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Introdnction 

Maxwell's equations are known to be covariant with respect to Lorentz's 
transformation. Formally, Maxwell's equations can be described by four­
dimensional matrices formed of the respective quantities and by the operations 
performed with these. This four dimensional presentation of Maxwell's equa­
tions has been described in the literature. 

In certain eases it is usual to complete Maxwell's equations by the 
fictitious magnetic charge and current. The first part of the present paper gi,\'es 
the four-dimension form of Maxwell's equations for this case. 

In the further parts of the paper the solution of four-dimensional Max­
well's equations by means of four-dimensional potentials is discussed. Referen­
ces [l], [2] present only the four-dimensional solution by means of the electric 
scalar and vector potential for the case of known electric charge and current 
density. 

If charge and current density are unknown, and there is also a magnetic 
charge and current density, there exists no published four-dimension eleCTric 
solution, or one based on the four-dimensional magnetic potentials. 

The present paper gives a solution for this general case; 
In the knowledge of the relevant four-dimension potential, changing over 

to co-ordinate systems performing uniform, rectilinear movement relative 
to each other, Lorentz's transformation has tobe applied on the four-dimen­
sional potential vector. 

In the case of motionalinduction problems, this can be used advanta­
geously. Looking for the solution in one of the co-ordinate systems in the form 
of TM or TE mode, the electric or magnetic four-dimension potential should 
be transformed into the other co-ordinate system. If the t\\-O co-ordinate sy~­
tems are fixed to field parts \\ith different material constants, the boundary 
condition can be written for the potentials. 

The method was practically applied for determinil:g the electromagnetic 
field in linear induction motors. Because of space shortage hO'weve:r, the 
example cannot be published. 

4" 
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The four-dimension form of Ma:~well's equation 

Introducing a new co-ordinate, time, as the fourth dimension, Maxwell's 
equations can be written in four-dimension form. 

First let us recapitulate the three-dimension form of lVIaxwell's equations 
Completed by magnetic charge and current density. 

rot H =JE + 8~ (1) 

8B 
rot E = - pI - - (2) 

8t 

div D = QE (3) 

div B = e'Yl (4) 

(the inserted electric and magnetic field strength values Eb, Hb, being zero). 
Here: 
e E and eM, the electric and magnetic charge densities in unit volume, 

respectively, 
JE and JM,the electric and magnetic current densities, respectively, 

E dMI' d . d" '1 (J an (J , e ectnc an magnetic con uctIVlty, respectIve y. 
(Italicized bold face type denotes three-dimension vectors.) The meaning of 
other denominations is as usual. 

By introducing fictitious magnetic charge and current density, the system 
of lVIaxwell's equations shows a more better complete symmetry. 

Two members in each of equation groups (1), (2), further of (3), (4), 
and (5) are to be formally identical. 

The structural identity of equations describing various physical processes 
points to a regularity between corresponding quantities of the two different 
physical phenomena, called duality in the literature. The corresponding quan­
tities are dual quantities. 

On the basis of the equations the dual quantities are: 

B D· H-E' oM_oE. JM_JE. 11.-8' aM_aE. , , "" ... ' 'r' 

Accordingly, the magnetic and electric quantities are dual ones. 
Whether magnetic charge and current density exist in reality or not, 

is irrelevant for the discussion, since the duality principle means physical 
quantities to correspond each other on formal basis. Thereby different phenom­
ena can be discussed by identical mathematical methods involving a simpli. 
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fication. It should be noted that magnetic currents and dipoles can be realized 
by elementary current loops. 

Rewriting the equations to four dimensions, using the method usual in 
the literature, we obtain: 

where 

F= 

div G = SE 

rot F = 

SE = aE Fu; SAlI = aMG*u; G = 1 F 
,u 

(6 ) 

(7) 

(8) 

(9) 

(Italicized heavy types designate four-dimension vectors, while standing 
heavy types four-dimension tensors. The meaning of asterisk(*) and descrip­
tion of operations on four-dimension tensors are found in the Appendix.) 

Four-dimension equations in this form are not dual formally. With a 
view to make the equations formally dual, let us introduce the tensor 

K - jc F*. 
Eq. (7) becomes: 

div K = s'\! 

resulting formally in a form corresponding to Eq. (6), where 

These yield the four-dimension Maxwell's equations: 

div G = SE 

div K = s,y! 

