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Introduction 

Xonlinear systems haye many different types. Since there is no simple 
mathematical method for the description of different structures (and is unlike 
to he in the futur(') only special tasks of nonlinear systems parameter estima
tion could he solved. In the sam(' "way as the im pulse response for linear systems 
th(' VOLTERRA series expansiollmeans a non-parametric system description for 
a wide class of nonlinear systems. During parametrizing this linear form, 
approximating the series of "twice infinite size" (infinite in time and in order 
of expansion), a functional relationship -- lineal' in parameters -- can he 
obtained which considerably simplifi('s the identificatioll procedure. Unfortu
nately, the number of necessary parameters is too great for many practical 

cases [2]. 
The method8 elaborated for the identification of linear discrete-time 

sY8tems can simply be extended for a special class of nonlillear systems i.e. 
for the I-LDDIERsTEn model where the zero memory nonlinearity is followed 
hy linear dynamics. 

Considering a discrete-time system, a8surning second-order polynomial 
as a nonlinearity and using the impulse transfer function, the H.DDIERSTEI:.'i" 

model is ShO'Dl in Fig. 1. The equation of the no-memory nonlinearity IS 

Fig. 1 

(1) 

and the difference equation for the discrete-time system IS (assuming unit 

sampling time) 

A(:;-l)y(t) (2) 
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where 

(3) 
and 

m n. (4) 

(Herez-1is a backward shift operator: Z-lU (t) = u(t 1). ::Xotice that the first 
term of the polynomial B(z-l) is taken as unity for the sake of a safely unam
biguous description.) On the basis of (1) and (2) input and output are related by: 

m n 
y(t) = ~ biv(t - i) ~aiy(t - i) = 

i=O i=l 

m m m 

= To~b; 
;=0 

T1 ~ biu(t - i) r 2 ~ b; u2(t i) -
i=O i=O 

n 
- ~aiy(t - i). 

i=l 

(5) 

This equation formally corresponds to a "multiple input" single output 
system as illustrated in Fig. 2. Introducing the (n +2m +3) vector g: 

Fig. " 

g(t) = [1, u(t), ... , ll(t - m), u2(t), ... , 112(t - m), 

- y(t - I), ... , -y(t - n)y 
(6) 

and the parameter vector p: 

where 

(8) 

Eq. (5) can be given as a scalar product 

(9) 
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tHere T means the transposition.) Thus we get a system equation having 
linearity in parameters, the vector p has, however, redundant elements, since 

I i 11l. (10) 

If the full parameter vector is estimated then the estimates of numerator of 
dynamics may be different for the linear part 

(ll ) 

and for the quadratic part 

B (_-1) - I i b _-1 I 
2. ,,;.; - -;- 21 ,,;.; I··· (12) 

Further generalisation and extension of the model are presented in [3]. 
For practical applications the measurement noises must he taken into 

account. The majority of methods - in lack of sufficient a priori information-

Fig. 3 

require to measure the input signal without noise. At the output, however, a 
linear noise model ha'dng rational spectrum is assumed according to practical 
experiences, this situation is presented in Fig. 3. Here 

C(Z-l) - I C _-1 
l~ 

C _-k. 
!J:k , k (13) 

and 

D(c1) = 1 d1z-1 ... + d1z-l • (14) 

The source noise e(t) is assumed to be normally distributed 'white noise with 
variance one and independent of u(t). 

The system to be identified is considered as a structurally stable one with 
constant parameters and that every root of polynomial zkC(z-l) is assumed to 
lie inside the unit circle. In this paper the possibilities of the off-line pa
rameter estimation are considered, i.e. for N values of (u(t), ,v(t) ), where u(t) 
is a "persistently and sufficiently exciting" signal [2]. 
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I. Iterative Estimation Technique 

NAREl'"DRA and GALL}IAl'"l'" (1966) suggested an iteratiye technique for 
the identification ofthe HA}DIERSTEIl'" model [9]. Arrange the lY values lI(t) and 
yet) (t = 1, 2, ... , lV) to N Xl ycctor u and y and define the vector v simil
arlv. Furthermore, introduce the yectors 

[ro' rI' r 2]T 

[1, lI(t), lI~(t)y 

and 

gAt) = [t·(t), v(t 1), ... , vet - m), 

-yet 1), -y(t - 2), ... , -yet - n)y . 

