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1. Introdnction 

Starting from the well-known definition of the generalized integrals of 
real (not only integer) order, the first part of the present study will discuss 
the properties and computation aspects essential for interpretation and appli­
cation, then an example of application in theoretical electricity will be given. 

In the second part the concept of real order integral and derivative "will 
be extended to the domain of generalized functions, then differential equations 
containing also non-integer real-order derivatives ·will be analysed, and condi­
tions of validity and form of the mean value theorems and the Bernoulli­
L'Hospital rule for the generalized derivatives "will be interpreted below, as 
"well as application of approximate functions with properties similar to Taylor's 
or Hermite's polynomials. 

A member of the qth generalized integral family - for q > ° - is 
known to be defined by the convolution integral as [1]: 

t 
1 n 

Jeq)[f(t)] = - J 7:q- 1 f(t-7:) dT 
r(q) 

o 

or by its equivalent as: 
t 

Jeq)[f(t)] = 1 f (t-T)q-l f(T) dT 
r(q) 

where f(t) is the function to he integrated in the generalized sense. 

(la) 

(Ib) 

This definition is obvious for functions that can be transformed using 
Laplace's rule; namely for t > 0, 

~[f(t)] = F(s), 
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then 

J(q) [J(t)] = F(s) 
sq 

since formally 

the convergency conditions "\vill not be discussed here. The properties of the 
operator J(q), discussed in the subsequent chapter, "\vill demonstrate in direct 
content relations that J(q) is really the generalization of the operator of in­
tegration. 

2. Properties of the operator J(q) 

By definition: 
t 

J\l)[f(t)] = S J(r)dr (2) 
o 

further J(q) is a homogeneous linear operator: 

(3) 

Replacing r = ut in (lb): 
1 

-- (l-U)q-l(tu)du. t
q f 

r(q) 
(4) 

o 
Hence, for a> 0: 

(5) 

An essential relationship: 

(6) 

This is proven by writing, using (4): 

I 

F(t) =J(q) [J(t)] -- (l-v)Q-l J(tv) dv, t
q f 

r(q) 
o 

and 
I 

J(P)[F(t)] = -- (l-U)P-l F(tu)du , t
P f 

rep) 
o 
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hence 

J(P){ J(q) [f(t)] } = t
PH 

I, 
r(p)r(q) 

where 
I I 

I = J (1 - U)P-I uq [ J (1 - V)q-I f(tuv)dv] du = 
o 0 

I I 

= J J (1 - u)P-l (u-uvF- I f(tuv) ududv. 
o 0 

Transformations 

Z=l-U] i. e. 

w= uv 

w ] V=---
1-z 

u=l-z 

z 

Fig. 1. 

affect the domain of integration according to Fig. 1 and 

Su Su 
0 -1 

Sw Sz 1 
-

Sv Sv 1 w 1-z 
---- --
Sw 

consequently: 

Sz i 1-z (1- z)2 

1 
ududv = u-dzdw = dzdw, 

u 

1 I-w 

1 

u 

w 

1= J [J Zp-l (1 - z - w)q-r dz] f(tw) dw. 
o 0 

361 

Substituting z = (1 - w)r and dz = (1 - w)dr the integral in the brackets 
becomes: 

I 

(1 - W)p+q-l J rP- I (1 - r)q-I dr = (1 - W)P+q-l B(p,q) 
o 
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where B(p,q) is the beta function: 

T-,,(p,-,-) _T=( q):........ B(p,q) =-
T(p+q) 

and thus 
1 

1= T(p)T(qL S (l-W)p+q-l f(tw) dw. 
T(p+q) 

o 

From Eq. (4): 

t p+q I = T(p) T(q) j<p+q [J(t)] , 

that, substituted in formula (*) leads to (6). 
Differentiating (lb) k-times where k < q yields: 

:~ {j(q) [J(t)]} = j(q-k) [J(t)] (7) 

(derivative with respect to the upper integration limit being zero). 
On the other hand, if f(t) can be differentiated k-times, then - in the 

case of k < q - k-fold partial integration of the defining formula (lb) results 
in: 

r tq- 1 
j(q) [J(k)(t)] = j(q-k) [f(t)] -l-· _jlk-l) (0) 

T(q) 
(8) 

...L (k-2) O...L ...L 0 t
q
- 2 tq

-
k

] 

I T(q-l) f () I .•• I T(q-k+l/( ) . 

