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Introduction 

The investigations of different estimation methods on functions have 
become a common problem in the theory of recognizing and learning algo­
rithms. These methods can be classified as parametrical and nonparametrical 
methods. In the case of parametrical-type methods the mathematical form 
of the density function f(x) is supposed to be known (therefore the distribution 
is uniform, normal, exponential). During the training the typical parameters 
(e.g. expected value, variance) are estimated and a possible approximation 
f(x) of the density function is produced, optimum by a goodness criterion. 

There is generally no a priori, or very little information concerning 
the distribution of the obtained samples. The nonparametrical density esti­
mation methods can be used in these cases. The main idea of these methods is: 
the value of a continuous density function at a point is estimated, proportional 
to the number of samples being in a small interval around the point [1, 8, 16, 
21,24]. 

One of the most generally used nonparametrical density estimation 
method is that developed by PARZEN. PARZEN introduced a so-called kernel 
function, by which f(x) (approximating j(x) can be determined at a point 
using the follo"\ving formula [1,8]: 

, I. N
K ['X--X;! 

f(x) = h(iV) ~ h(N) J 
(1) 

where N is the number of the samples, h(N) is the scale distribution, K(.) is 
the kernel function. 

Using certain conditions concerning the kernel function, the estimation 
was proved to be unbiased and consistent. The form of the kernel function in 
some cases was given by WATSON and LEADBETTER [24]. 
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The other very generally used method of the nonparametrical density 
estimation is the so-called k-NN method, that is, the k-th nearest neighbour 
method. Though the method originally was developed for pattern classification, 
it is not very difficult to determine its form for density function estimation. 
LOFTSGAARDEN and QUESENBERRY proved that the estimation was consistent 
[15]. There are some publications containing theorems proofs and concerning 
convergence and asymptotical unbiasedness [3, 6, 7, 11, 14, 18, 23, 25]. In 
spite of its popularity there are very few results concerning choice of suitable k. 
Some authors showed that in empirical methods, k ""'" VN the value gaves suitable 
results [2, 4, 15, 24]. FISCHER pointed out that in multidimensional cases the 
value of optimal k had to depend on the number of dimensions [6]. FUKUNAGA 
calculated analy-tically a form to determine the optimal k [9]. 

In the follo·wing part we shall introduce the main steps of this calcula­
tion, pointing out the consequences of some neglect, collecting the results of 
simulation. 

We collected some published density function methods without describ­
ing them [1, 2, 8, 15, 16, 17, 19, 20, 21, 24]. 

1. The definition of k-NN estimation 

Be (Q, A, P) a probability space and X = Rn the sample space. Let 
Xl' X 2, ••• , X N be a set of N independent and identically distributed random 
vectors (Xi E X, >i' i = 1, ... , N). Suppose that f(x) exists as the density 
function of the sequence of {XJi=l' it is continuous and twice differentiable. 

The k-NN estimate of the density f(X) at point X is formed as follows. 
Let d" be the distance between X and its k-th nearest neighbour, distance 
being measured by any convenient metric d(X, Y). Let S(X) be the region 
about X containing its k-NN: 

S(X) = {Y: d(X, Y) < dd 

and he v(X) the volume of this region: 

v(X)= I' dY. 
six) 

Then the estimation of density f(X) at point Xi: 

k-I 
>i' i, i = 1,2, ... , N . 

N· <:(X;) 

(2) 

(3) 

(4) 

LOFTSGAARDEN and QUESEl'iBERRY showed that if k = k(N) was chosen 
so that k ~ = and k!N ~ 0 as N ~ =, then (4) was an asymptotically un-
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biased and consistent estimation of f(X). The meaning of (4) in the one-di­
mensional case is illustrated in Fig. l. 

