operational amplifier. 

A general procedure is known for producing the network model contain­
ing nullators, norators and impedances of the two-port defined by impedance, 
admittance, or hybrid parameters [2]. Omitting a detailed discussion, a possible 
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model of controlled sources and of a two-port defined by impedance, admittance 
or hybrid parameters are given in Figs 3 and 4, respectively. 

Let us consider in the following the state equations of a uetwork con­
sisting of impedances, nullators, and norators. 

r;~~~g= 1 et:;r CCf2:"f5:iC 

[:on I equation 

l 
Fig. 2 

Equivalent circuits 

Fig. 3 
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Two-port equa/ion [quivalent c i r c u 

211= la 

212= II 

221= ZZ 

Z22= Zb [~H::, :::1 [::] u,1 
~----------~~ __ ----------o 

!:/11= Ya. 

d .Y12= Yt 

tuz Y21= Yz 

Y2Z= Yb 

Fig. 4 

Selection of state variables 

State vector x of the network is a column matrix with state variables 
of the network as elements permitting to determine all the currents and 
voltages of the network. The state vector satisfies the 

:i = Ax + Bz (1) 

state equation where z is the column matrix of the time-dependent exciting 
currents, exciting voltages, A and B depend on the characteristics of the passive 
elements and the structure of the net'work, in case of a linear invariant network 
they are independent of exciting signals and of time. 

The state variable of electric net' works may be the charge of capaci­
tors and the flux of coils. In linear networks it is advisable to choose the vol­
tage of capacitors and the current of coils as state variables. 

If the network contains a loop consisting exclusively of capacitors, 
voltage sources, and nullators (capacitive loop), then voltage of one capacitor 
in the loop can be expressed by that of the other elements of the loop, thus 
the voltage of this capacitor is no state variable. 

If the network contains a cut-set consisting exclusively of inductances, 
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current sources, and nullators (inductive cut-set), then the current of one of 
the inductances in the cut-set can be expressed by that of the other branches 
the cut-set, accordingly, the current of this inductances is no state variable. 

It should be mentioned that extreme parameter two-ports may result 
in "hidden" capacitive loops, inductive cut-sets. These can be sho·wn by using 
the method described in [7]. 

There are as many state variables as the total number of capacitors 
and inductances in the network less the number of capacitive loops and induc­
tive cut-sets. 

Kirchhoff's equations of the network 

For "writing the equations of the network, each voltage source, current 
source, resistor, inductance, capacitor, nullator, norator is considered as a 
separate branch. For our calculations a tree of the graph of the network is 
chosen, in which a t"wig corresponds to each voltage source, short circuit, 
nullator, and capacitor, while a link corresponds to each current source, break, 
norator and inductance. From among non-zero and non-infinite resistances, 
those connected in series with a capacitor are chosen as links, those connected 
in parallel with inductances as twigs, while the others should be chosen as 
twigs or links in such a way that twigs listed in the preceding, together ,vith 
twigs corresponding to resistors, should form a tree of the graph of the network. 
If there are neither capacitive loops, nor inductive cut-sets in the network, 
grouping of branches can be performed according to the preceding. Accordingly, 
branches of the network have eight categories: 

1. Links containing current source, numbering bl ; 

2. Links containing norator, numbering b2 ; 

3. Links containing inductance, numbering b3 ; 

4. Links containing finite conductance, numbering b4 ; 

5. Twigs containing finite resistance, numbering b5 ; 

6. Twigs containing capacitor, numbering b6 ; 

7. T"wigs containing nullator, numbering b,; 
8. Twigs containing voltage source, numbering bs 

Nullators and norators are equal in number, accordingly b2 = b,. The individual 
branches "will be numbered in such a way that branches in Group 1 have 1, 
2, .... , bl , those in Group 2 bl 1, bl + 2, ... , bl + b2 , and so on, in the 
order of groups. Loops generated by links get the same number as the corres­
ponding links, and cut-sets are numbered in the order of the generating twigs. 

Independent loop equations of the network can be written in the form 

Bu= 0 (2) 
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where B is the loop matrix of the network and U is the column matrix of 
branch voltages. PartitioningB and U according to the eight groups of branches: 

bl b2 b3 b4 b5 b6 b7 bs 

hl 

r 
1 0 0 0 Fu Fl2 Fl3 Fg r U I 

,- 0 
b2 0 1 0 0 F21 F22 F23 F24 11:! ,-
b3 0 0 1 0 F31 F32 F33 F34 U 3 

b4 0 0 0 1 Fn F42 F43 F44 U 4 (3) 
U 5 

U 6 

0 

Us ..J 

The numbers of columns and rows of each matrix block are indicated atop 
and at the left side, respectively. 

