
THE THEORY OF SENSITIVITY INVARIANTS AND THEIR 
APPLICATION TO OPTIMIZATION OF TOLERANCES AND 

NOISES 

By 

K. GEHER 

Institute of Telecommunication and Electronics, Technical University Budapest 

(Received May 24, 1974) 

Presented by Prof. Dr. I. BARTA 

1. Introduction 

The network characteristic y = y(Xl' ••• Xi, ••• XN) depends upon the 
circuit parameters Xi, where N is the number of parameters. The absolute 
sensitivity of the network characteristic y is 

and its relative sensitivity: 

ay 
Si=-­

aXi 

S~- aln -~S. 
I - a In Xi - Y I • 

The sum of relative sensitivities is known to be invariant, i.e 

Tl 

~ S~ = 11:[ 
i=l 

(I) 

(2) 

(3) 

where n is the number of the dimensional circuit parameters. For non-dimen­
sional transfer functions: 

and for impedances: 
Tl 

~sr-1 ..r;;;;;. i- . 
i=l 

2. Demonstration of the invariants 

(4) 

(5) 

Using the definition Si = ~ Si = 
Y 

ay , Eq. (4) can be written in the 
y aXi 

following form: 
Tl Tl ay 
~XiSi = ~Xi-- = 0 
i=l ;=1 aXi 

(6) 
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and Eq. (5): 

(7) 

Introducing the vectors 

x = [Xl' ••• Xi ••• x,,] 
(8) 

S = [SI' ... Si ... Sn] = grady. 

we obtain for transfer functions 

XS = x grad y = 0 (9) 
and for impedances 

xs = x grad y = y . (10) 

Considering the dimensional circuit parameters as vector x and the 
network characteristic y as scalar-vector function, the level surfaces and the 
gradient vector s can be introduced. Thereby the summed sensithity in­
variants can simply be demonstrated. For non-dimensional transfer functions 
the vectors x and s are perpendicular to each other, for impedances the scalar 
product of x and s gives exactly the network characteristic y, i.e. the im­
pedance. Naturally, the functions obtained by integrating the partial differ­
ential equations (6) and (7) can only be considered as network functions if they 
are bilinear or biquadratic functions of the circuit parameters. In the follo\ving 
the relationships will be shown for the case of resistance net'works with two 
and three variables. 

The transfer function of the circuit shown in Fig. la is 

K = U2 = X z 

U1 Xl -+- Xl 

=y. (ll) 

For Kl < K2 < K3 the level lines are shown in Fig. lb. The value of the 
summed sensitivity invariant is zero. 

The resistance shown in Fig. 2a is 

(12) 

For RI < R2 < R3 the leyel lines are shown in Fig. 2h. The value of the 
summed sensitivity invariant is R, according to Eq. (7). 

The resultant of three parallel-connected resistances (Fig. 3a) is 

XlXZ -+- X2 X 3 + x l X 3 

=y. ( 13) 
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b) 

Fig. 1 

'I Xz 
0--1 0 

RI 

xI 

0) b) 

Fig. 2 

Xl 

X2 

x3 

0) 

Fig. 3a 

b) 

Fig. 3b 



28 K. GEHER 

For RI < R2 the level surfaces are shown in Fig. 3b which demonstrates 
also the relationship between x and s. 

As last illustrations let be given Figs 4a and 4b. Here 

K = U 2 = XIX:? + X 2X 3 

U1 X I X 2 + X I X 3 + X 2X 3 

and the summed sensitivity invariant is zero. 

c· 

-

c) 

Fig. 4a 

Fig.4b 

=Y 

3. Theoretical limitations of optimization 

(14) 

From among the problems of optimum-sensitivity linear networks it is 
interesting to examine the consequences of the summed sensitivity invariance 
when networks of minimum sensitivity are sought for. 
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(i) The minimization of the cost function: 

·with the accessory condition 
11 

YSi=lvI 
t:i 

29 

(15) 

(16) 

is known to be given hy the Lagrange method of the limited extremum problem. 
Here sr is the relative sensitivity, N the number of circuit parameters, M the 
summed sensitivity invariant and n the number of dimensional circuit elements 
occurring in the expression of invariance. 

