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Introduction 

The general use of computer technique leads to the ,~ide application of 
discrete-time models in the system identification. Today the so-called ASTROM 

model and the maximum likelihood (ML) method are almost exclusive means 
of the parametric identification of linear dynamic systems [1] while the other 
methods - e.g., the generalized least squares (GLS), least squares (LS), priori 
knowledge fitting (PKF), first and second extended matrix methods, instru­
mental variable method, etc. - are only applied in special cases of the above 
model [1], [4]. 

Nowadays the theory related to the identification of linear, dynamic 
systems can be considered as more or less closed for single input single output 
(SISO) systems. Further efforts are, of course, directed to the parametric 
identification of multiple input multiple output (MIMO) systems. Certain 
authors suggest the use of state space representation for identification purposes 
since most important methods of the modern control theory involve the state 
space description of the system. Others prefer to identify the parameter matrices 
of a vector difference equation since this approach permits an easier generaliza­
tion of the methods elaborated for SISO systems. 

In this paper this latter approach is followed. The multiple output 
versions of LS, GLS, ML and PKF methods are given for special forms of 
vector difference equation in accordance with the lVIIMO generalization of the 
ASTRO~I model, and the multivariable form of minimum variance regulator is 
also presented. 

The applied ~fiMO system model 

A lVIIMO linear, discrete-time system can be described by the vector 
difference equation [1], [6]: 

n n n 

y(t) = 2'B;u(t - i) - 2' A;y(t - i) + 2'C;e(t - i) + e(t) (1) 
;=0 i=l i=l 
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where the environmental noise is also considered as in the Astrom model. 
Here y is an (q X l)vector of the outputs, u is an (mx 1) vector of inputs, 
e is a (q xl) vector of so-called source noise causing the corrupting effects at 
the outputs. The covariance matrix of e(t) is assumed to be A for all t and 
vectors e(t) and e(t + j) belonging to different times to be uncorrelated. The 
(q X m) and (q X q) matrices Bi and Ai contain the parameters of the process. 
The matrices Ci of (q X q) dimension include the parameters of the noise model. 
In Eq. (1) n is the order of the vector difference equation (and none of the 
system !) and t means the discrete (integer) time of the process. 

Introducing the matrix polynomials: 

(2) 

thp. system equation can be given in the follo·wing form: 

(3) 

where Iq is the (q X q) unit matrix and z-l is the bacbvard shift operator. 
N o·w let us introduce the parameter matrix P containing the parameters 

of the process: 

(4) 

and the so-called memory vector belonging to the t-th observation: 

where T means the transposition. By the above notations the system equa­
tion (1) becomes the following form: 

y(t) = Px(t) + C(z-l)e(t) (6) 

whence it is ·well seen that this relationship is linear with respect to the pro­
cess parameters. 

The LS method for MIMO systems 

The well-known condition of the applicability of the least-squares method 
is that the equation error C(z -l)e(t) should be uncorrelated, but this is ful­
filled only if C(z-l)=Iq • Then the system equation has the form 

y(t) = Px(t) + e(t) . (7) 
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If N simultaneously measured values of input and output vectors are avail­
able then the LS estimation of P can be performed. Let the matrices 
Y, F, E be: 

Y = [y(I), y(2), ... , yeN)] 

F = [x(I), x(2), ... , x(N)] 

E = [e(I), e(2), . .. , e(N)] 

then the joint system equation with respect to N measurements is: 

Y=PF+E. 

At the LS method the loss function to be minimized is 

v = ~ [vec (E)Y (IN 0 A-l) vec (E) = min = min 
2 P vec(P) 

min 
p 

(8) 

(9) 

(10) 

(ll) 

(12) 

where the index N refers to the size and 0 means the Kronecker matrix product 
[5], [7]. 

In order to make the determination of the minimum easier we apply the Kro­
neck er matrix operation of arrangement into the vector, p = vec (P) [5], [7J. 
The necessary condition of the extremum is: 8 V/8p = 0, whence an explicit 
expression is got for the parameter estimation p: 

(13) 
where 

w = vec (Y) . (14) 

Even if the special condition A = ),2 Iq holds, (13) simplifies into: 

(15) 

Taking into account the Kronecker matrix product identities, on the basis of 
(13): 

(16) 

This latter parameter estimation is unbiased if u(t) and e(t) are uncorrelated 
and it is consistent if u(t) fulfils the conditions of persistently exciting [1], 
[4]. If e(t) has a normal distribution, then the estimation is a NIL estima­
tion, too. 

