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Introduction

A mathematical description of processes helps to reveal the optimum
conditions of their behaviour. A successful solution is largely dependent on
the accuracy of the mathematical description available to engineers. In recent
years, the experimental statistical methods of mathematical simulation have
increased in popularity. The experimental designs which determine the research
programs are based on different criteria of optimality. Orthogonal designs
optimal in terms of simplicity of data reduction and rotatable designs that
yield the same information at equal distances from the center are widely
used.

For these de51gns. however, the optimality criterion is not sufflc1ent5"
general. Furthermore, though these designs are composnlonal their separate
units have a rigid structure.

Therefore it is desirable to dev elop an 1dent1flcat10n method that would
be sequential and based on designs that lead to minimization of the generahzed
dispersion or the dissipation ellipsoid volume for estimates of model coefficients.

The expansion of methods of experimental design on dynamic problems
has a great interest. The problem is concluded in synthesis of such an input
testing sequence that provides the best estlmatlons of coefficients of pulse
transient response decompmltlon T :

An extrapolation problem arises when the 1nvest1gator uses Tregression
equation for predicting an ‘objective function at a point (field) situated out of
variation field, expenmental extrapolatlon de=1gn must provide minimum of
prediction variance. (% T 0@ cm ey TR

Continuous designs that satlsfy the above criteria will be considered
below. Nowadays there are no algorithmical methods of synthems of ¢ su:mlar
designs except for the simplest cases. :

* On the basis of lecture read at the scxentxflc session held on the 25th anniversary of
Electrical Faculty of Technical University of Budapest:
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The most efficient way of this problem sclation is adoption: of special
calculating recurrent procedures permitting to synthesize desirable computer
aided designs.

Algerithms

Suppose the functional form of the regression equation to be known

K
n= 3 0;fi(x) (1)
=
where fi;(x) are known functions of the input parameters x,, x,, . . ., ¥m.

The vector x = (X, %y, . . . ;) is a vector of the input parameters.
Random disturbances result in the magnitude observed by the experi-
menter

yi =7 + E; (2)

assumed to be distributed by the normal law with the mathematical expee-
tation M{y;} = 7; and the dispersion ¢

The experimenter has to find the estimates of the coefficients in Eq. (1).

Introducing the notation: = (fi> fio» - - - fix) @ vector that determines
the set of the functions fi; in the i-th observation; 0= (@1, @A‘Z, ee é1<) is
a k-dimensional vector of the desired estimates; yT = {¥1: ¥os » - . ¥n) Is an
N-dimensional vector of observations.

The regression equation coefficient estimates are determined from the
set of normal equations:

GO =FTFO=FTy. (3)
The solution to thls set is
6 — (FTF)FTy — CFTy — G-1¥T . 4)
For.a D,-optimum;design F, relationship .(4) is valid:
et [FIF]t = mindet [FF]-L, 6)

i.'e. the covariant matrix determinant minimal. The dispersion of the: esti-
mated regression function prediction is:

d, = max. [ () 651 (] = . (6)

-
=
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Also, the D-optimum designs have been shown to be invariant to changes in
the scale of independent variables.
The quantity

can be taken as the index of the difference between the design in question and
the D-optimum design. The number of experimental points in the design

h< K(K+1 ’

2
Approximate or continuous D-optimum plans are completely determined by
setting a finite number of the points in the design space -and observation
repetition frequency in these points. Thus they are not designs with a fixed
number of observations. The number of observations is selected by the ex-
perimenter regardless .of the design structure so that the observation repeti-
tion: frequency:be as: ckxee as pnsclble tor the value speelfmd by the D- Optl-
mum design. ¥ : : 5008 ~

Certain metho&s 87 ,calculated B—optlmum declgn;, in partlcular cases
were described in [2]. A more general approach is to be presented with a con-
tinuous design of an experiment [1]. This méthod locates the point of the maxi-
mum information on the process at each stage of continuous experimentation
with the calculations by recurrent formulae [1]

s c<\>f*<x*) — mias f(x) cmf( 0 ®)

<X

cze(\’ 1) = & ﬂ l «*(X)fﬁ*( ) S

where g.;is an element of the mforma’uon matrix G. The formulae were’ obtain-
ed with the assumption that measurement effectiveness is constant throughout
the region X and equal to 1.