SE = LaEK*u 

c 

jc 

(10) 

(ll) 

(12) 

(13) 

(14) 

(15) 
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1<= 1/ G* 
f c 

(16) 

where 

[

% V I 1 
u = ; % C ; % = I: 1 _ v~ 

c2 

Duality is evident also in the four-dimension presentation. The dual of the 
I · d· E· h . d· ,V[ h r e ectnc CUiTent enSlty S IS t e magnetIc current enslty S· , t at 01 tensor 

G is tensor K, while the dual of a E is a,v1. 

Material characteristics are lacking from Eqs (12) and (13). The correla­
tion bet,veen tensors K and G in Eq. (16) is determined hy the material char­
acteristics. Eqs (14) and (15) are the differential electric and magnetic Ohm's 
law, respectiyely. 

If sand f.l are constant in each field part, the equations can be written 
in the follo·wing form: 

div F = ,uSE 

div P = ssi\! 

(jAl Pu; P = - j 1! s F* 
. p 

where 
1 

P=-=-K. 

In the following, the solution of these equations will be discussed. 

Solution hy inti"oducing the electric vectm- potential 

lVIaxwell's equations represent a system of partial differential equations, 
to he solved with respect to the houndary conditions corresponding to the 
given prohlem. For the case of the three-dimension way of writing, the solution 
method with electric and magnetic scalar and vector potentials has heen deyel­
oped. The method of electric and magnetic potentials is a dual one. 

For the case of the four-dimension way of writing, no corresponding 
four-dimension methods haye heen developed. In the literature only a solution 
with electric potentials for the case -SAl = 0 can he found for known electric 

charge and current distribution. 
The equations to he soh-ed are 

d;vF=f-lSE:r:ii'lP=O: sE=aEFu; p=-.ilf s F*. 
,u 
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The logic of the solution is identical with that for the three-dimension 
case. 

Let 
F = rot A (17) 

where A denotes four-dimension electric potential. 
By this choice the equation div P = 0 becomes an identity, namely 

rot rot A= O. 
Substituting into Eq. (6): 

div rot A = f1 SE. (18) 
Since 

div rot A = grad div A - 0 A, (19) 
choosing 

div A = 0, (20) 

we obtain the inhomogeneous differential equation: 

(21) 

(For the designations see Appendix.) 
The first three components of the equation are identical "with the in­

homogeneous wave equation for the electric vector potential, while the fourth 
component is the equation relating to the electric scalar potential. Thus in 
the four-dimension vector potential A the first three elements represent the 
three-dimension vector potential, while the fourth element the scalar potential. 

Also the homogeneous wave equation can be obtained by choosing (17), 
in the case of 5 ivl = O. In the case of SM " 0, however, this is not true of 
the four-dimension formalism. The same problem arises in the magnetic 
potential-type the solution in the case of SE " O. 

To solve the problems needs in the general case, both the magnetic 
and electric potentials. In their knowledge, the linearly independent TE and 
TlVI mode solutions can be determined. 

In the following the solution relating to vector potentials will be examined 
for the case where SE -;..L- 0 and SM # 0, and the distribution of current 
densities is not known. 

For determining the electric potential let 

F = rot A + V. (22) 

This choice can he justified also hy formal logical considerations. Namely in 
solving lVIaxwell's equations, completed hy the magnetic charge and current 
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densities, by means of the three-dimension wave equation relating to electric 
potentials, the electric field is seen to have a component proportional to the 
vector potential. The elements of tensor V accordingly consist of the elements 
of the vector potential. These help to make statements on the structure of 
tensor V. Namely, the first three rows and columns of tensor F contain the 
vector of magnetic induction. In the three-dimension solution, vector B is 
in an other than proportional relationship with the electric vector potential, 
thus these elements of tensor V are zero. 

F being an alternating tensor, 

V = 0 0 0 V 24 r 
0 0 0 V14] 

o 0 0 V3,1 l-V14 -V24 -V34 0 

(23) 

VU, V 24' V 34 can be formed from the elements of vector A. To determine these, 
choose the elements of tensor V in such a way that substituting (22) Eq. (11) 
becoming an identity: 

- j V : div (rot A + V)* = esM 
, (24) 

that is 

j V : rot (rot A + V) = esM
• 

(25) 

Since 

rot rot A= 0, (26) 

thus 

- j V : div V* = esM 
• (27) 

Using Eq. (14): 

div V* = ecril1 [(rot A)* + V*] u • (28) 

The dual of tensor V is found to be 

I 
0 V 34 

V* = -V34 0 
V 24 -Vu 
o 0 

-V24 0] 
V 14 0 
00· 
o 0 

(29) 

Looking for the solution in the system of co-ordinates fixed to the charges: 
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It, = jr.C • 

With this condition: 
V*u = O. 

