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Introduction

Maxwell’s equations are known to be covariant with respect to Lorentz’s
transformation. Formally, Maxwell’'s equations can be described by four-
dimensional matrices formed of the respective quantities and by the operations
performed with these. This four dimensional presentation of Maxwell’s equa-
tions has been described in the literature.

- In certain cases it is usual to complete Maxwell’s equations by the
fictitious magnetic charge and current. The first part of the present paper gn es
the four-dimension form of Maxwell’s equations for this case. = £

In the further parts of the paper the solution of four-dimensional Ma\-
well’s equations by means of four-dimensional potentials is'discussed. Referen-
ces [1], [2] present only the four-dimensional solution by means of the electric
scalar and vector potential for the case of known electric eharge and- current
density. . § y

~If charge and current density are unknown, and there'is'also a magnetic
charge and current density, there exists po published four-dimension electric
solution, or one based on the four-dimensional magnetic ‘potentials.

The present paper gives a solution for this general case:

In the knowledge of the relevant four-dimension potential, changing over
to co-ordinate. systems: performing uniform; rectilinear movement relative
to each: other, Lorentz’s transformation has to be apphed on ‘the four-dimen:
sional potential vector. : ‘

In the case of motional induction problems, this can'be used advanta-
geously. Looking for the solution in cne of the co-ordinate systems in the form
of TM or TE mode, the electric or magnetic four-dimensicn potential should
be transformed into the other co-ordinate system. If the two co-ordinate sys-
tems are fixed to field parts with different material constant the boundary
condition can be written'for the potentials. i B

The method was practically applied for determining the electromagnetic
field in linear induction motors. Because of space ‘shortage however, the
example cannot be published. o A
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The four-dimension form of Maxwell’s equation

Introducing a new co-ordinate, time, as the fourth dimension, Maxwell’s
equations can be written in four-dimension form.

First let us recapitulate the three-dimension form of Maxwell's equations
¢ompleted by magnetic charge and current density.

rot H= [E 4 D (1)
ot
rot £ = — i1 — %8 @
ot
div D = pF (3)
div B = oM (4)
D = ¢E; B = uH; £ = oBE; JM = 0MH; ¢ = gge,5 o = po 4y (3)

(the inserted electric and magnetic field strength values E,, H;, being zero).

Here:

o % and o, the electric and magnetic charge densities in unit volume,
respectively,

JE and J%, the electric and magnetic current densities, respectively,

6" and o™, electric and magnetic conductivity, respectively.

(Ttalicized bold face type denotes three-dimension vectors.) The meaning of

other denominations is as usual.

By introducing fictitious magnetic charge and current density, the system
of Maxwell's equations shows a more better complete symmetry.

Two members in each of equation groups (1), (2), further of (3), (4),
and (5) are to be formally identical.

The structural identity of equations describing various physical processes
points to a regularity between corresponding quantities of the two different
physical phenomena, called duality in the literature. The corresponding quan-
tities are dual quantities.

On the basis of the equations the dual quantities are:

B—D; H—E; o™ —08 JM —J5 p—g; o —d".

Accordingly, the magnetic and electric quantities are dual ones.

Whether magnetic charge and current density exist in reality or not,
is irrelevant for the discussion, since the duality principle means physical
quantities to correspond each other on formal basis. Thereby different phenom-
ena can be discussed by identical mathematical methods involving a simpli-
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fication. It should be noted that magretic currents and dipoles can be realized
by elementary current loops.

Rewriting the equations to four dimensions, using the method usual in
the literature, we obtain:

div G = s~ (6)
rot F = —div F* = s (7)
sE = gEFu; sY =¢VG*u; G = S F (8)
{
where
0 B, —B, —jjicES
_ '—B: 0 Bx ——jrﬁCE,V M J/C -’M . eE ___ JE
F= B,—B, 0 —jlcE.|5% = [9-’” } = [j/c QEJ' ©)

jcE, jlcE, jlcE, 0

(Italicized heavy types designate four-dimension vectors, while standing
heavy types four-dimension tensors. The meaning of asterisk™® and deserip-
tion of operations on four-dimension tensors are found in the Appendix.)

