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Introduction

A method suitable for writing the state equation for networks containing
linear two-poles and two-ports that may also have extreme parameters, is
described. Consequently, the method can also be applied for electronic networks
with approximately linear elements. To write the equations, two-ports other
than coupled inductances are modelled by equivalent circuits containing cont-
rolled generators. Equations necessary for the model are written by means of
the graph theory. '

The way of writing state equations is discussed in [1, 2] too. [1] models
two-ports by applying nullators and norators, and [2] by chain parameters
of two-ports. This paper is a further development of [3], concerned with
equations for steady-state linear networks.

Modelling the network

Two-ports of the network are modelled by circuits containing controlled
generators (Fig. 1). In the equivalent circuits voltage-time functions u,, u,,
and current-time functions i,, i, are related as for two-ports. Both on the pri-
mary and secondary side of the models there is a circuit consisting of a controlled
source and passive two-poles.

Modelling the two-poris as given above, and considering each independ-
ent generator as consisting of several branches containing a source and
separate passive two-poles, results in a network with branches of resistances
(conductances), inductances, capacitances, independent, or controlled sources.

Controlled sources may include some that got into the network else
than in modelling the two-ports. In such a case, if the control voltage is that
of a branch other than resistance or break, a branch consisting of a break will
be connected in parallel to this branch, the voltage of which is considered as
control voltage. If in turn, control current is that of a branch other than resist-
ance or short-circuit, the current of the short circuit connected in series
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with the branch is considered as control current.In the resulting model all
the controlled sources are in branches constituting the primary or secondary
side of a two-port.
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The state equation

To write the state equation, the branches of the model are classified
in groups.
Controlled sources and resistances represent branches of type g or r,
according to the following:
g-type branches in the network are
a) all the branches containing conirolled current sources;
b) all the branches containing conductances, if their voltage is a control
voltage;
c) all the breaks;
d) branches of finite conductance.
r-type branches are:
a) all the branches containing controlled voltage sources;
b) all the branches containing resistances, the ecurrent of which is a
control current;
¢) all the short-circuits;
d) branches of finite resistance
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Network branches of non-zero finite resistance are either of g- or of
r-type one of the following six groups:

1. branches containing independent current sources (links);
2. g-type branches (links);

3. branches containing inductances (links);

4. branches containing capacitors (twigs);

5. r-type branches (twigs);

6. branches containing independent voltage sources (twigs).

Accordingly, branches of non-zero finite resistance are classified as g-
or r-type, so that the totality of branches in Groups 4, 5, and 6 form a tree.
If this is not feasible then there is a capacitive loop or an inductive cut-set in
the network. This helps to detect the existence of hidden capacitive loops or
inductive cut-sets due to the presence of a two-port with extreme parameters,
rather difficult to demonstrate by other methods.

Numbering the branches in the order of grouping, hence by 1. 2, ...,
b, in Group 1, by b, + 1, b, +2, ...., by + b, in Group 2, and so on. The
number and direction of loops in the fundamental loop svstem generated
by the chosen tree will be indentical with those of the link in the loop. The
cut-sets of the fundamental cut-set system generated by the same tree will
be numbered in the order of generating twigs in the cut-set, further the branch
and the cut-set will be of identical direction along the twig.

Designating the column matrix formed of the voltages and currents in
each group by u,, w,, ..., u, and i, i,, . . ., iy respectively, current of g-type
branches depends on their voltages and on the current of r-type branches
as follows:

i, = Gu, - Ki, (1)

where the elements in the main diagonal of G are the conductances of branches
in Group 2, while the elements outside the main diagonal are the conductance
parameters representing the relationship between currents of voltage-controlled
current sources and control voltages. K{ is composed of proportionality factors
between source currents of current-controlled current sources and control
currents in Group 2. Rows of K correspond to branches of Group 2, while
columns to those of Group 5.

Voltage of branches in Group 5 can be expressed in terms of voltages
of branches in Group 2 and of currents of branches in Group 5:

u, = Mu, -~ Ri, . (2)

Elements of M are multiplying factors between source voltages of voltage-
controlled voltage sources and control voltages. Rows of M are ordered in
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accordance with branches of Group 5, columns with those of Group 2. R is
a quadratic matrix, in which main diagonal elements are the resistances
of r-type branches, while the elements outside the main diagonal are multiply-
ing factors between source voltages of curremt-controlled voltage sources
and control current.

Voltages and currents of branches in Group 3 are related as:

u, = Li; . (3)

The main diagonal of L contains self-induction coefficients of the branches,
corresponding mutual induction coefficients outside the main diagonal.
Currents and voltages of branches in Group 4 are related as:

i, = Cu, . (4)

C is a diagonal matrix with capacitances of condensers as elements.

Loop matrix B and cut-set matrix Q partitioned according to the
grouping of branches will be used for writing the Kirchhoff equations of the
network:

i 0 0 F, F, Fg ~ u, | =0
0 0 u,
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—F;;, —F;; —F; 1 0 0 - i, =0
—F; —F5, —F4 0 1 0 i,
—F; —Fi —Fi 0 0 1 i (6)
iy
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yielding:
u; + Fyug + Fpug + Fiaug =0 (M
u, + Fojuy + Foug + Fopu, = 0 (8)
u; + Fyuy + Faug o Fssus =0 (9)
- ﬁil_Fﬁiz“’Fﬁis:—iézo (10)
‘“F1+2i1"‘F2~:éi2“”F3+2i3+i5=0 (11)

_Fii, — Fii, — Faiy + i, — 0 (12)
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where i, and u,, and i, and u; are column matrices of state variables, and of
excitations, respectively. To write the state equation, variables u,, u,, u,,
us, i, iy, i, i; have to be eliminated from equations given above. The calcula-
tion yields the state equation '

RS N S

where

Dy, = —Fy,[1 + MFy, + RF5H(1 — KF5) 7 GFy, |1 [RF5(1 —

— KF3)~* KF3; -+ RF3] (14)
D,, = F3,[1 4+ MF,, + RF3(1 — KF3;)™ GFp] ™ [MF,; +

+ RFy(1 — KF3)™' GFy ] — Fyy (15)
Dy, = F3j + Fy[1 + GFy(1 + MF,,)"* RFy; — KF3]™* [KF3 —

— GF,(1 - MF,,)” ‘RF3;] (16)
Dy, = FA[1 + GFyp(1 + MFy) * RFf, — KEFp] ™ [GFy(1 +

-+ MF.,)-*MF,, — GF,,] (17)
Ey = — Fyll + MF,, + RF3(1 — KF3) ™ GF,]~* [RFf; +

4+ RF;(1 — KF3) -1 KF;] (18)
E,, = Fy,[1 + MFy, + RF;;(1 — KF5)™ GFy]™ [MFy; +

+ RF5(1 — KF5) ™ GFy;) — Fyy (19)
E,, = Fii + F3[1 + GFo(1 + MF,,) ' RFy; — KF5] 7 [ KFg; —

— GFy(1 + MFy,) ' RF] (20
Ey = F3i[1 + GFy(1 + MF,)™ RFj; — KF3]™ [GFyu(1 +

+ MF ) ~*MFy; — GFy] (21)

In knowledge of the state variables, the other variables can be expressed on
the basis of equations written previously. The relevant relationship will not
be described here.

Summary

A graph theory method will be presented for writing the state equation of a network
consisting of linear two-peles and two-ports. Two-ports and two-poles may also have extreme
parameters, thus the calculation can be applied also for electronic circuits with linear elements.
To write the equations, branches are grouped in six groups to simplify writing of the relation-
ship between voltages and currents of branches in each group.
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