Confined to functions f(t) differentiable k-times, and f(O) = 1'(0) = 
= f"(O) = .. . f(k-2l(0) = j<k-ll (0) = 0, and the integrals (la) and (lb) 
can be interpreted for fU:l(t), the derivative of non-integer order q < k can 
be defined as: 

(9) 

Definition (9) is justified by 

and thus, from (6) and (8): 

j(ql [J<ql(t)] = j(kl [J(kl(t)] j(kl 1 __ [f'(t)] = { d"-l } 

t dt"-l 

= j(llf'(t) = f(t). 
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For q < k and p < m, provided function f(t) can be differentiated (k + m)­
times (k and m being integer numbers), and j<v) (0) = 0, (v = 0,1,2, ' , , , 
k + m-I): 

(10) 

This is proven by considering that 'with the conditions made for f(t): 

and thus, using relationship (6), by definition (9): 

and 
d(p) ( d m ' - [f(q) (t)] = J(m-p) _{J(m+k-q) [pm+k)(t)]}J 
dtp dtm 

Finally, according to (7) 

3, ~:lethods of computing the generalized integral 

a) For power functions a solution in explicit form will be obtained, namely 
for f(t) = t r the integral in (4) becomes: 

J
' T(q) T(r+l) 

(1 - U)q-l t' u' du = t' B(q, r+l) = tr 

T(q + r + 1) 

Consequently 

(ll) 

this equation is valid for q + r > 0 except for r = -1, -2, -3, -4"" 
It must be noted that, if k is the greatest integer number contained in r, 

conditions for (9) are met and the generalized derivate of qth order becomes: 

Pq)(t) = J(k-q) [J<k)(t)] = J(k-q)[r(r - 1)(r - 2) , , , (r - k + l)t r] 
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thus, using (11): 

fCq)(t) = r(r-k+I) r(r-I) (r-2) ... (r-k+I) t'-q, 
r(r-q+I) 

hence 

d(q)(tr) = r(r+I) tr-q 
dtq r(r+I-q) 

valid for 0 < q < k. 

(12) 

b) The value of J(q) [f(t)] can be found for any t by numerically evaluating 
integral in (4). 

c) Iff(t) can be differentiated (n + I)-times and to the latter the formulas 
(la) and (Ib) can be applied (n being an integer number), then the (n + 1)­
fold partial integration of (4) "Will give the following series: 

J(q)[f(t)] = f(O) tq + f'(0) tq+1 + f"(0) tQ+2..L 
r(q+I) r(q+2) r(q+3) I (13) 

+ ... 

d) In some cases J(q)[f(t)] can be v{ritten in differential equation form. 
If for instancef(t) meets differential equation 

aff/(t) + bf'(t) + ef(t) = 0, 

then written according to (4) 

& 
J(q)[f(t)] = r(q) g(t) , 

g(t) meets differential equation 

at2gf/(t) + (2aqt + bt2)g'(t) + [aq(q - I) + btq + et2]g(t) = 

= atf'(O) + [a(q - I) bt]f(O) 
and 

g(O) = f(O) ; g'(O) f'(0) 

q 2q 

For lim g(t) = 0, g(t) tends asymptotically 
t= 00 

to 

ga(t) = af'(O)+bf(O) 
et 

(I4a 

(14b) 

(14c) 

(I4d) 