Determination of the parameters consists of the following steps: 

(15) 

(16) 

(17) 

(18) 

(a) Assume that B(:;-I)/A(:;-I) 1, thusL· 1(t) = yet), where 1: refers to the 
estimated value. 

(b) A simple least-squares (LS) estimation is made for PIon thc basis of 

u and '-1' i.c. 

Here 

[

g[(l) 1 
G

l 
= g[UY) . 

(c) Estimate r(t) again: 

(d) 1Iake a LS estimation for P~ on the hasis of v ~ and y: 

'where 

Naturally, nowi'~ is replacing v in g~(t). 
(e) After these, estimate vet) from yet) by p~: 

n 
vI(t) = yet) -i- 2 Qiy(t - i) 

i=I 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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Here the unambiguity is guaranteed with division by ho. The iteration is con
tinued from (b) up to a sufficient accuracy or a given iteration number. Having 
some a priori information about the parameters of dynamic or nonlinear part 
of the system, the iteration can be joined at an other point, to the meaning. 

2. Estimation Technique with Restrictions 

Besides the previous method, iterative technique can also be elabOTated 
for the estimation of the HA:lDIERsTEI:-;-model parameters [7]. Let us redraw 
Fig. 2 to be equivalent for the input and output points, Fig. 4. Let us introduce 
the vectors: 

where 

g3(t) = [1, u*(t), u2*(t), -y(t 1), ... , -y(t - n)y 

m 
u* (t) = B (Z-l) U (t) = )':' hi u (t - i) 

7=0 
m 

u2*(t) = B(z-l) u2(t) = 2 hi u2(t - i). 
-i=O 

The steps of iteration: 

(~5 ) 

(26) 

(27) 

(28) 

(a) The initial estimation of vl(t). (For example, according to iterative estim
ation technique (a), (h), and (c) .) 

(h) A simple least-squares estimation for pz in knowledge of VI and y: 

(c) u*(t) and u2*(t) are estimated according to (27) and (28), where B(Z-I) is 
determined from 1)2 by (17). 

(d) Least-squares estimation of P3 on the hasis of measured values y and 
computed values li* and li2*: 

(29) 
\vhere 

[ 

gj(l) 1 
G

3
= . 

gnN) 
(30) 

(e) PI can he computed from pz and P3 (see (15), (17) and (25) ), so 

(31 ) 

repeating these steps from (h). 
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During the identification from noisy measurements it must be taken 
into account that in these algorithms the necessary condition of unbiased 
parameter estimation is C(Z-l) = I and D(Z-l) = A(Z-l). Namely, in this 
case the "equation error" in (22) is white noise (equals e(t) ) and the LS estim
ation coincides with the maximum likelihood (I\IL) one [2]. Though this noise 
structure is necessary for an unbiased estimation, but this is not a sufficient 

Fig. 4 

condition in both pre..-iously itcrati..-e techniques presented above since e. g. 
the "input" signal and the equation error are correlated in (22) because of (24). 
Additional problem is that the solution obtained hy these procedures is not 
surely the hest one (only a 10call11inil11ul11). 

3. Dh·ecL (Noniterative) Estimation Technique 

HSIA (1968) and CHA;';'G (1971) suggested a direct method instead of the 
iterative technique for a special case and for the HA)fMERSTEIl'i model, respec
tively [5]. It is shown in the previous item that both the simple and the genera
lized HAl\HIERSTEIN model can he described by Eq. (9), linear in parameters. 
This means that in case of C(Z-l) = I and D(Z-l) = A(Z-l) the ordinary LS 
estimation gives an unhiased estimation of p, i.e. 

(32) 

Here 

G (33) 

This method permits considerahle saving in computation time compared to 
the iterative technique. In each case it has to he investigated which the better 
estimation of bi is because the parameter vector (7) in the linearized equation 
of the simple HA)DIERSTEI;';' model has redundant elements, see (10). This can 
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be performed by the investigation of covariance matrix (GTG)-l or by compari

son of squared sums of residuals. Estimation techniques can be elaborated for 
other noise structures, too, applying the methods used for the identification 
of linear discrete-time systems. In the next item the generalized-least-squares 

. (GLS) method [6] and the ML method [1] are extended for the HAl\lJ\IERSTEI~ 
model. 