3* 
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Extension of GLS method for MIMO systems 

The generalization of CLARKE'S GLS method [3] for lVIIMO systems means 
that the validity of approach C(Z-l) = H-l(Z-l) is assumed in system Equation 
(3). Then the equation can be written in the form , 

Considering, that 

H(Z-l) y(t) = [yT(t) <8> H(Z-l)] vec (Iq) 1 
H(Z-l) Biu(t - i) = [uT (t i) <8> H(z-l)] vec (Bi) 
H(Z-l)Aiy(t - i) = [yT (t i) <8> H(Z-l)] vec (AJ 

(18) 

and introducing the following notations for the filtered values in the G LS 
method: 

Y p(t - i) = yT(t - i) <8> H(Z-l) 1 
Up(t - i) = uT(t - i)®H(z-l) 

YF(t) = [y(tT) <8> H(Z-l)] vec (Iq) 
(19) 

the system equation (17) becomes 

(20) 

where p = vec (P) as seen above and 

If ]V measurements are available, then 

(22) 

where 

W F = FFP + d. (23) 

Using the filter equations (19), the solution is expected from the above discussed 
LS estimation and the parameter estimation is: 

(24) 

according to (15). 



MULTIPLE Lll,'PtJT MULTIPLE OUTPUT IDENTIFICATION 321 

To apply Eq. (19) H(Z-l) has to be known. Assuming now A(Z-l) and 
B(Z-l) to be known and H(Z-l) to be of structure: 

H( -1) - I ...L H ~-1 I + H -k 
Z - q I 1'" T'" k Z ' (25) 

Let us re"write the system equation (17): 

H(Z-l) [A(Z-l)y(t) - B(Z-l) u(t)] = H(z-l)r(t) = e(t) (26) 

where the variable 

r(t) = A(Z-l)y(t) - B(Z-l)U(t) = y(t) - Xp (27) 

is introduced for the equation error. Considering the construction of H(Z-l) 
the autoregressive r(t) -will be: 

r(t) = -H1r(t-l) , .. -H~(t-k) + e(t). (28) 

By this equation the least-squares estimations of Hi are: 

Q = RGT (GGT)-l (29) 
similarly to (16), where 

Q = [Hl'~' .. . ,Hk ] 1 
R = [r(I),r(2), ... ,r(N)] 

G = [g(I), g(2), ... , g(N)] 

(30) 

and 

g(t) = [-rT(t-I), ... , -rT(t-k)]. (31 ) 

Since on the basis of (27) r(t) depends on only p, the well-known suc­
cessive approximation technique of the GLS method can be developed easily. 
This means that first we assume H(Z-l) = Iq and estimate p, then compute 

Rand G, and estimate Q. Mter this we follow the procedure but at the new­

er estimation of p the estimated H(Z-l) is takenl into account. Actually this 
iterative technique corresponds to a relaxation minimization on the space of 

parameters Ai' Bi and Hi' respectively. 
It has to be emphasized that though the equations are very similar to 

the case of single output GLS method, but there are basic differences in the 
construction of the applied "whitening" filters (see equations in (19». This 
difference derives from the fact that the multiplication by H(Z-l) is conver­
tible in case of single output systems, while for multiple output systems the 

order of the multiplication by H(z-l) is fixed! 
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MIMO version of the ML estimation method 

If in the system eqation (1) e(t) has normal distribution then the lYIL 
estimation can be used. Now the loglikelihood function is [6]: 

qN N 1 N 
-ln2n--lnIAI-- "Y,eT(t) A-I e(t) 

2 2 21='1 
L= (32) 

where I ... I means the determinant. To get the lYIL estimation, L has to be 
ma:ximized. Since A. also depends on the parameters p, therefore first L(p, A(p)) 
is ma:ximized by A, or minimized by .A-I: 

whence 

SL rp, .A(p)] 
sl\.-l 

"1 ]V 
A =-" EET= ~e(t)e(tf. 

Tv 1=1 

Substituting this latter expression into (32) L 'will directly depend on p: 

L( " ) qN (1 2 ' ) N I A" (") p =-- n n+1 -- nl pi. 
2 2 

(33) 

(34) 

(35) 

Thus the maximization of L(p)hy p is equivalent to the minimization of the 
loss function 

Considering now that 

V(p) = I A(p) I ---+ min 
p 

(36) 

for a general system and p = vec (P) contains the parameters Ci , too, the loss 
function is, however, a nonlinear (higher than quadratic order) function of 
parameters, the minimization of V cannot be given by an explicit expression, 
but only by' some iteration extremum seeking method. Effective versions of 
these kinds of methods need the computation of the gradient and the Hessian­
matrix of second order derivatives of V(P). The gradient of the loss function is 

SV~p) = i S:~(tlA.-le(t). 
Sp 1=1 op 

The elements of matrix of second order derivatives are: 

S2 V(p) 

SpiSh 

(38) 

(39) 
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Let us introduce the folio'wing notations: 

Pb = [Bo, B I , • •• , Bn]; vec (Pb) = Pb I 
P a = [AI' . .. , An] ; vec (Pa) = Pa 
Pc = [Cl' . .. , Cn] ; vec (Pc) = Pc 

(40) 

and 

xv(t) = [yT(t - 1), ... , yT(t - n)Y 
xu(t) = [- uT(t), - uT(t - 1), . .. , - uT(t - n)Y I 
x:(t) = [eT(t - 1), ... , eT(t - n)Y . 

