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Introduction 

A mathematical description of processes helps to reveal the optimum 
conditions of their behaviour. A successful solution is largely dependent on 
the accuracy of the mathematical description available to engineers. In recent 
years, the experimental statistical methods of mathematical simulation ha-ve 
increased in popularity. The experimental designs which determine the research 
programs are based on different criteria of optimality. Orthogonal designs 
optimal in terms of simplicity of data reduction and rotatable designs that 
yield the same information at equal distances from the center are ,videly 
used. 

For -these designs, however, the optimality criterion is not sufficiently 
general. Furthermore, though these designs are compositional, their separate 
units have a rigid structure. 

Therefore it is desirable to de-velop an identification method that would 
be sequential and based on designs that lead to minimization of the generalized 
dispersion or the dissipation ellipsoid volume for estimates of model coefficients. 

The expansion of methods of experimental design on dynamic problems 
has a great interest. The problem is conclud'edin synthesis of such an input 
testing sequence that provides the best estimations of coefficients of pulse 
transient response decomposition. --

An extrapolation problem arises when the investigator uses regression 
equation for predicting an objective function at a, :point {field) situated o11t of 
variation field, experimental extrapolation design must provide minimum of 
prediction variance. . .-; 

Continuous designs that satisfy the above criteria ",ill be considered 
-below. Nowadays there are nQ algorithmical methods of:sytithesis of ' similar 
::lesigns except for the simplest cases. 

* On the basis of lecture read at the sCientific se~·sion held on the 25th anniversary of 
Electrical Faculty of Technical University of Budapest. 
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The most efficient way of this problem solution is adoption of special 
calculating recurrent procedures permitting to synthesize desirable computer 
aided designs. 

Algorithms 

Suppose the functional form of the regression equation to be kno'wn 

where fij(x) are known functions of the input parameters xl' X2' ... , Xm • 

The vector x = (Xl' X 2' ••• xm) is a vector of the input parameters. 

(1) 

Random disturbances result in the magnitude observed by the experi­
menter 

(2) 

assumed to be distributed by the normal law ;vith the mathematical expec­
tation lW{Yi} = TJi and the dispersion 02. 

The experimenter has to find the estimates of the coefficients in Eq. (1). 
Introducing the notation: fT = (fil,fi2' .. . fiK) a vector that determines 

the set of the functions fij in the i-th observation; e = (el' 62, ••• e K) is 
a k-dimensional vector of the desired estimates; yT = (Y1' Y2' .•. YN) is an 
N-dimensional vector of observations. 

The regression equation coefficient estimates are determined from the 
set of normal equations: 

(3) 

The solution to this set is 

(4) 

For.a D-optimumdesign F. relationship (4) is valid: 

(5) 

i. e. thecovariant matrixdete:Fminant .minimal. The dispersion Qf the esti­
m ated regression function prediction is: 

d* = max. [F (x) G;l f (x)] = ~ . 
;- N 

(6) 
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Also, the D-optimum designs have been shown to be invariant to changes in 
the scale of independent variables. 

The quantity 

(7) 

can be taken as the index of the difference between the design in question and 
the D-optimum design. The number of experimental points in the design 

h::;;:K(K+1). 
2 

Approximate or continuous D-optimum plans are completely determined by 
setting a finite number of the points in the design space and observation 
repetition frequency in these points. Thus they are not designs with a fixed 
number of observations. The number of observations is selected by the ex­
perimenter regardless of the design structure. so that the observation repeti­
tion freqriencybe as close as possible to! the'value specified ,by the D-opti­
mum ,design; 

Certain methods to calcul'ated D-OptimriID: deSigrisin particular cases 
were described in [2]. A more general approach is to be presented v .. ith a con­
tinuous design of an experiment [1]. This method locates the point of the maxi­
mum information on the process at each stage of continuous experimentation 
'v..ith the calculations hy recurrent formulae Ll]: 

f:(x*) C(lV):f*(xJ = max f(x) C(lV) f(x) 
'xEX 

(8) 

where g~f3 is an element of the information matrix G. The fOl'mulae were obtain­
ed with the assumption that measurement effectiveness is constant throughout 
the region X and equal to 1. 