The calculation by formulae (8) permit to select at each stage a point xj
whieh minimizes the &eternnnant of ‘the'covariant matrix €. Seleeting an arbi-
trary initial design and using recurrent formulae (8) to calculate the importance
of the initial non-optimality will shrink the increasing N ‘and for N — cc
the design obtained will be close enough ‘te a:D- -optimal - ‘one.

- Formulae (8) are seen not to include the sutput value y or the: parameters
of its distributions therefore the des1gn can be calculated before the experi-
ment. These formulae impose no constraints on the shape of the &ecwn domam
X-or the'decomposition function Vector f. BEORTLAn o
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The algorithms of making D-optimal plans with continuous, .design
consist in: . : S .
1. The determination of the points where a D- optlmal de51gn is com-
centrated:
a) an arbitrary non- deo‘enerate initial design is selected with the in-
formational matrix G,.
b) Eq. (8) yields the point x such that quadratlc form f'(x) G-}(N) f(x)
has a global maximum over the area X. : AT e
“A search for a quadratic form global maximum is based on’repetitive
application of the local search from random points of the space X and subse-
quent selection of the maximum value from among the local maxima.
¢) the global maximum point is included in the design and the matrix G
is corrected in the following way:
-d):sthe calculations by recurrent formulae (8) are continued to completion
of the given number of cycles. At the first stage a number of cycles was prac-
tically-found, two to three times the maximal number of the points where the
D-optimal design is concentrated. el
2. Determination of the observation repetition frequences in each point:
a) the initial information matrix is formed on the basis of a design

which includes once every point that was determined at the first stage, :
b) Eq. (8) yields the point x, where the quadratic form

f(x) 6-Y(N) f(x)

is greater than in other points of the design. If this has equal values in several
points of the design, any one may be selected;

¢) the matrix G is corrected by Eq. (8);

d) the calculations by b) and c¢) are continued until the stoppage rule
is satisfied. The stoppage occurs after the quantity § reaches a specified value.
The observation repetition frequency in the [-th point of the design is deter-
mined by the formula

: _nt+1
§= — ®)
where y; — is the number of times the global maximum hits the I-th point
of the de51gn, e

n — is the numbet of cycles by recurrent formula (8);
h — is the number of points in the initial design.

By means of the algorithm above a computer compiled a catalog of
D-optlmal designs. : ,

. By this time, several papers have appeared on the dvnamlc object
dentlflcatlon according to experimental data as regards restoring pulse tran_
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sient response ordinates.with decomposmv coefficients:in the system -of: ba51s

functions (by Lager, Chebyshev). : stz ah SHETE
The regression model::of hnear dynam_lc object whlch connects: mput

and output values in discrete moments can be written by the follmvmo' for-

mula:: P
I\ I—

y [ndit] = S@ 2 f] [mde] x [(n——m)_lt] At + E[n_Jt] (10)

where fi{mAt] — values of some ba~1c fuuctlona j=0,..., K, l=—" where

T, — time of object memory, E[ndt] — ¥alue of an uncorrelated error which
occurs in the output of a dynamic objeet.

Assume that
M{E[ndt]} = 0

and

. - 5L i=]
M{E[mt]zwf]} = {O,V =
The problem of identification comes to the determination of @; on'the
basic results obtained by observing input and output. Special test signals
should be given if possible. In contradistinction to the case of pseudorandom
binary signals (M-sequence) now a sequence will be synthesized providing
us with a D-optimal criterion in regard to estimation of @;. Such a sequence
can be synthesized on the base of algorithm (8). As distinct from the model (1)
the model (10) has values of the input signal in discrete moments — x[n4t],
x[(n—1)4e], . ... x[(rn—I + 1)4t], functions fj(£) at estimated coefficients
are linear combinations of values of the input signal with some weighing
coefficients.
In many experimental investigations it is necessary to estimate values
of object or process output in these points of input parameter space where a
direct measurement is impossible or difficult to.realize in practice. A successful
solution of the extrapolation problem is possible if the form of the regression
equation doesn’t change while passing from the field of investigation to field
of input parameters. In the point x5 of extrapolation a variance of prediction
according to regression equation is the following:

where x, doesn’t coincide with design space X. Optimal continuous extrapola-
tion design providing us the minimum of predictive variance of an objective
function in the given point can be synthealzed on the base of the algorithm (8)