Considering that Us = ug is the column matrix formed of source volta­
ges of voltage sources, (3) can be written as the follo'iVing four matrix equations: 

U 1 + Fuus + F 12uO + F'14Ug = 0 

11:! + F2lU 5 + F 22U 6 F'Z4U g = 0 

U 3 + F 3lU S + F 32U 6 + F 34U g = 0 

U 4 + FUU 5 + F42U 6 + F44Ug = O. 

Cut-set equations can be ·w-ritten in the form 

Qi = 0 

(4) 

(5) 

(6) 

(7) 

(8) 

where Q is the cut-set matrix of the network and i the column matrix formed 
of branch currents. Partitioning these according to the eight groups of branches, 
with the previous numbering of branches, loops, and cut-sets: 

B = [1 F] ; Q = [-F+ 1] , (9) 

where F+ is transpose of F, and 1 the unit matrix. (8) can be written as 
follows: 

bl b2 b3 b4 b5 b6 b; bs 

bs 

r 
-Fit -Fit -Fiti -Ft. 1 0 0 

~l 
r i 1 '=0 

b6 -Ft? -Fi.? -Fi2 -Ft;. 0 1 0 iz 
b; -Fta -Fi.3 -Fig -Ft3 0 0 1 i3 
bs -FiA -F:J4 -Ft4 -Ft4, 0 0 0 i4 (10) 

is 
i6 
0 

L is 
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where i1 = ig the column matrix of the source currents of current sources. 
(10) yields the following equations: 

-Fiiig - Fiii2 - F3ii3 - Fiii4 + i5 = 0 

-Fi.2i g - F~i2 - F3"ti3 - Ftii4 + i6 = 0 

-Ftig - F~~ - F31ii3 - Ft3i4 = 0 

-F:i'4ig - Fiti2 - Ft4i 3 - Ft4i, + is = 0 

(11) 

(12) 

(13) 

(14) 

(4) to (7), and (11) to (14) are the Kirchhoff equations of the network where 
i3 and u6, Us = u g and i 1 = ig are the column matrices of state variables, source 
currents, and source voltages, respectively. 

The state equation 

To write the state equation, response signals other than state variables 
have to be eliminated from the above equations. To this aim the kno'wn rela­
tionship between currents and voltages of branches in each group "\vill be 
utilized. Thus 

(15) 

where L contains the coefficients of self-induction of branches in Group 3 in 
the main diagonal, and the coefficients of mutual induction between branches 
of Group 3 outside the main diagonal. 

(16) 

G being the diagonal matrix formed of the conductances of branches in 
Group 4. 

(17) 

R being the diagonal matrix formed of the resistances of branches in Group 5. 

(18) 

C being the diagonal matrix formed of the capacitances of capacitors. 
Since the number of nullators and norators is equal, F 23 is quadratic 

and, if it is not singular, the norator currents can be expressed from (13): 

(19) 
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Substituted into (ll) and (12): 

From (7), using (16), "we obtain 

From (20), taking (17) into consideration: 

Us = R(Fti - FiiFi.;-lFiJ) ig + R(F:ti - FiiF~-lFi3) i3 

R(FtJ. - FiiFi.;-lFis) i4 

Substituting into (22): 

i4 = [1 + GF41R(Fti - FiiF~-lFi3)]-l [GFuR(FiiF~-lFi3 - F:ti) i3 -

(22) 

(23) 

- GF42u G + GF41R(F:fiF:J3-'F:J.3 - Fti) ig GFJ4u g] (24) 

Substituting (22) into (23): 

U 5 = [1 + R(F .. ti F2if'i3-1Fi3)GF41]-1 [R(F3'i F;JiFi3-1F{3) i3 + 
+ R(F:jjF~-lFi3 - F;U)GF42u G + R(Fli - F2iF:iJ-1Fi3) ig + 
+ R(F2iF"i3-1F.{3 - Fii) GFHug] (25) 

From (6), substituting (15) and (25), further from (21), taking (24) and (18) 
into consideration, the state equation of th~ network is found to he: 

(26) 

where 

Du = F 31[1 + R(FtJ. - FiiF~-lFj3) GF.n]-l R(F2iF:{j-lP~3 - F3'i) (27) 

D12 = li'3l[1 + R(F4i - FiiFi.;-lFi;) GF41]-lR(F41 Fi.;Fi.;-lF!:l) GFJ2 - F32 

(28) 