It is easy to show that for given Nand n the estimationf(X)is different 
for different values of k. Our main purpose is the optimization ofk = k(N,n,f(X» 
To this aim k is optimized 'with respect to the mean-square-error criterion: 
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Fig. 1. Illustration of a density estimation 

(5) 

X 

where the expectation is over the sample set X 1,X2, ••• , XN' The integral 
mean-square-error 

I(X) = I' J(x) dX 
x 

Notice that also other criterion can be chosen to optimize k, for example: 

l' (X) = Jf(X) .J(X) dX 
x 

(6) 

("') I, 

Expressions (5) and (6) "will be minimized '\vith respect to (6) that is, the next 
necessary criterion: 

8J(X) = 0 
ok 

8I(X) = 0 
8k 

2. Volume to coverage relation 

Using the k-NN estimator (6) 

(8) 

J(X) = ( k ~ 1 r . E{ v2 ;X) } - 2· k ~ 1 . E { v(~) } . f(X) + J2 (X) 

(9) 
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Thus, expressions for E{ljv2(X)} and E{ljv(X)} are needed in terms of k. 
This is possible by expressing v(X) in. terms of the coverage of S(X). 

Be the probability of the domain of the k nearest neighbour (denoted 
S(X» of the given point Xi: 

u(X)== S f(Y).dY=P(XES(X» (10) 
S(X) 

It is knO'Wll from literature that u(X) has a beta distribution 'with the par­

ameters pep, q), especially p = k and q = N - k + 1 [10]: 

fu(X)= B(~,q) .XP-l.(I-X)Q-l; p, q>O, O<X~l (11) 

in our case 
f\iI 

j,(X)- l'. 
u -(k-l)!.(N 

• U k - l • (1 
k)! 

(12) 

The next step is to express u(X) in terms ofv(X) in order to estimate the ex­
pectation of u(X). 

Assuming f(X) to be continuous and its third derivate is to exist in the 
neighbourhood of X so it can be expanded in Taylor series about X: 

u(X)~ J {f(X) +[ 8~<;) r . (Y - X) + ~ . (Y - X)T . 8~~~) . (Y -X) }dY 

S(X) 

and (13) 

[8 f (X) r = [8 f (X) , 8f(X) 8f(X) ] 
8X _ 8x l 8x2 

, ... , 
8xn 

n X I-vector (14) 

r 82f(X) 82f(X) 82f(X) -, 

8xI 8x18x2 

' ... , 
8xl8xn I 

82f(X) 82f(X) 82f(X) 
82f(X) = 8x28xl 8x~ 

, ... , 
8x28xn 

8X2 

I 82f(X) 82f(X) 82f(X) 

L 8xn8xl 
, 

8xn8x2 

, ... , 
8x~ -' 

It seems that (13) is a matrix-vector equation but for simplicity their notions 
"\\--ill not be distingnished only the superscript T indicates the matrix transpose 
operation. Although there is no condition for the metric, for the sake of sim-
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plicity let us assume a conventional quadratic distance function such as: 

d2(X, y) = (Y -' X)T . A· (Y - X) (15) 

Using the symmetry of the regionS(X), the second term in (13) is zero. 
Also using matrix relations XT . A .~ X = tr(A . X . XT): 

u(X) ~f(X)J dY + ~ ·tr {( I(y -X) ·(Y - Xf .dY) (ari~»)}. (16) 

seX) SeX) 

The first term of (16) is f(X) veX). The integral of the second term can be 
calculated as the covariance matrix of a uniform distribution in an ellipsoidal 
region. The result. can easily be calculated [17] (as. the volume of n-dimen­
sional hypersphere) as: 

I (Y - X). (Y - Xf dY = 1 . r (n + 2) . VI +~ (X)'I A II/n. A-I (17) 
(n + 2)n 2 

SeX) 

where r(.) is the gamma function and 

I 
nl2 dn(V) 

veX) = dX = n . k A • 

(
n + 2) 

SeX) I A !l/,·r -2-, 

(18) 

Using the above equations (16) becomes 

u(X) 9'0 f(X) . veX) + e(X) . v1+2In(x) (19) 

where 

r 2/n (n + 2 J 
eX = ·tr -_. . _ 2 {( A }-I 82J(X)} 
() 2· n· (n + 2) A iI/n aX2 

(20) 

We calculate a relation between u(X) and v(X)but we can not directly express 
veX) except the case n =2. Thefirst term of (16) is agood approximation to 
u(X) and becomes even better as N increases and correspondingly veX) = 
gets smaller. Thus using approximation u(X) ~f(X) . veX) 

1 f(X) 1 e(X) 
veX) 9'0 u(X) T j2ln(x). UI-2/n(X} 

(21) 

We have to remark immediately that in this deduction this is the first neg­
lect whose range of validity must be determined. (21) can be used as first 
approximation and its use simplifies the deduction. 