4. Generalized-Least-Squares Method 

The G LS method suggested by CLARKE is actually a special case of 
AITKEl'o- estimation for the linear discrete-time systems. The estimation pro
cedure consists of the following steps [6]: 
(a) An ordinary LS estimation for the parameters of (9) according to (32). 
(b) Computation of the residuals (equation errors) 

f(t) = y(t) - gT(t)p ; t = 1, 2, ... , 1\, (34) 

by the estimated parameters of p. 
(c) Assume that the equation of noise model is 

f(t) = qT(t) h, ( 35) 

i.e. linear in parameters, where 

q(t) = [f(t - l),f(t - 2), .. . ,f(t - slY (36) 

and 

(37) 

Thus the LS estimation of parameter vector h can be determined on the 
basis of values f(t) computed according to (34): 

(38) 

·where 

(39) 

and vector f contains the lY values of f(t). Eq. (35) is valid only for 
C(Z-l) = 1 and D(z-l) = A(z-l) H(Z-l), where 

(40) 
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Thus the GLS method giyes an asymptotically unbiased estimation. In 
general, the noise structure assumed aboye fairly approximates other 
noise structures. The approximation is the better, the more exactly it 
realizes the condition: 

(d) Compute the filtered yalues multiplying both sides of Eq. (9) by H(Z-l): 

lIf(t) = H(;:;-l)U(t); lIf(t) = H(Z-1)U2(t) 

yF(t) = H(Z-l)y(t). 
(41) 

For the HA}DIERSTEI0" model the system equation with the filtered 
yalues is 

(42) 

where 

gF(t) = [IF, uf(t), ... , u[(t - m), uf(t), ... , uf(t - m), 

yF (t 1), ... , _yF(t - n)Y 
(43) 

and 

p. (44) 

Here 

(4·5) 

(f') Constituting Yector YF from yalues yF(t) and matrix 

(46) 

the GLS estimation of PF is: 

(47) 

The procedure is continued from point (b). (~otice that the second filtering 
method of CLARKE can also be applied hut in general it is of poorer conYer

gence [6].) 
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5. Maximum Likelihood Method 

In the previous methods the noise model is to be assumed a special 
case of the general one shown in Fig. 3, and reduce the essentially nonlillear 
estimation problem to a linear onc in parameters via "quasi-linearization". 
ASTR())I (1965) has developed the NIL method for linear discrete-time systems 
for D(Z-l) A(Z-l) solving the nonlinear estimation problem and has given 
its computation technique [1]. (Since the system model and the noise model 
can be reduced to common denominator in every case, the condition D(Z-l) = 

A(z-l) is not too severe.) Let us investigate the application of NIL method 
for the HA}DIERSTEI;'; model. 

Residual c(t) is defined by equation 

A(z -l)y(t) 

and it is the estimation of source noise i.e(t) shown in Figs 2, 3. 
The logarithm of likelihood function becomes 

1 -,- O{ • ! " 
L = - -- -:5' s-,t) - i\ log I. I const. 

2i.2 t='l 

:Nlaximizing this function is equivalent to minimizing the loss function: 

1 N 
V(p) = - -:5' c2(t). 

') ...... 
~ t=l 

(48) 

(49) 

(50) 

The l\IL estimation of i. can be obtained by p belonging to the minimum of 
the loss function: 

. 1/') 
i. = / -=-.. _ V(p). 

N 
(51) 

:'\"0"- P has the following form: 

The NIL estimate is consistent, asymptotically normal and efficient under mild 
conditions [1]. 

In general, combined GAl:SS-N"EVYTO;'; and NEVVTO;';~- RAPHso;'; algo
rithms are used to minimizc the loss function: 

(53 ) 

where V p is the gradicnt of V(p), and V pp is the matrix of second order partial 
derivates. The problem invoh-es the restriction that during thc minimum 
seeking cvery root of /C(z-l) must lie inside the unit circle. In the vicinity 
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of illegitimate region the factor :x has a role that can be computed according 
to different strategies [4]. The computation of derivatives was detailed in [3]. 
In lack of a priori information the seeking starts from a LS estimation. The 
globality of obtained minimum has to bc controlled by restarting the seeking 
from other initial points. 