The calculation by formulae (8) permit to select at each stage a point xl 
which minimizes the determinant of'thei covaria:nf i ma1:rix(!;, Selecting an Rl'bi­
trary initial design and using recurrent formulae (8) to calculate the importance 
of the initial non-opumality' will shrink the increasmg; lV 'and forN -+ 00 

the design obtained will; ne dose enough to a;D~optimial!()lie; 
'F&rmulde fS) 'are seen not to include the 6utplJ:ivalue .r or the.pallimeters 
of its distributions therefore the design can be calculated before the experi­
ment. These 'formulae impose; no constra:intson thesha:pe or:the design domain 
X or thetiecomposition function vector f; 
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The algorithms of making D-optimal plans with continuous design 
consist in: 

1. The determination of the points where a D-optimal design is con­
centrated: 

a) an arbitrary non-degenerate initial design is selected 'with the in­
formational matrix G J' 

b) Eq. (8) yields the point x such that quadratic form fT(x) G-l(N) f(x) 
has a global maximum ("rer the area X; 

A search for a quadratic form global maximum is based on repetitive 
application of the local search from random points of the space X and subse­
quent selection of the maximum yalue from among the local maxima. 

c) the global maximum point is included in the design and the matrix G 
is corrected in the following way; 

d) the calculations by recurrent formulae (8) are continued to completion 
of the 'given number of cycles. At the first stage a number of cycles was prac­
tically.found, two to three times the maximal number of the points where the 
D-optimal design is concentrated. 

2. Determination of the observation repetition frequences in each point: 
a) the initial information matrix is formed on the basis of a design 

which includes once every point that was determined at the first stage; 
b) Eq. (8) yields the point x. where the quadratic form 

is greater than in other points of the design. If this has equal values in several 
points of the design, anyone may be selected; 

c) the matrix G is corrected by Eq. (8); 
d) the calculations by b) and c) are continued until the stoppage rule 

is satisfied. The stoppage occurs after the quantity 0 reaches a specified value. 
The observation repetition frequency in the loth point of the design is deter­
mined by the formula 

Yl + 1 ~l = -'--'---'---
n+h 

(9) 

where Yl - is the numher of times the global maximum hits the loth point 
of the design; 

n - is the number of cycles by recurrent formula (8); 
h - is the number of points in the initial design. 

By means of the algorithm above a computer compiled a .catalog of 
D-optimal designs. 

By this time, several papers have appeared on the dynamic object 
dentification according to experimental data as regards restoring pulse tran 
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sient response ordinates with decomposing coefficients jn the system of basis 
functions (by Lager, Chebyshe:v). 

The regression model<of linear dynamic object which. connects input 
and output :values in discrete moments can be written by the following. for­
mula: 

[( {-I 

Y [TlJt] = 2 ej ~ fj [m.dt] x [(n - m) .dt].dt + E[nLlt] (10) 
;=0 m=O 

where fJm.1t] 
T 

values of some basic functions, j = 0, ... , K, 1 = Ll; where 

Tn - time of object memory, E[n.::1t] -value of an uncorrelated error which 
occurs in the output of a dynamic object. 

Assume that 
M{E[nLlt]} = 0 

and 

M{E[i.::1t]E(j1tH = i=j 
i 7- j. 

The problem of identification comes to the determination of e j on the 
basic results obtaiued by observiug inpnt and output. Special test signals 
should be given if possible. In contradistinction to the case of pseudorandom 
binary signals (M-sequence) now a sequence will be synthesized providing 
us with a D-optimal criterion in regard to estimation of e j. Such a sequenc e 
can be synthesized on the base of algorithm (8). As distinct from the model (1) 
the model (10) has values of the input signal in discrete moments - x[n.::1t] , 
x[(n-I)Llt], ... , x[(n-l + I)Llt], functions flx) at estimated coefficients 
are linear combinations of values of the input signal with some weighing 
coefficients. 