4 
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3. Determination of the moments of n(X) 

To establish the optimal k, expression, of E{ljv(X)} and E{ljv2(X)} are 
needed. But because Ijv(X) is obtained in terms of u(X) therefore the first 
step is to determine the moments of u(X). 

The distribution of u(X) is known therefore the equation determining 
the moments: 

1 

E{u(X)"<} = 1 . f Uk+,l-l. (1 _ u)N-kdu = F(N + 1) ·F(k + A) 
B(k,N-k+1) F(N + 1 +}.).F(k) 

o 
(22) 

where B(.,.) is the known beta function [5,13,22]: 

B(x ) = F(x). F()). 
,Y F(x + y) , 

B(k N __ k...L 1) = F(k) ·F(N - k + 1) 
, I F(N 1) 

(23) 

Using expression (22) for arbitrary values of the required moments are: 

E { 1 } _ N· (N - 1) 
u2(X) (k - 1). (k 2) 

(24) 

F(N + l).F (k -1 +~) 
E { ul-2~n(x) } - ( 2 ) n 

F N +-; .F(k) 

(25) 

F( n + 1). F (k - 2 + ~) 
E{ 1 }= n 

U
2
-

4
/
n
(X) F (N - 1 + :). F(k) 

(26) 

Although the exact values are given by these expressions in the above 
mentioned form if seems to be hopeless to use the expressions of the expecta­
tions E{ 1jv(X)} and E{ 1jv2(X)} for determining the optimal value of k. The 
greatest difficulty is due to the determination of terms 2/n and 4jn acting 
in the argument of the factorial function. While these are no integer values 
in the case of n > 3 and therefore expressions (25) and (26) cannot be simpli­
fied the value of k(N) analytically expressed cannot be after the derivation 
needed to calculate the optimum because these terms stay in the argument of 
the factorial function. 

To get rid of the above difficulties, FUKUNAGA [9] chose the follo"\Ving 
approximation instead of the exact expression of the moment (22): 

E{(u(~)rl = (k; 1 r (27) 



NEIGHBOUR DENSITY ESTIMATION 119 

It must be mentioned that this approximatiOcn gives 'a good resUlt only asympto,. 
tically for n -+ 00. 

Therefore it can be predicted thvt the formula in course of deduction will 
be right only at higher dimensions. This will he the case. For N,~ kthe 
following approximation [22] is valid: 

T(x) 

T(x+ a) 

T(k-L.A) 
E{u(XY}~(N+IY. I .. 

T(k) 

Unfortunately this is an analytical result from approximation (27). 

4. The optimization of k 

(28) 

(29) 

Our criterion in determining the optimal k is to minimize the functional 
(6). Expressions (27) and (21) quantify (9): 

E {_1_} = f(X). E {_1_} + E{ 1 } . c(X) 'f-2Jn (X) (30) 
v(X) u(X) U l - 2Jn(X) 

E{_I_} j2(X)'E{_I_}+2'E{ 1 }'C(X),P-2In(X) + 
V2(X) u2(X) U 2- 2Jn (X) 

(31) 

Substituting in (9) we obtain 

J(X) = ~ . f(X) + c2(X)f-41n(X). ( ~ ) 4Jn . (32) 

This expression shows that the value of k can indeed be 00 and kiN may 
tend to zero as it is required by asymptotical unbiasedness and consistency 
of estimation (nearest neighbour). Differentiating with respect to k, to mini· 
mize the expression, we obtain 

k (N) = r n .j2+4Jn(x) In:4 . Nn~4 
o L 4 . c2(X) .' 

(33) 

It should be noted that this is not the filial result as only the minimum of 
functional (5) referring to fixed X has been determined. Anyhow it can be 

4* 
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stated that ko(N).,...r· 00, ko(N)jN.,...r 0 and Jo(X).,...r 0 when the dimension 
increases. The optimal ko(N) seems te depend on the dimension of feature 
space and on the basic distribution. c(X) defined in (20) can also be interpreted 
as the measure of the unformity of the underlying distribution. Thus, if c(X) 
is large (i.e. f(X) has a large second derivate), then it changes very rapidly 
in the region about X and therefore a lower value of k should be chosen. This 
is shown by formula (33) as well. 