Thus 
div V* =: ea,H (rot A)*u . 

235 

(30) 

(31 ) 

(32) 

This is the equation for determining the elements of tensor V. Upon perform­
ng the operations we obtain: 

V M 4 
14 = EC; It .1" l' (33) 

(34 ) 

(35) 

If Eq. (35) is satisfied, Eq. (11) becomes an identity. Hereafter Eq. (6) has to 
be solved. 

div (rot A + V) = (aE,urot A + V) u. (36) 

Using relationship (19): 

(see Appendix). 
Since only the condition for the rotation of vector A has been given, let 

(38 

Using condition (38) and performing the operations, Eq. (37) becomes: 

= A - (cv·'vl -+- fluE) Ao+ U - uE c;M A = O. (39, 

The wave equation relating to electric potentials has thus been written 
by means of the four-dimension mathematical formalism. Eq. (38) is Lorentz's 
condition. 

Solution by introducing the magnetic vector potential 

In the following a method dual to that in the preceding chapter is present­
ed. The magnetic potential AM supplying the solution of four-dimension Max­
well's equations is looked for in the following form: 

P = rot AM + V:H . (40) 
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Tensor yM has to be chosen so that Eg. (6) be an identity. Similarly as in the 

considerations above, 

0 0 0 

VWJ 
14 

LL 0 0 Vie! yM= 2,1 (41) 
0 0 -,;nv! 

3'1 
vt,,! ,-V3vl o . 

o 14 - 24 

Substituting into Eq. (6): 

div yM = flaE [(rof AH)* + yow*] u. (42) 

This equation is the dual of Eq. (28). 
YM AJ\1 d AI 1 Y AlE 1 'T'l , , p an (j corresponc to tensors , ,c anc (J respective y . ..L lUS: 

(43) 

Substituting into Eq. (ll): 

cHv (rot Aiv! + yM) = ca"Vl (rof AM + y/vl) U. (44) 

This equation, in turn, is the dual of Eq. (28). 
These are used for the magnetic potentials, to ohtain the wave equation 

(45) 

and Lorentz's condition 

(46) 

Accordingly, the four-dimension mathematical formalism helps to write not 
only Maxwell's equations, but also the three-dimension solution methods. 
Thus the solution method applying the potentials is covariant ,vith respect 
to Lorentz's transformation, electric and magnetic potentials can be trans­
formed as four-dimension vectors, in systems of co-ordinates performing uni­
form, rectilinear movement relative to each other. 

Appendix 

The most important definitions and operations relating to four-dimension 
tensors are summarized in the following. 

In an alternating or antimetric tensor, elements symmetrically arranged 
with respect to the main diagonal differ only by sign. 
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Hence, 

o. 

A tensor V* can be assigned to alternating tensor V for the elements of 
which 

k, 1, m, n represent the eyen number permutation of the series 1, 2, 3, 4. y* 
constructed in this way is the dual tensor of tensor V. 

V 

V* 

o 
-V3! 

V 2"1 

_-V23 

V12 

o 
T"~ -, 23 

-V2.1 

The four-dimension Hamilton's operator is given by 

r -I 

o I 
OX1 

o I 
--I 

0 chz \. 

_0 I 
(;~w3 r'r I 
0 I 

I 1 

I 0X.! 
\ 

L ---.I 

The four-dimension Laplace operatoI': 

-::>9 0-
, , 

CJ = 0' <) -- -,- -- T--

oXI ox~ oX5 

0* denotes the transpose of o. 
The operations on the operators are controlled hy the fOl'md rules of 

matrix algehra. 
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(s . .. scalar) 

cliv y = </' V = V+ 0 

rot v = (.- V·;'-V(.-+ 

gr-ad '-I 

,. T T [. T']' Ci!V = 10 = 0' ,.,. 

div grad s = O-':-OS = 0 s 

CHy grad v = VO+O = v 0 

cliv rot v = [0 y+ - Vo+] 0 

['ot V div V* = - y* 0 

o '1-7- 0 - V 0 -':- 0 = grad d iy v - y 0 

(if V is alternating tensor.) 

Summary 

In certain cases r.laxwell's equations are completed by a fictitious magnetic charge and 
current. The paper gives the way of writing the completed relativ;stic Maxwell's equations. 
A general method is elaborated for solving the electromagnetic field by the relath;stic electric 
and magnetic vector potential. The method can be advantageously used in cases of determin­
ing the electromagnetic field in two co-ordinate systems performing rectilinear, uniform move­
ment relative to each other. 
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