(I4e) 
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To prove the previous statements, a comparison of (14b) and (la) will give: 

multiplied by t2 

Differentiating: 

t 
tq g(t) = f -rq-

I f(t - -r) dT , 
o 

t 
tq+2 g(t) = t2 S -rq-If(t - -r)d-r 

o 
(*) 

t 
(q + 2)tq+1 g(t) + tq+2 g'(t) = 2t [tq g(t)] tq+I f(O) + t2 f ~-If'(t - -c)d-r, 

o 
after reducing: 

t 
tq+2 g'(t) qtq+I g(t) - tq+If(O) = t2 S -rq-

I f' (t - -r) d-c (**) 
o 

Differentiated once again: 

tq+2 g"(t) (2q + 2)tq+l g'(t) + q(q l)tq g(t) - (q + l)tqf(O) = 
t 

= 2[tq+ Ig'(t) + qtqg(t) - tqf(O)] + tq+lf'(O) t2 S -cq-If"(t - -r)d-c, 
o 

hence 

tq+2 g"(t) + 2qtq+1 g'(t) + q(q - l)tq g(t) - (q - l)tQf(O) - tq+lf'(O) = 
(***) t 

= t2 .\ -rq-
1 f"(t - -c) dT 

o 

Adding b-times equation (**) and a-times equation (***) to e-times equation 
(*), yields, according to (l4a): 

tQ[et2g(t) bt2g'(t) + qbtg(t) - btf(O) + at2g"(t) + 
+ 2aqtg'(t) + aq(q - l)g(t) - a(q - l)f(O) - atf'(O)] = 0, 

resulting after reduction in (l4e). 
(14d) directly follows from (l4e). For lim g(t) = 0, left-hand side of the 

I-m 

differential equation is dominated by et2g(t) and its right-hand side by atj'(O) + 
+ btf(O) for high t-values, leading to Eq. (14e) 

In the following, asymptotic behaviour of generalized integrals of functions 
meeting differential equation (14a) "will be discussed. 

The general form of these functions is Im(eAI), where A is a complex 
number and I m designates the imaginary part. 

6 Periodic. Polytechnic. El. 19/4 



366 P. O. GESZTI et al. 

This latter operation, being interchangeable with the integrals, can be 
left to the end of the computation and thus it ,,,ill not be indicated. Let first be 

q = k + p, k = integer; ° < p < I; q> 0. 
Since 

from Eq. (8): 

I 
"'1 

(IS) 

This formula demonstrates to be sufficient to deal only with the generalized 
integrals of eAt of an order below unit, and ",ith their asymptotic behaviour, 
namely the integrals of higher order differ from them by a value determined 
by an explicit formula. 

Thus, in the follo,ving: 

o<q<l. 

For Re(A) < 0, comparison of formulae (I4b) and (4) gives: 

1 

g(t) = J (I 
o 

thus lim g(t) = 0, hence asymptotic approximation (l4e) is valid. (Remind 
t~ cc 

that g(t) tends to zero even for q > I, and thus Eq. (I4e) holds in this case, 
too; this, however, under consideration of (I4b), gives only a term of the form 
t q
-\ in contrary to pO'wer functions in (IS) giving the asymptotic function 

more exactly.) 
For Re(A) > 0, the asymptotic solution can be defined as follows: 

According to formula (la) 

Thus J(q)[e At ] tends asymptotically to 

if the latter integral has a finite value. 
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Substituting z = A'C the integral turns into the complex integral 

with path L as shown in Fig. 2. 

real 

Fig. 2. 

Replacing it provisorily by L' ending at the circular arc K, regularity 
of the integrand permits to 'write: 

R 
r S -L r S q-l -x d .1= 1.1= x e x 

(L') (L,) (K) 0 
.r 
([() 

For R ->- =, L' turns into L and the integral along the arc is zeroed such as: 

B -J q-l -zd--[ -Z.,.q-lJZ=R/AA/-LJ(q -1)-q-2 e- zdz' _ z e ,,;;, _ -e "" j .,r.. , 

(I() z=R (K) 

namely the absolute value of the term in square brackets fall" below 

2Rq-l=_2_, 
Rl-q 

and the absolute value of the integral (on the right-hand side) falls below: 

(q-l)Rq-2 . Rarc(A) = (q-l)arc(A) 
Rl-q 

and so, for q < 1 and R ->- =, B ->- O. 

6* 
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Consequently 

'" S = lim J = S xq-1e-xdx = r(q), 
(L) R- 0> (L,J 0 

thus 

(16) 

where subscript a indicates "asymptote". 