Thus, our task is to determine the minima 

N 

cP = 2'[(ReSD2 + (ImSj)2] (17) 
i=l 

with the accessory conditions 

11 

2 Re Si -- Re NI = 0 
i=! 

(18) 
11 

Y ImS~ ImM o. 
r:i 

Considering the real and imaginary parts of the relative sensItIvItIes to he 
independent variables, the calculation results at the minimum in: 

Re Si = 0 

ImSj = 0 
(19) 

Re Sr: = RelY! 
I 

n 

ImSr:= ImM 
r 

n 

The minimum value is 

Re 11:12 + Im NJ2. 
CPmin = -------

l1YIi 2 

(20) 
n n 
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The summed sensitivity invariance can be stated to limit the possible 
absolute minimum. From this point, to achieve absolute minimum is con­
ditioned by zero relative sensitivity of the non-dimensional circuit elements 
and validity of the relationship Si = lVIln for the relative sensitivities of the 
dimensional circuit elements. As value of minimum I lH 121n is obtained. 

Our result defines a theoretical limit and hints to the practical diffi­
culties of achieving absolute minimum. Indeed, in case of bilinear relation­
ship, zero relative sensitivity is obtained for circuit element values -Xi = 0 
or Xi = =. If 1kI is real, i.e. Im lvI = 0, then at the absolute minimum the 
sensitivities must also be real. With NI = ° zero values are obtained both for 
the relative sensitivities and the absolute minimum. 

These conditions do not concern, of course, local minima. They do not 
hold, either, if as a further accessory condition, the invariability of network 
function y(p) is stipulated. 

(ii) Let us examine what limits are obtained for the minimization of the 
sum of absolute sensitivity values, with summed sensitivity invariants as 
accessory condition. Accordingly, the minimum of 

N 
q; = ~ [(Re Sj)2 + (Im SI)2]1 /2 

i=1 

with the accessory conditions 

has to be found. 

n 
'" Re 5': -. Re 111 = 0 ..,,;;;;. I 

i=l 

11 

:>' Im Si -i=l 
Im iV! = ° 

(21) 

(22) 

(23) 

At the theoretical minimum, the relative sensitivity of the dimensional 
circuit elements is 

the minimum value heing 

Re Si = Re IIlI 
n 

I S
,. ImAl 

nL i=---
n 

qmin = I M I· 

(24) 

(25) 

The results obtained are simple to illustrate geometrically. Fig. 5a shows 
that the sum of relative sensitivities is invariant. Fig. 5b shows the condition 
of minimum to he that the phase angle of every relative sensitivity equals the 
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Im 

Re 

b) 

Fig . .5 

phase angle of 111 and the relative sensitivities mutually agree. Obviously, the 
value of the sum cannot be lower than the absolute minimum I lH !. Contrary 
to the former case, the absolute minimum value is independent of the number 
n of the dimensional circuit elements. Thus, the sum of the absolute sensitivity 
values cannot be reduced by introducing additional circuit elements (i.e. by 
increasing n). 

(iii) The weighted sum of the squares of absolute values can be written 
in the form 

N N 
(I' = :E k7 : Sj 2 = ~ k7[(Re Sj)2 + (Im 81)2] (26) 

i~l i=l 

where k i is the weighting factor (e.g. variance of the circuit parameter). The 
minimization of the cost function with the invariance as accessory condition 
leads to: 

ReS, 0 

ImSj 0 

ReSj = 
Re 111 

T1 1 
k~ ""--=­

I";;;" k" 
i=l '7 

n<i<N 

1 

ImlH 
ImSi= 

T1 I 
k~ ::5'-

l..-.i kO) 
i~l "7 

the minimum value heing: 

)v! 

(27) 

(28) 
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For k; = 1 the relationships for case (i) come back. In the ·weighted case, 
ho·wever, both the conditions for theoretical minimum and the minimum value 
differ from those in the case , .. ithout weighting. An important consequence of 
this , .. ill be dealt , .. ith in section 4. 