It is obvious from these relationships that Eq. (48) formally corresponds 
to a triple input, single output linear discrete-time system, where u1(t) = I, 
112(t) = u(t) and u3(t) = u2(t). (This, of course, can be extended to higher order 
nonlinearities.) The parameters to be estimated are the coefficients of poly
nomials C(z-l), A(c1), B 1(z-1), B2(C 1) and B 3(z-1). Here B1(z-1) must be 

assumeq, of zero order. Thus, if a program is available for the lVIL identification 
of a multiple input, single output system then this program can be easily 
adapted for identifying the HA:.\DIERSTEIN model, as well. 

Both the GLS method and the lVIL one have been considered for the 
estimation of the redundant parameter vector of the HA:.\IMERSTEIN model. 
Namely first it is to be seen whether separability, i.e. condition (10), is approxi
mately valid. 

In the positive case the problem will be solved under restriction (10) to 
ensure the unambiguity. A possible simple solution of this problem arises by 
replacing Eq. (9) by an equivalent one: 

y(t) = gnt)p~ (54) 

'where 

(55) 

and 

g4(t) = [I, u(t), u(t - I), ... , u(t - m), x(t), -y(t - I), ... , - y(t - n)y (56) 

where 

x(t) (57) 

Since both methods G LS and ML contain iterative procedures, bi values can 
always be computed between the iteration cycles on the basis of (10) to con
stitute x(t). In this way the parameter vector becomes unambiguous and 
corresponding to the simple separable HA:.YBIERSTEIN model. 

6. Simulation Results , . 

The programs of every algorithm mentioned in this paper have been 
made. Their oper~tions and estimation properties, the necessary computing 
times have been investigated and compared by several simulation examples. 
We give the estimated parameter values of the folIo'wing H.DDIERSTEIN model 
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for different polynomials C(z-l) and ro = 0 and 1"0 2: 1"1 = 2; B(z-l) = 

= 1+0.5z-1 and A(Z-l) D(Z-l) 1--1.5z- 1..1-0.7z-2. The noiseisignal ratio 

at the output was 1/' 30 per cent, a rather high yalue. The input signal was 
a random sequence with normal distribution, zero mean and yariance one. 
The mean square error value 

JISE 
1 

IS also given. Here )"0 is the system output without noise. The estimation of 
parameters of the H.-L\nlERSTEI~-Illodel containing also a constant term (ro = 2) 
--- is presented in Fig. 5 for the case of iterative techniclue (IT) suggested hy 
XARE:'iDRA and GALL:\IA~ and for the case of technique suggested here under 
restrictions (BIT), wherc the equation error is ,dlite noise, C(z-l) = 1, N 300, 

10 
SR 

----·--1------\--- --- ----,---.. -----, 

6 Periodica Polilt'dlllicll EL. 13/1 

'1=0 
BIT 

8 12 76 

Fig. S 

20 it 
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'l' = 0 and V' = 30%. This latter method is seen to give a higher convergence 
rate. The iteration started hy a static regression (SR) or a direct LS estimation 
(DR), this latter gives the value of steady state of iteration in one step. The 
estimates of model with no constant term (To = 0) are summarized in Tahle I 
under different noise conditions and J.V = 500, If! = 30%. The following 
polynomials C(Z-l) were applied: in cast' 

I. C(z -1) = 
1 

1 

0.6z -1 

Il. 

Ill. C(_-1) - 1 -- _-1 __ 0 'J_-~ • 
..., - N : __ "'" ., 

IY. C(Z -1) 1 - 1.5z-1 -+ 0.7z-~. 

In thc table also the non-iteratin (LS), the GLS and the ML methods arc 

compared. 

Table 1 

r, r 1bll rJI::' l ", 
C(=- ') i. 

0.;) -1..) 