4. An example of application 

Eddy currents are induced in a semi-infinite metal block due to the 
variable voltage connected to the induction coil. (Fig. 3). 

In the co-ordinate system the magnetic field H has only a component 
of direction z, the electric field a component of direction y, both depending 
on x and t (time) alone. Thus, on the basis of Maxwell's equations obtained 
by neglecting the displacement current and of Ohm's differential law [2]: 

SH 

Sx 
yE, 

SE SH 
-=-p-. 

SX St 

(17) 

(18) 

The voltage connected to the coil and the currect intensity have to be related. 
(E)x=o = Eo being proportional to the voltage, and (H)x=o = Ho to the 
current, therefore it is only relevant to know Ho(t) for a given Eo(t). Using 
the Laplace transform of Eqs (17) and (18): 

dH ~ 
=-yE (19) 

dE = -psH, (20) 

hence 

the general solution being 
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For Re (Vs) > 0 and x --+ 00, Hremains only finite if A = 0, and thus 

H = Be -yyp:$x , 

Denoting the Laplace transform of Ho(t) by Ho(s), and since Ho(t) = 
= (H)x=o' 

hence 

~----_________________ • x 

Fig. 3. 

From (19): 

and 

hence 

Since 

the convolution theorem transforms the previous equation to: 

t 

Ho(t) = lfi:- 1 f E, 0(·) d. 
, fl r(:) 0 1/t-. (21 ) 
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hence, by definition (lb): 

(22) 

1 
Consequently, the current-time function is proportional to the 2 -th integral of 

the voltage-time function. If direct voltage is connected to the coil, then Eo(t) = 

=l(t). Eo where l(t) is the unity step function, and thus, on the hasis of (21)-

using r ( ~ ) = y;r (Fig. 4) 

! Ho(t) 

lr-;;--Ho(t) = 2 1-(-. It . 
. [Kr 

. la t 

--+-t=----. t 
Fig. 4. 

-+1_E_O(t_) ____ ~J~------------------~. t 

r: ~---~ I 

T 

Fig. 5. 

If an impulse of width T, shown in Fig. 5, is applied to the coil, then, again 
from (21): 

Ho(t) = 21f Y nit -l(t-T}V t-T1 . 
fl7C 

Finally, connecting a sinusoidal voltage to the coil: 

Eo(t) = Eo sin (M + x). 
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Substituting 

tp(t) = iD [sin (t + ex)] 

leads on the basis of Eqs (22), (3) and (5) to: 

3 

2 

-1 

Ho(t) = If Y Eo tp( wt) . 
~ fUl) 

2 

Fig. 6. 

:3 "'-.., 
sintA, 

3 4 

.... ,.... ....."...::.._-----_ .... 
Fig. 7. 

371 

According to (14a), (14b), (14e) and (14d) - where a = c = 1, b = 0, f(o) = 
= sin ex and f'(o) = cos ex: 

tp(t) = V t g(t), 
n 
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and the solution of the differential equation 

t2 gl/(t) + tg' (t) + (t2 - : ) g(t) = tcos IX - ~ sin IX 

is g(t), with initial values 

g(O) = 2 sin IX, g'(O) = cos IX. 

Considering that sin (t + IX) = Im(ei" eit), on the basis of (16): 

thus: 

() _ . (1 :n:) Cf'a t - sm t T a - 4: . 

Appendix 

For sake of demonstration, Fig. 6 shows the curves of the "halfth", first and "one-and 

halfth" integrals of ;t ' Fig. 7 the integral curves of ! -th, ~ -th, ! -th, and first order of 

sin t. 

Summary 

Starting from the well-known definition of generalized real-order-integrals, their most 
important features (homogeneous linear operator; transition integer-order integrals to tradi­
tional integrals; addition of the orders upon sequential application of the operator) is presented. 
After defining the real-order derivatives, calculation methods are described. At last, as an 
example in the field of theoretical electricity, the current of the excitation coil of a semi-

infinite conductor is shown to be proportional to the ~ -th integral of the voltage-time function. 
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