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1. Introduction 

In free disks two kinds of vibration may occur, thickness and radial 
vibration. When the thickness vibrations of piezoelectric disks are applied the 
radial vibrations are considered as undesirable, parasitic vibrations. In many 
cases radial vibrations are used intentionally, e.g. in electromechanical filters, 
low-frequency ultrasonic radiators, etc. Steady-state radial vibrations of disks 
were studied by l\L~sON [1]. 

Piezoelectric disk transducers are used in pulse-measuring and testing 
instruments, imposing detailed analysis of transient processes. 

This paper deals with the distribution of radial stresses in a thin piezo­
ceramic disk in response to an input signal of electrical step function. The front 
planes of the disk are assumed to he coated by metal electrodes and the edges 
are supposed to be free. Internal losses in the piezoelectric material arc neglect­
ed. The analysis is carried out hy solving the wave equation of the disk hy 
Laplace transformation. 

2. Calculation of Laplace-transformed radial stresses 

The equation of motion of the disk in a cylindrical co-ordinate system is 

where U r 

v 

. SUr _ ~ = ~ S
2ur 

Sr r2 v2 St2 
(I) 

is the radial component of elastic displacements, 
the velocity of longitudinal waves in the piezoelectric material. 

* Report of the authors' research at the Institute of Telecommunications and Elec­
tronics, Technical University, Budapest, Hungary, December 1973 to February 1974. 

1* 



4 A. ilIASHONIS 

The Laplace-transformed equation (1) can be written as 

where p -- is the complex variable, 
ur = fUr -- the Laplace transform of radial displacements. 

The solution of Eq. (2) is a Bessel function of imaginary 
called also Bessel hyperbolic or modified function 

Constant A is obtained from the boundary condition 

where Trr - is the radial component of stresses, 
a - the radius of the disk. 

(2) 

argument 

(3) 

(4) 

The relationship between the radial stresses Tm radial displacements Un 

and exciting electric field Ez can be established by means of a piezoelectric 
equation deduced by MASON [1] for disks in cylindrical co-ordinate system. 
For a thin piezoelectric disk, subject to radial vibrations excited by axial 
electric field, this equation can be written in a Laplacc-transformed form as 

Trr = ---=."'---
sII - SI2 

where S11' S12 - elastic constants of the piezoelectric material, and 
e31 - the piezoelectric constant. 

(5) 

The electroded surfaces form equipotential planes parallel to the direction 
of motion of the 'dbration type considered, hence the electric field Ez has been 
chosen as an independent variable. So the elastic constants in Eq. (5) are 
replaced by constants measured at a given constant electric field strength: 

E SE 
S11 = Sll' S12 = 12' 

By substituting the expression of displacements (3) and its derivative in 
(5), and applying the boundary condition (4), A can be determined. Then 
Eq. (3) ,vill be written as 

pa 
S11-

v 

(6) 
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Equ. (6) and its derivative substituted in (5) yield the final expression of 
radial stresses in the piezoelectric disk 

r 

pa r pr )\ a ( pr ) -.10 -. --(1-0').11 -
- - v v r v 
Trr = e31E z . 

pa (pa) (pa) --;- . 10 --;- - (1 - 0') . 11--;-

(7) 

where 0'= -SI2'Sll is the Poisson's ratio. 
Expression (7) permits to calculate the radial component of stresses at 

any point of the thin piezoelectric disk in response of the given exciting electric 
field E z• 

3. Calculation of the inverse Laplace-transformed stress function 

The time dependence of the stresses excited by a step function of electric 
field strength Ez(t) = E . let) and Ez = Ejp \vill be calculated. This requires 
the inverse Laplace transformation of function 

p - . 10 -1- (1-- a) . 11 -
r 

pa ( pa ) ! pa ) 1 
_ V v J . v . 

(8) 

In paper [2] the innrse transformation of (8) was obtained by replacing 
t;,he Bessel function by the asymptotic expressions In(x) ~ eXJ1f 2nx valid for 
high values of arguments. This kind of approximation enables us to calculate 
the form of stresses Trr developed at the beginning of the transient, hut does 
not expose the later history and the oscillation character of the process. This 
will subsequently analysed in detail. 

The inverse Laplace transform of (8) is calculated by means of the 
expansion theorem [3]. 

where JJ(p) and N(p) 
respectively. 

T = lp-IT = ~ M(p,J eP1d 
rr .- rr ..;;;;. i\T'( ) 

k=1"\ Plc 
(9) 

are the numerator and denominator of function (8), 
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Let us specify the poles Pk of function (8). It should be noted that point 
P = 0 is not pole as proved in the following way. At low values of argument the 
Bessel function can be approximated by its power series 

x 2 

Io(x) = 1 + - + ". , 
4 

(10) 

Making use of these expressions, the limit value offunction (8) is obtained, 
when P tends to zero: 

lim Trr = O. 
p-o 

Point p = 0 is seen to be the zero point and not the pole of the function. 
The poles of function (8) are thus given by the roots of the equation 

pa .1
0 

(pa) 
v a 

(1 a)I1 (Pva ) = 0 . (11) 

U sing the relationship 

(12) 

where I n is a first-order Bessel function, we obtain 

(13) 

with jpa;v = .; introduced. The roots ';/i of Eq. (13) determine the poles of 
function (8): 