Four-dimension equations in this form are not dual formally. With a
view to make the equations formally dual, let us intreduce the tensor

K=—jcF*. (10)
Eq. (7) becomes:
div K = s (11)

resulting formally in a form correspending to Eq. (6), where

S;’«,-j _ j:W
jC QM‘ *

These vield the four-dimension Maxwell’s equations:

div G =sF (12)

div K = s (13)

st = i oEK*u (14)
(4

sM = —1— o G*u (15)

j¢
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K — —jl/i G* (16)
where

,

' 12

&
Duality is evident also in the four-dimension presentation. The dual of the
electric cusrent densitysE is the magnetic current density s'". that of tensor
G is tensor K. while the dual of ¢F is ¢\

Material characteristics are lacking from Egs (12) and (13). The correla-
tion between tensors K and G in Eq. (16)is determined by the material chaxr-
acteristics. Eqs (14) and (15) are the differential electric and magnetic Ohm’s
law, respectively.

If ¢ and g are constant in each field part. the equations can be written

in the following form:
div F = us®

div P = s

sE=¢EFu; sV =¢MPu: P=—j | & p=
/ ‘,LC
where

In the following, the solution of these equations will be discussed.

Solution by imtroducing the electric veeior potemtial

Maxwell’s equations represent a system of partial differential equations,
to be solved with respect to the boundary conditions corresponding to the
given problem. For the case of the three-dimension way of writing. the solution
method with electric and magnetic scalar and vector potentials has been devel-
oped. The method of electric and magnetic potentials is a dual cne.

For the case of the four-dimension way of writing, no corresponding
four-dimension methods have been developed. In the literature only a solution
with electric potentials for the case s” = © can be found for known electric
charge and current distributien.

[ pe

ST

i

The equations to be solved are

divF=usE divP =0: sE=cFFu: P= ——jl



SOLUTION OF MAXWELL'S EQUATIONS 233

The logic of the solution is identical with that for the three-dimension
case,

Let
F=rot A (17)

where A denotes four-dimension electric potential.
By this choice the equation div P = O becomes an identity, namely

rotrot A=0.
Substituting into Eq. (6):

div rot A = u s”. (18)
Since
divrot A=grad divA—OA, (19)
choosing
div A = O, (20)

we obtain the inhomogeneous differential equation:
_ E )
OA= —us". (21)

(For the designations see Appendix.)

The first three components of the equation are identical with the:in-
homogeneous wave equation for the electric vector potential, while the fourth
component is the equation relating to the eleciric scalar potential. Thus in
the four-dimension vector potential A the first three elements represent the
three-dimension vector potential, while the fourth element the scalar potential.

Also the homogeneous wave equation can be obtained by choosing (17),
in the case of s = O. In the case of s’ == O, however, this is not true of
the four-dimension formalism. The same problem arises in the magnetic
potential-type the solution in the casé of s® = O.

To solve the problems needs in the gemeral case, both the magnetie
and electric potentials. In their knowledge, the linearly independent TE and
TM mode solutions can be determined. '

In the following the solution relating to vector potentials will be examined
for the case where s® == O and s s« O, and the distribution of current
densities is not known.

For determining the electric potential let
F=rot A+ V. (22)

This choice can be justified also by formal logical considerations. Namely in
solving Maxwell’s equations, completed by the magnetic charge and current
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densities, by means of the three-dimension wave equation relating to electric
potentials, the electric field is seen to have a component proportional to the
vector potential. The elements of tensor V accordingly consist of the elements
of the vector potential. These help to make statements on the structure of
tensor V. Namely, the first three rows and columns of tensor F contain the
vector of magnetic induction. In the three-dimension solution, veetor B is
in an other than propertional relationship with the electric vecter potential,
thus these elements of tensor V are zero.
F being an alternating tensor,

[ 0o 0 0 ¥y
0 0 0 V,
V= l 0 0 0 Vg (23)
——Vl-i ——V24 —V34 0

Vi Vo Yy, can be formed from the elements of vector A. To determine these,
choose the elements of tensor V in such a way that substituting (22) Eq. (11)
becoming an identity:

-——jl/ £ div(rot A 1 V)* =esM, (24)
L

that is
j l/ £ rot (rot A L V) =-esM, (25)
)7
Since
rotrot A=0, (26)
thus
_jVi div V* = gsM, (27)
7
Using Eq. (14):
div V¥ = &M [(rot A)* 4 V*]u. (28)