LS 1.952 0.971 1.0u9 0,499 1.517 

GLS 1.9:)2 0.967 1.010 0.493 1.518 

GLS (I) 0 .. 5 1.971 1.02.5 1.002 0.509 -1.500 

~IL 1.961 1.009 l.002 (J.;;09 U09 

~IL 1.973 1.025 1.005 0.511 1.501 
-------~-- ~---,-~-- ----- "- ---.~-

LS 1.90:) 1.3-16 0.9.5;; 0.635 -1. III 

GLS 1.926 U35 0.995 0.553 1.131 

GLS (Il) 1.:) 1.926 1.038 1.003 0.:)32 1.-196 

AIL 1.895 1.117 (J.9S7 O.5n 1.'193 

~IL 1.916 1.115 0.995 0.5·16 -1.492 

LS 1.829 2.110 0.9·13 O.89B 1.14:: 

GLS (IIl) 3.0 1.837 1.·170 0.973 0.659 1.433 

~IL UH6 1.2·16 1.013 0.538 -LASl 
----,--" --

LS 1.851 2.639 0.917 ·1.109 -0.923 

GLS (IV) 3.0 1.974 1.422 1.003 0.657 -1.'109 

?ilL 1.379 1.196 0.979 0.565 -1.488 
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7. Conclusions 

The identification technique of a special nonlinear system, thc H .. UDIER-

81'E1); model, has been shown to closely approach the methods elaborated for 
linear systems. The published estimation procedures have heen reyiewed, the 
relationships pointed out and suggested to extend the GLS and ML methods 
for the nonlinear case, presenting the formula necessary for the application. 
The usefulness of the suggested methods is supported hy simulation results. 
Further extensive investigations are needed to study in practical cases whether 
the I-LUDlERSTEIl'< model suit to describe the real nonlinear dynamic systems. 

The most extensiye application of the suggested methods seems to he 
by thc moment for investigating a process wether it can bc described 

by a linear discrcte-time modcl in the 'dcinity of the working point, in the 
range of an unchanged input signal or not. In this latter casc, hence for a 
strong nonlinear character -- the linear approximation is only allowed for a 
lesser changing range of the input signal. 

Methods applied for identifying the I-LUDIEHSTEI::\" modcl can he used at 
the adaptiye extremum control, as well. Remind that the GLS method suits 
on-line estimation, while the adaptive system model necessary for the dual 
control, can be produced hy the HA}DlERSTEI); modcl. 

" Il J 

h" I"~ :>1"£ 
11., ,. 

0.713 0.197 0.·19·1 0.17:2 

0.71·1 (1.0;:\1 0.·196 (lA93 O.·ISO 

11. ,on ~·().sz6 0.llB6 O.SZO 0 .. )08 0.IS7 

0.705 1i.511~ O.SIS 0.;;08 0.:;31 0.::\91 

0.701 O.S6B fJ.236 O.S:W 0.50B O.~19 n.3,)S 

0.618 0.707 0.66·1 1.1')9 

n.63' 0.·lS8 0.:)89 0 .. ).).) 0.·106 

0.697 0.633 0.115 0.5(is 0.5::\1 0.331 

0.69·1 0.'192 0.589 0.5:,)4 1.fi07 0,427 

0.69·1 0.579 0.Z39 0.577 0.518 Lill 0.377 
--~~- -~"---"-~--- --~ .. 

O.3HO 1.153 O.9.)Z ::\.9~1 

0.649 n.77·1 0.363 0.300 0.674 1.167 

n.6H6 -0.99·1 0.193 0.676 0.523 .).066 1.029 
----------~---- . -----~-

O.li5 1.-126 1.209 .1.109 

0.62,) 0.997 0.-198 0.720 0.655 1.363 

0.694 1.519 0.747 0.637 0.577 3.067 OA67 

6* 
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SUlllmary 

The possibility of parameter estimation of the I-LUDIEHSTEI;; model is investigated 
in detail in case of quadratic polynomial form and different noise situationi'. OYer and aboH 
the ,,'ell-known and new iterative and lloniteratiYe methods, the extensions for nonlinear case 
of generalised least-squaresand maximum likelihood method used in the linear systems - are 
presented. These methods are supported by simulation results. 
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