D2l = Pi? - Fi2Pi.;-
l
F;t3 + (P4"2 - Fi2Fi.;- lFt3) [1 + GF.JlR(Fil -

FiiFi.;-lFt3)]-1 GF41R(F;jjJi'i.;- lF;t3 - Ftl) (29) 

D22 = (Fi.2F:{j-lFja - F'l2) [1 + GF41R(Fti - F2iFi3-1Fj's)]-1 GF42 (30) 
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Ell = F 31[1 + R(Fli - FiiF~-lFta)GF41]-lR(FiiF~-lFt3 - Ft) 

E12 = F 3l[1 + R(Fli - FiiFii-'Fta)GF41]-lR(F41 -

- F;}jFii-'Fta)GF44 - F34 

E2l = F2i - Fi2Fii-1F13 + (F;i; - F~F;;,;-lF43) [1 + GP41R(F:u -

- FiiFii-1Fi:i)]-1 GF.nR(FiiF;;,;-lF{3 - Fii) 

E22 = (F~Fii-lFi3 - F;i;) [1 + GF41R(Fti - FllFi3-1Fi3)]-1 GF44 

(31) 

(32) 

(33) 

(34) 

In the knowledge of state variables, (24) yields i 4 , (25) yields u 5,in turn on the 
basis of (20) i 5, on the basis of (4) u l ' (5) u 2, (6) u 3' (7) u 4 ' (19) i z, (12) i6 and 
is can be calculated from (14). 

Example 

The low-frequency amplifier shown in Fig. 5 can be modelled from the 
aspect of periodic signals, by the circuit shown in Fig. 6, if among the hybrid 
parameters of the transistor h12~0. The equivalent circuit of the amplifier 
containing nullators and norators, illustrated in Fig. 7, is used for 'writing 
the state equation, using notation: 

The graph of the equivalent circuit in Fig. 7 is illustrated in Fig. 8a. Upon 
classifying branches we find that no one belongs to Groups 1 and 3. Branches 
1, 2 are to be placed into Group 2, branch 9 into Group 6, branches 10, 11 

Fig. 5 
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Fig. 7 

{5J [6} [7} 

{IJ 

Fig. 8 

into Group 7, branch 12 into Group 8, and among the resistors, branch 3 
belongs to Group 4. Branches of Group 6, 7 and 8 should be completed to a 
tree by means of branches containing resistors. Choose branches 7 and 8 as 
twigs (Fig. 8b), this means that these are branches of Group 5, while branches 
4,5, and 6 those of Group 4. The matrix of the fundamental loop system gener­
ated by the tree chosen in this "way: 

B=r1 010 0 0 0 ' 0 l' 0: 1 0 O. 

1
0 1: 0 0 0 0: 10. 0: 0 1 0 

--------1---------------------' .. -.. ------------- 1------ --------------1 -------.. 

lOO I 1 0 0 o! 0 0 -1" 0 0 0 
o 0: 0 1 0 0 0 0 -1 -1 0 -1 
o 0 i 0 0 1 0 0 1 0 1 -1 0

0 
....J

1 o 0: 0 0 0 1 1 0 -1 0 0 

that is, 

P n = 0 ; 

P2l = [ ~ 
P3l = 0; 

o 
-1 

1 
o 
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Further matrices describing the network: 

G=(~ 1 1 
~,,) -

Re Ra R 

R_(_l 
h~2 

h21R ) 

C=C 

Hence, on the basis of relationships (27) to (34): 

Dll = 0; D12 = 0_; D21 = 0; 

r 

1 I =~, -, 
D22 = [1 1 0 1] 1 0 0 0 

0 1 0 0 
Ro 

0 h21 1 0 0 
I 1 1 1 I 0 0 1+--
L lz22R" hZ2R" .....I L R" .....I 

= - (~e 1 1 + lz22Rk + lz21 -L~_2_) 
Ro 1 + lz2ZRk I 1 + h22R/( 

Ell = 0; E12 = 0; EZl = 0 , 

EZ2 = [1 1 0 1] r1 0 0 0 r 0 -, 

0 1 0 0 
1 

Ra 
0 -hZl 1 0 0 

0 lzZl 1 h22R" 
0 

L 1 hzzRk 1 + hzzRI; 1 + hzzR/(.....I L .....I 

1 1 

Ra 1 + hZ2Rk 

Yielding the state equation of the network on the basis of (26): 

'. 1 (' 1 
Un = lIv = - C Re 

The solution can he 'written in the knowledge of ug{t). 
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Summary 

Two-ports with given parameters can be modelled by means of networks containing 
resistances, inductances, capacitances, nullators and norators, even in the case of extreme 
parameters. The paper presents a graph theory method for writing the state equation of 
networks containing such models. 
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