The dual of tensor V is found to be

0 Vi —Vo 0

Ve | Ve 0 Vo 0f (29)
Voo —Vis 0 0
o 0 0 0

Looking for the solution in the system of co-ordinates fixed to the charges:
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0
0. — 1
u Nk u, = jxc. (30)
Uy
With this condition:
Vig=0. (31)
Thus
div V* =: &6 (rot A)*u. (32)

This is the equation for determining the elements of tensor V. Upon perform-
ng the operations we obtain:

Vi, = ec™u,A,, (33)
Vo= 8‘7Mu4‘42= (34)
Vi, = e0”u A, (35)

If Eq. (35) is satisfied, Eq. (11) becomes an identity. Hereafter Eq. (6) has to
be solved.
div (rof A + V) = (cFurot A + V) u. (36)
Using relationship (19):
cATo—DOA+divV=c¢Eu[o AT — AoF = V]u. (37)

(see Appendix).
Since only the condition for the rotation of vector A has been given, let

A+ o = ocFuAtu. (38

Using condition (38) and performing the operations, Eq. (37) becomes:

TA— (6™ + peF) AoTu—oEdMA = O. (39,

7

The wave equation relating to electric potentials has thus been written
by means of the four-dimension mathematical formalism. Eq. (38) is Lorentz’s
condition.

Solution by introducing the magnetic vector potential

In the following a method dual to that in the preceding chapter is present-
ed. The magnetic potential A™ supplying the solution of four-dimension Max-
well’s equations is looked for in the following form:

P=rot AM 1+ VM, (40)
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Tensor V' has to be chosen so that Eq. (6) be an identity. Similarly as in the
considerations above,

0 O O I/"A\’l"
yam—| 0 0 0 pa (41)
0 0 0 v
—V v =1 o .
Substituting into Eq. (6):
div VM = uoE [(rot AV)* + V35 ]y, (42)

This equation is the dual of Eq. (28).
VM, AM, w and M correspond to tensors V, A, ¢ and & respectively. Thus:

M
Vit = uo® u, AN

Vai = uc® u, A3, (43)
M — uot u, AM
Substituting into Eq. (11):
div (rot AM L VM) = oM (rot AM - V¥ u. (44)

This equation, in turn, is the dual of Eq. (28).
These are used for the magnetic potentials, to ohtain the wave equation
g p : q

0AM — (ec™ + pof) AM 0T u—f M AM = O, (45)

and Lorentz’s condition
A‘MT o = (T'ME A.M . (46)

Accordingly, the four-dimension mathematical formalism helps to write not
only Maxwell’s equations, but also the three-dimension solution methods.
Thus the solution method applying the potentials is covariant with respect
to Lorentz’s transformation, electric and magnetic potentials can be trans-
formed as four-dimension vectors, in systems of co-ordinates performing uni-
form, rectilinear movement relative to each other.

Appendix

The most important definitions and operations relating to four-dimension
tensors are summarized in the following.

In an alternating or antimetiric tensor, elements symmetrically arranged
with respect to the main diagonal differ only by sign.

l—/ilc = - V:’{i .
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\o}
o«
~1

Hence,

A tensor V* can be assigned to alternating tensor V for the elements of
which

E, 1, m, n represent the even number permutation of the series 1, 2, 3, 4, V*
consiructed in this way is the dual tensor of tensor V.

0 Vi I/:l:} I/:u

V-—": —1/12 0 st p‘ll :
—Viy —Vy 0 Ty

—Vi =V =V 0

P0 Py —Var Vo

ve — | Vs 0 ‘4 Vi

O=07¢ =——+F ——+ — + —.
axy Ux3 Oxj dxy

¢ * denotes the transpose of ¢.
The operations on the operators are controlled by the formal rules of
matrix algebra.
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grads = < s (s... scalar)
givvy=4Tv=vT o

retv= ¢ vt —vorT

grod v=vor

div T=To =[o* T+]*

divgrads=070s=10s
divgrad v=vo o =Vv [
divictv=[oVvi—voT]o=0v o —VvOoT o =graddivv—v D

ret V= —divV*=—-V*o (if V is alternating tensor.)

Sammary

In certain cases Maxwell’s equations are completed by a fictitious magnetic charge and
current. The paper gives the way of writing the completed relativistic Maxwell’s equations.
4 general method is elaborated for solving the electromagnetic field by the relativistic electric
and magnetic vector potential. The method can be advantageously used in cases of determin-
ing the electromagnetic field in two co-ordinate systems performing rectilinear, uniform move-
ment relative to each other.
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