.' V 
Plc = J~"-' 

a 
k = 1,2, ... (14) 

Expressing separately the numerator JI(Ph) of function (8), with the 
positive values of poles Ph substituted, and by use of (12) 'we get 

According to (13) the second term in square brackets is zero. 
The derivative of denominator N(p) is 

N'(p) = ~N(p) = pa (1 + a). 10 (pa,)' + ('pa ')2 . 11 (pa). 
Sp v v v , , v 
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Substituting the positive values of poles and replacing I by J according 
to (12) we obtain 

To reduce the expression we substitute ~k.J o( ~k) = (1 
ing to (13) 

Substituting the negative values of poles Pk we obtain the same kind of 
expressions 

or 

M(- Pk) 

N'(- Pk) 

M(Pk) 

-N'(Pk) 

M(Pk) 

N'(Pk) 

The expressions obtained for M(Pk) and N'(Pk) are substituted in (9): 

(15) 

Expression (15) is a sum of cosinusoidals \vith frequencies determined by 
roots ~k of the transcendent equation (13). These roots are no integer multiples 
of each other, hence the process described by (15) is a sum of time periodic 
functions of frequencies that are no integer multiples of a basic frequency. 
With the number of k increasing, the amplitudes of cosinusoidals decrease 
because the exciting step function Ez also shows a decaying spectrum I S (w) l "" 
rv liw. Thereby the form of vibration expressed by (15) can be calculated by 
summing some of the first members of the sum. 

4. Numerical calculations 

Eq. (13) has been solved for a Poisson's ratio of a = 0.33 corresponding 
to the piezoelectric ceramic PZT·4 [4]. The first twenty roots ;k of Eq. (13) 
are given in Table l. 

The in definability of the numerator in the case r/ a = 0 prevents the 
direct use of formula (15) for calculating the radial stresses in the centre of the 
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disk. The use of approximation (10) gives the folIo,ving expression of the mid­
disk stress: 

(16) 

Table 1 

k ;k 

2.067299 
2 5.395099 
3 8.545399 
4· 11.73436 
5 14.88586 
6 18.03386 
7 21.17996 
8 24.32492 
9 27.46908 

10 30.61271 
11 33.75597 
12 36.89894 
13 40.04169 
14 43.18427 
15 46.32672 
16 49.46907 
17 52.61131 
18 55.75349 
19 58.89559 
20 62.03767 

The forms of radial stresses calculated by means of formulae (15) and 
(16) are shown in Fig. 1. The constant factor preceding the sign of summation 
was omitted. 

5. Evalnation of results, conclusions 

Eq. (13) is seen to coincide with the known condition of disk resonance 
[1], ,vith p = jw substituted. Hence the frequencies of cosinusoidals in formula 
(15) correspond to the radial eigenfrequencies of the disk. The calculated values 
of roots ~k permit to determine the resonance frequencies of the radial vibration 
mode of the thin disk [1] 

where e - is the material density. 
Fig. 1 shows that the excitation of a piezoelectric disk by a step function 

electric field starts complicated vibrations in it with shapes depending on the 
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Fig. 1. The time function of radial stresses at co-ordinates r/a = 0, r/a = 0.25 and r/a = 0.5 
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radial co-ordinate of the given point. In the centre of the disk (Fig. la) the first 
sharp pulse lags by a/v behind the instant of excitation, that is, by a time 
interval required for the wave to travel from the edge to the centre of the disk. 
At points rja = 0.25 and rla = 0.5 the value of this delay is 0.75a/v, and 0.5a/v, 
respectively. This agrees 'with JACOBSEN'S principle [5] namely that ultrasonic 
waves are produced at those parts of the piezoelectric transducer where the 
product Ez • e31 has a gradient. 

At mid-disk (Fig. la) a short pulse of very large amplitude occurs because 
of the coincidence of waves starting from all round the edges. This phenomenon 
of internal focussing can be utilized for emitting short pulses [2]. When 
moving off the centre (Fig. Ib and c) this pulse becomes wider and its amplitdue 
smaller. 

High frequency oscillation best seen in Fig. la is obtained because 
of the fact that only finite number (twenty) of member have been taken into 
account in the sums of Eqs (15) and (16). It follows from the approximation 
by partial sums, similarly to the GIBBS phenomenon known in connection ,dth 
the Fourier series. From the centre away, convergence of the sum (15) is 
accelerated. 

Due to the relationship between the longitudinal and transversal defor­
mation of materials in a real piezo transducer, the radial stresses produce a 
normal (axial) deformation component in any point which induces thicknesB 
displacements normal to the faces of the disk. The radial component of vi­
brations highly influences the form of the normal displacements for both thin 
and thick disks [2], consequently, normal displacements are also highly 
dependent on the co-ordinates of the considered point. 'With the pulse ex­
citation of the piezoelectric disk no uniformly distributed mechanical dis­
placement independent of the radius can be expected on the disk surface. This 
has to be taken into account e.g. when estahlishing the pulse radiation pattern 
of piezo transducers. 
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Summary 

Solution of wave equation of piezoelectric disk in response of a step function of excit­
ing electric field strength is presented. The time dependence of the radial stresses for several 
radial co-ordinates is calculated. 
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