£ (%,) €(N) £y (x,0) = max. £7 (x) C(V) £(x,) 1z
<X
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where x, belongs to the field Z which does not coincide with the design space X
in general case. Experiments proved that in most-cases spectra of extrapolation
designs perfectly coincide with spectra of D-optimal designs for corresponding
forms of regression equation. This enables us to use the spectra of correspond-
ing D-optimal designs as an initial approach to construct extrapolation designs.

Examples
1. For a polynomial of the form
7= 04+ Ox, + Oy, + Ouat + 019712, + O ‘ (13)

the algorithm for the construction of D-optimum designs was used in the case
of an arbitrary design domain X with the appropriate change of that part of
the program which organizes a search at the boundary of the domain.

For the polynomial in Eq. (13) a design was found for a randomly selected
.domain: The .design is concentrated in six points located as shown in Fig. 1.
The observation repetition frequency.is the same in all points and equal to

T
‘C:#%—: i=1, 2,34.5,6.

2. In accordance w1th (8) D- optlmal sequence was S} ntnetlzed to identify
; hnear .objects that have pulse transient response appraumaged by expression

o= FO dimdr. B
EREEE CA=1 : e o T

© [-6,265; 081} 42,

(75; 04)

(-01891" 011)
-1

1 (0,93,‘0,55}
{01, 07) ou T

Fzg 1
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Values x[n—1]. x[n—2], x[n—3], x[n—4] were taken as factors of design.
Spectrum of the D-optimal design for —1 < x[n—i] < 1 and the frequency
of observations estimated by the number of cycles N = 136 are given in Table 1.

Table 1
Spectrum of D-optimal design ﬂlr Ffé,quencies
2n-1] | =n-2] | sfp=d7 T an-4] |
R -1 || 1 | =1 | 0.31618
-1 =1 1 +1 0.08608
+1 l —1 | =T 0.308
21 | -1 41 | 0.294
xoptm
+1
0 t
-1
Fig. 2

An inital part of D-optimal test signal correcpandlng to the first 79
moments is shown in Fig. 2.

3. Continuous optimal e\trapolatlon decwn the spectrum of which
is obtained in points

I(x = —1), II(x = 0), ITI(x = +1)

for polynomial model

y =0, + Ox + O,x° (15)

and admissible range of variable quantities —1 < x < 1 according to the
algorithm (12). Fig. 3 shows the dependence of the frequencies-of experiments
on the depth of extrapolation' x, in these points. An advantage of optimal
extrapolation design over the continuous D-optimal design as regards predic-
tive variance of an objective function in the point x, is given'in Fig. 4. (d; —
predictive variance calculated according to the ‘D-optimal ‘design, d, — pre-
dictive variance calculated according to ‘the.extrapolation design).
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Conclusion

-Thus it is seen to be possible to synthetize enough complex experimental
computer aided design satisfying différent optimal ‘criteria. S

An investigator can calculate the design before doing the e\penment 1f
some algorithms .and programs for .different districts of data change and
different kinds of models.are available and thus raise the effxclencx of solution
of standard. problems: identification -and. extrapolation. g
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Summary

The problem of synthesis of continuous experimental computer aided designs that
consists in calculation of design spectrum and frequencies of experiment repetition in the
spectrum points has been formulated.

Computational algorithms for synthesis of design in the problem of static and dynamic
identification and extrapolation have been constructed. Some examples of synthesized designs
for different optimal criteria and some additional conditions such as a form of model and
a field of variable change have been given.
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