(41) 

Then the system equation is: 

(42) 

hence 

1 

I (43) 

J 
Thus 

(~-l 8e(t) _ [T( T() T(] I C '" ) 8
p

T - Xu t), Xy t ,xe t) @ q (44) 

where 

[ TT T]T P = Pb' Pa' Pc . (45) 

These expressions deduced above already yield the gradient and the approxi­
mate matrix of second order derivatives according to the first term of (39), since 

( 46) 

These relationships permit to construct e.g. an iterative method: 

(47) 

According to experience, the complexity concomitant to the exact computation 
of second order derivatives (the second term of (39)) is not worth of a somewhat 
improved convergence. The relationships (43) produce the gradient by simple 
autoregressive filtering similar to the case of single output systems. 
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Generalization of the second extended matrix method 
for MIMO systems 

Using the parameter matrix P in (37), the system equation (1) can be 
written as: 

where 
yet) = Px(t) e(t) 

x(t) = [uT(t), ... , uT(t - n), - yT(t - 1), ... , - yT(t - n), 

eT(t - 1), ... , eT(t - n)Y . 

For the total of N measurements, the system equation is: 

y= PF + E 
where 

F = [x(I), ... , x(N)] . 

(48) 

(49) 

(50) 

(51) 

Formally (49) is identical to (11) and now the L5 method can be applied: 

(52) 

x(t) and F contain the values of the source noise e(t) which, of course, are not 
known a priori. To apply (51) a series of e(t) (e.g., zeros, which correspond to 
an L5 estimation) have to be assumed, then by this p the e(t) values can be 
estimated: 

e(t) = yet) - Px(t) (53) 

After this, the iterative procedure goes on as for 5150 systems [4]. 

PKF method for MIMO systems 

Without going into details, the more important relationships will only 
be presented. At the identification, the priori knowledge fitting method (PKF) 
assumes input and output noise to be independent. The applied system equa­
tion is: 

n n 

yet) = 2' Bi U (t - i) - 2' Ai yet - i) + d(t) (54) 
i-O I_I 

where 
n 

d(t) = e(t) + 2' Ai eCt - i). (55) 
1=1 
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Here e(t) is the output noise assumed to be ergodic, zero mean, independent 
of input random noise, Since d(t) and u(t) are independent it can be "written: 

s 
E {d(t)lu(t), , , " u(t - s)} = ~ Di u(t - i) = d(t) + €(t) , (56) 

i=O 

where €(t) is the vector of residual errors and E{ , , , } means the expectation, 
Because of independence, the condition Di .......... 0 must hold (Thally-principle) [8], 

Comparing (54) and (56): 

s n n 
~Diu(t - i) = y(t) + ~ Ai Y (t - i) - ~Bi u(t - i) + €(t) , (57) 
i=O i-I i-O 

For N measurement vectors (57) can be written as 

where 

and 

€ = PF + RZ - Y 

€ = [€(1), ' , " €(N)] 

Y = [y(1), , , "y(N)] 

F = [x(1), ' , "x(N)] 

Z = [v(1), , , " v(N)] 

x(t) = [uT(t), .. ,' uT(t - n), - yT(t - 1), .. " - yT(t - n)f J 
v(t) = [uT(t), ' , "uT(t - s)f ' 

To determine the parameters of system equation (57) the condition 

[vec (€)f vec (€) .......... min 
vec(R) 

must be ensured which, after the usual steps, leads to: 

(58) 

(59) 

(60) 

(61) 

Other"wise the best parameter estimation P is obtained from the minimum 
condition 

[vec (R)V vec (R) -+ min (62) 
vec (P) 
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for Dj -+ O. 1VIinimization gives the explicit expression: 

Minimum variance control of MIMO systems 

Eq. (1) of the MIMO systems is suitable to extend the classical minimum 
variance (MY) regulator elaborated for single output systems [2] for the case 
of MIMO systems, assuming a dead-time d in the system (1), it ,\ill be of 
the form: 

According to the well-known separating theorem and using the decomposition 

(65) 

'we get 

(66) 
-+- F(z-l)e(t -:- d) = y(t + d:t) F(z-l)e(t + d) 

corresponding to the generalization of the prediction law given for single 
output systems. The MY regulator is obtained by equalizing the predicted 
value with the reference signal and computing the necessary input YectaT. 
In case of zero reference value the following lVIY control law goyerns the 
optimum input: 

(67) 

obtained after simple calculations from the condition 

y(t ..:.- d . t) = 0 . (68) 

Relationship (67) is formally similar to that elaborated for the SISO system. 
Here the main difficulty is due to the fixed order of the multiplication of 
matrix polynomials, impeding a simple extension of the self-tuning regulator 
for lYIIMO systems. 
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Summary 

The paper discusses the generalization of discrete identification methods - elaborated 
for SISO systems - for MIMO systems. It also deals with the known ~lIMO identification 
methods "ia uniform mathematical description using the new methods developed by the 
authors. Algorithms of LS, GLS, ML, PKF, SEXM, IV methods for lVlIMO systems are con­
sidered. After a survey of identification methods and their comparison, the possibility of 
designing an MV controller for lVIIMO systems with constant parameters is shown. An explicit 
expression is given for the impulse response matrix of optimum controller. 
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