In order to minimize the functional (6), i.e. the mean-square-error of 
estimation of total function f(X) to be minimum, because of having I(X) 
instead of J(X), the appropriate terms must be integrated in expression (33): 

k (N) = [n. S f2+4/n(X)dX ]n:4 . Nn~4 
o 4 . S c2(X)dX 

(34) 

More exactly: 

k (N) =[ n· (n + 2)2.7[2. S J2(X)dX ]n:4 . Nn~4 . 
o r4ln (n : 2) . Sf-4In(X) . tr2{[~J-l 82J(X)} dX 

2 i A jl/n 8X2 (35) , I I 

This expression yields the expression of optimal k ,\ith the given neglects' 
FUKUNAGA [9] has shovrll that expression (35) is invariant using linear 

transformation. This is important, because the values of optimal k can be 
generalized to a certain extent in the case of a given distribution. If a density 
function f(X) is given, which has expected value M and covariance matrix K, 
then on the basis of the system of eigenvalues - eigenvectors of K, it is always 
possible to give a transformation, making K a diagonal or identity matrix. 
While during the transformation the functionals J(X) and I(X) are multiplied 
by a constant, this is not enough for their minimum to change, i.e. the ex­
pression of optimal ko(.N) remains unchanged both in the original space and 
in the transformed space: 

(36) 

where subscripts refer to individual spaces. 

5. The case of Gaussian distribution 

As an example let us consider random variables {Xi}i::b deriving from 
population of normal, Gaussian distribution, having expected value M x and 
covariance matrix Kx. Performing the linear transformation, which makes K 
diagonal, in the new space Z; A z \\ill equal I (identity matrix) and Kz will 
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equal I, where A z comes from (15) and Kz is the new covariance matrix. 
Taking all these into consideration, replacing them in (35) and performing 
the integrations, we obtain: 

[ 
. (n-L2) (n 2)2-'-!:!.rn n· (n + 2)2. F-4tn --~- . --?- . 2 n+4 _4_ 

1. (7\/) _ ,~~. Nn+4 
::'01\, - • 

n2 
- 6n + 16 

(37) 

Seemingly, this expression is made up of two well separable parts. Therefore 
it can be ,\\-"I"itten in the following form: 

4 

koUV) = f(n) . Nn+4 (38) 

The first factor of the expression depends on the dimension of feature space, 
only the second factor depends on the sample number as well. As a matter 
of curiosity, the function f(n) has been tabulated by a computer. The result 
is shown in Fig. 2. 

It can be ascertained on the basis of Fig. 2. and expression (37) that the 
result is not valid in the case of dimensions 1 and 2, further there are large 
neglects up to dimension 7. too. The second factor of expression (38) increases 
monotonically, when the dimension increases, therefore function f(n) must 
also increase monotonically, so that ko(N) has to be increased monotonically. 
But on the basis of Fig. 2, f(n) seems to have a maximum, hence, there exists 
an optimal dimension (on the basis of the results this would be 6), but this is 
physically impossible. Without making any postulate on the dimension at the 
beginning of the demonstration, it is absolutely unlinely that certain physical 

1," r-r----------------------, 
r 

t Y
n 

t. 2+- n+" 
f.n= n'(.1+2lr

n (~H~) 2 
Iv rl-6n+i6 

1,2 

cs I 
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0.2 
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Fig. 2. Function fen) 
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Table 1 

The optimal value of ko(N) in case of multidimensional Gaussian 
distribution calculated by expression (37) 