In many experimental investigations it is necessary to estimate values 
of object or process output in these points of input parameter space where a 
direct measurement is impossible or difficult to realize in practice. A successful 
solution of the extrapolation problem is possible if the form of the regression 
equation doesn't change while passing from the field of investigation to field 
of input parameters. In the point x~ of extrapolationca variance of prediction 
according to regression equation is the following: 

(ll) 

where xe doesn't coincide with design space X. Op.timal continuous extrapola­
tion design providing:us the minimum of predictive variance of an objective 
function in the given point can besynt!Iesized on the base of the algorithm (8) . 

. . 
(I2) 
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where Xe belongs to the field Z which does not coincide "\\-ith the design space X 
in general case. Experiments proved that in most cases spectra of extrapolation 
designs perfectly coincide with spectra of D-optimal designs for corresponding 
forms of regression equation. This enables us to use the spectra of correspond­
ing D-optimaI designs as an initial approach to construct extrapolation designs. 

Examples 

1. For a polynomial of the form 

(13) 

the algorithm for the construction of D-optimum designs was used in the case 
of an arbitrary design domain X "\\-ith the appropriate change of that part of 
the program which organizes a search at the boundary of the domain. 

For the polynomial in Eq. (13) a design was found for a randomly selected 
domain., The design ,is concentrated in six points located a!; shown in Fig. 1. 
The ohservationrepetition frequency, is the same in all points and equal to 

;.2. In accordance, w;ith (&) D-optimal sequence was synthetized to identify 
1inear~hjects ,that have pulse transient response approximatedhy expression 

3 

w(r) = e'-T YBi ri',: -<=1 
LIt = Llr = 1. 

--~+-""''''''----'''''~~'''''''''''''''r-~~X1 
1 

1 .. < 

Fig. 1 

(14) 
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Values x[n-l], x[n-2], x[n-3], x[n-4] were taken as factors of design. 
Spectrum of the D-optimal design for -1 .;;;;; x[ n - i] <:;: 1 and the frequency 
of observations estimated by the number of cycles N = 136 are given in Table 1. 

Table 1 

Spectrum of D-optimal design J Frequencies 

",[n-I] %[n;-:21 I "'["-',3't ",[;''::4] 
I 

i 

.-:..1 -1 I 
~1 -:'-1 0.31618 I 

~l ~"1 +1 '-:"1 i 0.0808 I 
+1 -;-1 -1 ":::1 ,~~, "~'~~" i ~ 0.308 
+1 -1 -1 -:'-1 I 0.294 

Fig. 2 

An inital part of D-optimal test signal correspdnding to the first 79 
moments is shown in Fil/=. 2~ 

3. Continuous optimal extrapolation design the spectrum of which 
is obtained in points 

I(x = -1), II(:,; = 0), III(x = +1) 

for polynomial model 

(15) 

and admissible range of variable quantities -1 < x < 1 according to the 
algorithm (l2). Fig. 3 shows the dependence of the frequencies ofe:ll..-periments 
on the depth of extrapolation'xe in' these points. An advantage of optimal 
extrapolation design over the continuous D-'optimal' design as regards predic­
tive variance of an .objective function in the point Xe is given in: Fig~4. (do -

pre dictive varianC,e calculated according to the D-optimal design, de '-- pre­
dictive variance calculated according 1:0 'the : extrapolation design). 
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Conclusion 

Thus it is seen to be possible to synthetize enough complex experimental 
computer aided design satisfying different optimal criteria. 

An inyestigator.cancalculate the. design before. doing. the experiment. if 
some algorithms and programs for. different . districts of. data change and 
different kinds of models are available and thus raise the efficienc~- of solution 
of standard problems: identification and extrapolation. 
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Summary 

The problem of synthesis of continuous experimental computer aided designs that 
consists in calculation of design spectrum and frequencies of experiment repetition in the 
spectrum points has been formulated. 

Computational algorithms for synthesis of design in the problem of static and dynamic 
identification and extrapolation have been constructed. Some examples of synthesized designs 
for different optimal criteria and some additional conditions such as a form of model and 
a field of variable change have been given. 
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