(iv) One of the possible generalizations of what has been said above is by 
examining the cost function 

resulting in: 

N 
rp = 2' [Re Sj)2 + (Im Si)2]mi2, 

;=1 

ReS'i = 0 

ImSi= 0 

ReS~ _ Relit! 
I-

n 

Im Si = ReM 
n 

the minimum value being: 

(29) 

(30) 

(31) 

Substituting m = 1 results in the case considered under (ii), while substituting 
m 2 leads to case (i). At the theoretical minimum the sensitivities of the 
dimensional circuit elements agree and in each case the restriction 

ImSr: 
---' 
ReS! 

holds. 

ImM 

ReM 
(32) 

A further possibility of generalization is by determining the minimum 
of function: 

resulting in: 

N 
rp = .,.!kr[(ReSD2 + (ImSf)2]m/2 

;=1 

ReSi = 0 

1 

ImR'i = 0 

ReM 
ReSi= 

kr ~l 
;=1 kyz 

n<i::;:lV 

(33) 

(34) 
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Im S~ _ Imlvl 1 
I - k,!J 11 1 1 < i ./ n 

I ~_ .:::::" 

i=l k7' 
the minimum value being: 

(35) 

The substitutions ki = 1, m = 2 lead to case (i), k i = 1 and m = 1 to case (ii), 
m = 2 to case (iii) , while the substitution ki = 1 to (29) to (31) dealt ",ith 
above. 

4. Relationship between optimum sensitivity and optimum noise 

The theoretical limitations stated above are not only valid for the 
examination of relative tolerance 

(36) 

but also for the output noise/signal ratio. The output noise/signal ratio of an 
active RC circuit is known to be 

NR 'Sri2 NA . U '1 2 
= (/) = 4kTJ ~_I_il~ -L ~ IS~12 ~ 

I U !!:! J...,;;" P ,'''';;'' I, 'V-I,' 
2 i i = 1 i i = 1 I 2i i'" 

(37) 

where Uz the output noise voltage, 
U 2 the output voltage, 
k = 1.38 . 10-23 WsjKO the Boltzmann constant, 
T absolute temperature, 
ilJ frequency range, 
.LV R number of resistances, 
Pi the power dissipated across the resistance, 
.LV A number of voltage-controlled voltage sources, 
Uzi equivalent noise voltage of voltage-controlled voltage sources, 
U 2i output voltage of voltage-controlled voltage sources. 

Minimizing the output noise/signal ratio according to Eq. (37) requires the 
minimization of cost function of the type: 

(38) 

3 Periodica Polytechnica El. 19/1. 
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The theoretical limitations of this problem have been dealt with in con­
nection "\\'ith case (iii). As to the optimization of sensitivity, in this concern the 
minimization problem of type 

(39) 

dealt "with in (i) is usual. In each case. the theoretical mInImUm is obtained 
"with different relative sensitivities and thus with different values of the 
circuit elements. This is a theoretical confirmation to the empirical fact that in 
case of circuits ,,,ith identical structure the optimization for sensitivity and the 
optimization for noise/signal ratio lead to different results. 
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Summary 

The sensitivities Si of the network characteristic Y = y(x1 •••• Xi ••• xn) for various 
circuit parameters are not independent of each other. Namely, the sum of relative sensitivities 
S~ is invariant. Considering the dimensional circuit parameters as vector x and the network 
characteristic Y as a scalar-vector function, the level surfaces and the gradient vector 5 can 
be introduced. They permit simple demonstration of the summed sensitivity invariants. 

In sensitivity optimization the summed sensitivity invariance means limitation. The 
theoretical limitation can be determined by the Lagrange multiplier method. usual for the 
solution of limited extremum problems. Several cost functions are here distinguished: (i) the 
sum of the squares of absolute values; (ii) the sum of absolute values; (iii) the weighted sum 
of squares of absolute values; (iv) the general case. The results accessible to mathematical 
interpretation give the condition of the existence of minimum and its value. The conditions 
obtained are theoretical limitations and are impossible in real circumstances of practical 
importance. 

Beside statistic dimensioning and worst-case dimensioning of tolerances the chosen 
cost functions occur also in calcul;ting the output noise/signal r~atio of active RC circuits. 
The results obtained prove theoretically that the network which is optimum for sensitivity 
differs from the circuit which is optimum for noise. 
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