n=3 n=5 n=7 I n = 10 n = 12 
1.'{ sample size 

number of dimensions 

100 6.28 7.10 5.17 3.16 2.40 

200 9.33 9.66 6.66 3.86 2.86 

300 11.77 11.57 7.72 4.33 3.16 

400 13.87 13.15 8.57 4.70 3.40 

500 15.75 14.52 9.29 5.01 3.59 

600 17.48 15.74 9.93 5.28 3.76 

700 19.09 16.86 10.50 5.52 3.90 

800 20.61 17.89 11.03 5.73 4.04 

900 22.04 18.85 11.51 5.93 4.16 

1000 23.41 19.75 11.96 6.11 4.27 

1100 24.72 20.61 12.38 6.27 4.38 

1200 25.98 21.42 12.78 6.43 4.47 

1300 27.19 22.20 13.16 6.58 4.56 

1400 28.37 22.94 13.52 6.72 4.65 

1500 29.51 23.66 13.86 6.86 4.73 

1600 30.62 24.34 14.19 6.98 4.80 

1700 31.70 25.00 14.50 7.10 4.38 

1800 32.75 25.65 14.80 7.22 4.95 

1900 33.78 26.27 15.10 7.34 5.02 

2000 34.78 26.88 15.39 7.44 5.08 

processes take place more optimally in a space with, let us say, dimonsion 6, 
than in one with for example dimension 3. This also shows that the mathe­
matical neglects strongly restrict the validity of the result. On Fig. 2 the ex­
pectable form of the curve f(n) is traced '\vith dotted line in case of lower 
dimensions. It should be noted, however, that since in case of n = 2 the recip­
rocals of the moments should be replaced into expressions (25) and (26) (i.e. 
instead of l/u(X) we put u(X) '\vith their appropriate power), therefore it 
seems very likely that during the mathematical demonstration it is suitable 
to separate the :cases of low and high dimensions. 

W-e also note in the mentioned article of FlJKlJI'OAGA. [9] there is a wrong 
value among th,e presented values of the function f(n) as well. 

We calculated the optimal values of ko for some cases '\\ith the help of 
the obtained result and we presented them in tabulated form. Ignoring the 
neglects, it is very likely that if the dimension is high and the sample size is 
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the same, then a smaller value of ko should be chosen. This is seen in the pre­
sented table as well. 

However, we can make a few remarks of general validity, according to 
the above table. Fiist of all, ko results in decimal numbers too, but there 
integral parts have to be taken into account. The values of ko in the table 
are accurate in order to point out the dependence on the number of the samples. 
Increasing the number of samples, the value of ko is seen to change very slowly. 
On the other part, the change will decrease by increasing the number of di­
mension, the measure of this change is so large that it has to be taken into 
account. It cannot be settled if it is a right conclusion or consequence of neg­
lects. Using computer simulation further results can be obtained. 

Further interesting conclusion is if n = 3 (the -number of dimensions), 
the optimal value of ko is less then ko = VN suggested in the literature, but 
the difference is small. In connection 'with Fig. 2 it has been remarked if the 
number of dimension is less then a higher value can be expected, this observa­
tion supports the use of approximation VN or a higher value. 

6. Results of simulations 

It is practical to make computer simulations for controlling the theoreti­
cal results. An one dimensional, standard Gaussian random number series 
were generated by computer then the unknown density function "was estimated 
by the k-nearest neighbour method. The underlying distribution was known 
so we could calculate the mean-square-error of the estimation. For the cal­
culation a computer program was written in ALGOL-60 language, run on a 
computer type RAZDAN-3 of the University Computing Centre. 

The expected value and variance of the underlying distribution was zero 
and unit, respectively. These obliga.tions do not change the generality of the 
results. We made several runs ,vith distinct values of k and N (sample size). 
The results are shown in Fig. 3, the mean-square-error versus k (number of 
neighbours), the sample size is parameter. It is very important and interesting 
that the curves have minima - as we have expected versus k. Increasing 
N the sharpness of the minima decreases but exists! It is easy to calculate 
that the optimal value of k concerning the minima is higher than the value to 
be calculated from the approximation V N ! 

In Fig. 4, the absolute error of the estimation is shown. The trend of 
the curves is similar to that mentioned above. 

We have to note that if the variance of the underlying distribution is 
not unity the mean-square-error ,,,ill be higher or lower (either a < 1 or 
a > 1), but the minimum is at the same region. This is very interesting because 
the simulation results can beused in the case of optional N(m, a) distribution 
after a linear transformation, as mentioned before. 
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Fig. 3. The mean"square-error of the estimation, the underlying distribution was standard 
Gaussian with parameters m = 0 and u= 1. Parameter the sample size N 
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Fig. 4. The absolute error of the estimation, the underlying distribution was standard Gaus­
sian with parameters m = 0 and u = 1. Parameter is the sample size N 

Summary 

After a short survey the density estimation, declaration of the k-nearest neighbour 
method is given. The aim of this paper is to give a possible optimum choiceofk according to 
FUKUNAGA and to point out the consequences of its neglect and to ,collect the results. After 
the theoretical treatment, simulation results are presented. 
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